1 | import numpy as np
|
---|
2 |
|
---|
3 | from MatlabArray import string_dim
|
---|
4 |
|
---|
5 |
|
---|
6 | class histogram_bin_uncertain(object):
|
---|
7 | '''
|
---|
8 | HISTOGRAM_BIN_UNCERTAIN class definition
|
---|
9 |
|
---|
10 | Usage:
|
---|
11 | [hbu] = histogram_bin_uncertain(
|
---|
12 | 'descriptor', descriptor,
|
---|
13 | 'pairs_per_variable', pairs_per_variable,
|
---|
14 | 'abscissas', abscissas,
|
---|
15 | 'counts', counts
|
---|
16 | )
|
---|
17 |
|
---|
18 | where the required args are:
|
---|
19 | descriptor (char, description, '')
|
---|
20 | pairs_per_variable (double list, [])
|
---|
21 | abscissas (double list, [])
|
---|
22 | counts (int list, [])
|
---|
23 |
|
---|
24 | NOTE: A call to the constructor with zero arguments will return a default
|
---|
25 | instance; one argument of the class copies the instance; three or more
|
---|
26 | arguments constructs a new instance from the arguments.
|
---|
27 | '''
|
---|
28 |
|
---|
29 | def __init__(self): #{{{
|
---|
30 | self.descriptor = ''
|
---|
31 | self.pairs_per_variable = []
|
---|
32 | self.abscissas = []
|
---|
33 | self.counts = []
|
---|
34 | #}}}
|
---|
35 |
|
---|
36 | @staticmethod
|
---|
37 | def histogram_bin_uncertain(*args): #{{{
|
---|
38 | nargin = len(args)
|
---|
39 |
|
---|
40 | # create a default object
|
---|
41 | if nargin == 0:
|
---|
42 | return histogram_bin_uncertain()
|
---|
43 |
|
---|
44 | # copy the object
|
---|
45 | elif nargin == 1:
|
---|
46 | if isinstance(args[0], histogram_bin_uncertain):
|
---|
47 | hbu = args[0]
|
---|
48 | else:
|
---|
49 | raise Exception("Object {} is a {} class object, not 'histogram_bin_uncertain'.".format(str(args[0]), str(type(args[0]))))
|
---|
50 |
|
---|
51 | elif nargin == 2 or nargin == 3:
|
---|
52 | raise Exception("Construction of 'histogram_bin_uncertain' class object requires at least {} inputs.".format(4))
|
---|
53 |
|
---|
54 | # create the object from the input
|
---|
55 | elif nargin == 4:
|
---|
56 | hbu = histogram_bin_uncertain()
|
---|
57 |
|
---|
58 | #recover options:
|
---|
59 | options = pairoptions(*args)
|
---|
60 |
|
---|
61 | #initialize fields:
|
---|
62 | hbu.descriptor = options.getfieldvalue('descriptor')
|
---|
63 | hbu.pairs_per_variable = options.getfieldvalue('pairs_per_variable')
|
---|
64 | hbu.abscissas = options.getfieldvalue('abscissas')
|
---|
65 | hbu.counts = options.getfieldvalue('counts')
|
---|
66 |
|
---|
67 | else:
|
---|
68 | raise Exception("Construction of histogram_bin_uncertain class object requires either (1) no arguments, (2) a histogram_bin_uncertain instance to copy from, or (3) a descriptor and pairs per variable, abscissas, and counts lists")
|
---|
69 |
|
---|
70 | @staticmethod
|
---|
71 | def __repr__(hbu): #{{{
|
---|
72 | s = ""
|
---|
73 | for i in range(len(hbu)):
|
---|
74 | s += "class {} object {} = \n".format(hbu.__class__.__name__, string_dim(hbu, i))
|
---|
75 | s = "{}\n{}".format(s, fielddisplay(self, 'descriptor', 'name tag'))
|
---|
76 | s = "{}\n{}".format(s, fielddisplay(self, 'pairs_per_variable', 'pairs per variable'))
|
---|
77 | s = "{}\n{}".format(s, fielddisplay(self, 'abscissas', 'abscissas'))
|
---|
78 | s = "{}\n{}".format(s, fielddisplay(self, 'counts', 'counts'))
|
---|
79 |
|
---|
80 | return s
|
---|
81 | #}}}
|
---|
82 |
|
---|
83 | def checkconsistency(self, md, solution, analyses): #{{{
|
---|
84 | return
|
---|
85 | #}}}
|
---|
86 |
|
---|
87 | #virtual functions needed by qmu processing algorithms
|
---|
88 | #implemented:
|
---|
89 |
|
---|
90 | @staticmethod
|
---|
91 | def prop_desc(hbu, dstr): #{{{
|
---|
92 | desc = ['' for i in range(np.size(hbu))]
|
---|
93 | for i in range(np.size(hbu)):
|
---|
94 | if hbu[i].descriptor != '' or type(hbu[i].descriptor) != str:
|
---|
95 | desc[i] = str(hbu[i].descriptor)
|
---|
96 | elif dstr != '':
|
---|
97 | desc[i] = str(dstr) + str(string_dim(hbu, i, 'vector'))
|
---|
98 | else:
|
---|
99 | desc[i] = 'hbu' + str(string_dim(hbu, i, 'vector'))
|
---|
100 |
|
---|
101 | desc = allempty(desc)
|
---|
102 |
|
---|
103 | return desc
|
---|
104 | #}}}
|
---|
105 |
|
---|
106 | @staticmethod
|
---|
107 | def prop_mean(hbu): #{{{
|
---|
108 | mean = np.zeros(np.size(hbu))
|
---|
109 | for i in range(np.size(hbu)):
|
---|
110 | mean[i] = hbu[i].mean
|
---|
111 | return mean
|
---|
112 | #}}}
|
---|
113 |
|
---|
114 | @staticmethod
|
---|
115 | def prop_stddev(hbu): #{{{
|
---|
116 | stddev = np.zeros(np.size(hbu))
|
---|
117 | for i in range(np.size(hbu)):
|
---|
118 | stddev[i] = hbu[i].stddev
|
---|
119 | return stddev
|
---|
120 | #}}}
|
---|
121 |
|
---|
122 | @staticmethod
|
---|
123 | def prop_lower(hbu): #{{{
|
---|
124 | lower = []
|
---|
125 | return
|
---|
126 | #}}}
|
---|
127 |
|
---|
128 | @staticmethod
|
---|
129 | def prop_upper(hbu): #{{{
|
---|
130 | upper = []
|
---|
131 | return upper
|
---|
132 | #}}}
|
---|
133 |
|
---|
134 | #default
|
---|
135 | @staticmethod
|
---|
136 | def prop_abscissas(hbu): #{{{
|
---|
137 | abscissas = []
|
---|
138 | for i in range(len(hbu)):
|
---|
139 | abscissas.extend(hbu[i].abscissas)
|
---|
140 | abscissas = allequal(abscissas, -np.inf)
|
---|
141 | return abscissas
|
---|
142 | #}}}
|
---|
143 |
|
---|
144 | @staticmethod
|
---|
145 | def prop_pairs_per_variable(hbu): #{{{
|
---|
146 | pairs_per_variable = np.zeros((1, len(hbu)))
|
---|
147 | for i in range(len(hbu)):
|
---|
148 | pairs_per_variable[i] = hbu[i].pairs_per_variable
|
---|
149 | abscissas = allequal(pairs_per_variable, -np.inf)
|
---|
150 | return pairs_per_variable
|
---|
151 | #}}}
|
---|
152 |
|
---|
153 | @staticmethod
|
---|
154 | def prop_counts(hbu): #{{{
|
---|
155 | counts = []
|
---|
156 | for i in range(len(hbu)):
|
---|
157 | counts.extend(hbu[i].counts)
|
---|
158 | counts = allequal(counts, -np.inf)
|
---|
159 | return counts
|
---|
160 | #}}}
|
---|
161 |
|
---|
162 | @staticmethod
|
---|
163 | def prop_initpt(hbu): #{{{
|
---|
164 | initpt = []
|
---|
165 | return initpt
|
---|
166 | #}}}
|
---|
167 |
|
---|
168 | @staticmethod
|
---|
169 | def prop_initst(hbu): #{{{
|
---|
170 | inist = []
|
---|
171 | return inist
|
---|
172 | #}}}
|
---|
173 |
|
---|
174 | @staticmethod
|
---|
175 | def prop_stype(hbu): #{{{
|
---|
176 | stype = []
|
---|
177 | return stype
|
---|
178 | #}}}
|
---|
179 |
|
---|
180 | @staticmethod
|
---|
181 | def prop_scale(hbu): #{{{
|
---|
182 | scale = []
|
---|
183 | return scale
|
---|
184 | #}}}
|
---|
185 |
|
---|
186 | #new methods:
|
---|
187 | def isscaled(self): #{{{
|
---|
188 | if strncmp(self.descriptor, 'scaled_', 7):
|
---|
189 | return True
|
---|
190 | else:
|
---|
191 | return False
|
---|
192 | #}}}
|
---|
193 |
|
---|
194 | @staticmethod
|
---|
195 | def dakota_write(fidi, dvar):
|
---|
196 | # possible namespace pollution, the above import seems not to work
|
---|
197 | from vlist_write import vlist_write
|
---|
198 | # collect only the variables of the appropriate class
|
---|
199 | hbu = deepcopy(dvar)
|
---|
200 | fields = fieldnames(hbu)
|
---|
201 | for field in fields:
|
---|
202 | if getattr(hbu, field)[0].__class__.__name__ != 'histogram_bin_uncertain':
|
---|
203 | delattr(hbu, field)
|
---|
204 | if len(hbu) > 0:
|
---|
205 | vlist_write(fidi, 'histogram_bin_uncertain', 'hbu', hbu)
|
---|
206 | #}}}
|
---|