function ismodelselfconsistent(md), %ISMODELSELFCONSISTENT - check that model forms a closed form solvable problem. % % Usage: % ismodelselfconsistent(md), %tolerance we use in litmus checks for the consistency of the model tolerance=10^-12; %check usage {{{1 if nargin~=1, help ismodelselfconsistent error('ismodelselfconsistent error message: wrong usage'); end %}}} %recursive call for TRANSIENT {{{1 if (md.analysis_type==Transient2DSolutionEnum | md.analysis_type==Transient3DSolutionEnum), if md.dt<=0, error('model not consistent: field dt must be positive for a transient run') end %recursive call to ismodelselfconsistent if (md.dim==2), analysis=[DiagnosticSolutionEnum PrognosticSolutionEnum]; else analysis=[DiagnosticSolutionEnum PrognosticSolutionEnum ThermalSolutionEnum]; end for i=1:length(analysis), md.analysis_type=analysis(i); ismodelselfconsistent(md); end end %}}} % Common checks %COUNTER {{{1 if md.counter<3, error(['model ' md.name ' is not correctly configured. You forgot one step in the following sequence (mesh, geography, parameterize,setelementstype)!']); end %}}} %NAME{{{1 if isempty(md.name), error(['model is not correctly configured: missing name!']); end %}}} %ELEMENTS{{{1 fields={'elements'}; if (md.dim==2), checksize(md,fields,[md.numberofelements 3]); else checksize(md,fields,[md.numberofelements 6]); end %}}} %ELEMENTSTYPE{{{1 %Check the size of elements_type fields={'elements_type'}; checksize(md,fields,[md.numberofelements 2]); %Check the values of elements_type(1) checkvalues(md,{'elements_type(:,1)'},[MacAyealFormulationEnum() HutterFormulationEnum() PattynFormulationEnum()]); %Check the values of elements_type(2) checkvalues(md,{'elements_type(:,2)'},[StokesFormulationEnum() NoneFormulationEnum()]); if (md.dim==2), checkvalues(md,{'elements_type(:,1)'},[MacAyealFormulationEnum() HutterFormulationEnum()]); end if (md.ismacayealpattyn==0 && md.ishutter==0 && md.isstokes==0), error(['model not consistent: no elements type set for this model. at least one of ismacayealpattyn, ishutter and isstokes need to be =1']); end %}}} %DG {{{1 if md.prognostic_DG==1; %CHECK THE COMPATIBILITY OF THE EDGES fields={'edges'}; checksize(md,fields,[NaN 4]); checknan(md,fields); end %}}} %PRESSURELOAD{{{1 if (md.dim==2), fields={'pressureload'}; checksize(md,fields,[NaN 4]); elseif md.dim==3, fields={'pressureload'}; checksize(md,fields,[NaN 6]); else error('dim should be either 2 3'); end checkvalues(md,{'pressureload(:,end)'},[WaterEnum() AirEnum()]); %}}} %NO NAN {{{1 fields={'numberofelements','numberofgrids','x','y','z','drag_coefficient','drag_type','drag_p','drag_q',... 'rho_ice','rho_water','rheology_B','elementoniceshelf','surface','thickness','bed','g','lowmem','sparsity','nsteps','maxiter',... 'tolx','np','eps_res','max_nonlinear_iterations','exclusive','rheology_n','gridonbed','gridonsurface','elementonbed','elementonsurface','deltaH','DeltaH','timeacc','timedec'}; checknan(md,fields); %}}}} %FIELDS >= 0 {{{1 fields={'numberofelements','numberofgrids','elements','drag_coefficient','drag_type','drag_p','drag_q',... 'rho_ice','rho_water','rheology_B','elementoniceshelf','thickness','g','eps_res','max_nonlinear_iterations','eps_rel','eps_abs','nsteps','maxiter','tolx','exclusive',... 'sparsity','lowmem','rheology_n','gridonbed','gridonsurface','elementonbed','elementonsurface','deltaH','DeltaH','timeacc','timedec'}; checkgreater(md,fields,0); %}}} %FIELDS > 0 {{{1 fields={'numberofelements','numberofgrids','elements','drag_type','drag_p',... 'rho_ice','rho_water','rheology_B','thickness','g','max_nonlinear_iterations','eps_res','eps_rel','eps_abs','maxiter','tolx',... 'sparsity','deltaH','DeltaH','timeacc','timedec'}; checkgreaterstrict(md,fields,0); %}}} %SIZE NUMBEROFELEMENTS {{{1 fields={'drag_p','drag_q','elementoniceshelf','rheology_n','elementonbed'}; checksize(md,fields,[md.numberofelements 1]); %}}} %SIZE NUMBEROFGRIDS {{{1 fields={'x','y','z','rheology_B','drag_coefficient','melting_rate','accumulation_rate','surface','thickness','bed','gridonbed','gridonsurface'}; checksize(md,fields,[md.numberofgrids 1]); %}}} %OTHER SIZES {{{1 fields={'spcvelocity'}; checksize(md,fields,[md.numberofgrids 6]); %}}} %THICKNESS = SURFACE - BED {{{1 if any((md.thickness-md.surface+md.bed)>tolerance), error(['model not consistent: model ' md.name ' violates the equality thickness=surface-bed!']); end %}}} %RIFTS{{{1 if md.numrifts, if ~(md.dim==2), error(['model not consistent: models with rifts are only supported in 2d for now!']); end if ~isstruct(md.rifts), error(['model not consistent: md.rifts should be a structure!']); end if ~isempty(find(md.segmentmarkers>=2)), %We have segments with rift markers, but no rift structure! error(['model not consistent: model ' md.name ' should be processed for rifts (run meshprocessrifts)!']); end %Check that rifts are filled with proper material checkvalues(md,{'rifts.fill'},[WaterEnum() AirEnum() IceEnum() MelangeEnum()]); else if ~isnans(md.rifts), error(['model not consistent: md.rifts shoud be NaN since md.numrifts is 0!']); end end %}}} %FLAGS (0 or 1){{{1 if ~ismember(md.artificial_diffusivity,[0 1]), error('model not consistent: artificial_diffusivity should be a scalar (1 or 0)'); end if ~ismember(md.prognostic_DG,[0 1]), error('model not consistent: prognostic_DG should be a scalar (1 or 0)'); end if ~ismember(md.lowmem,[0 1]), error(['model not consistent: model ' md.name ' lowmem field should be 0 or 1']); end %}}} %PARAMETEROUTPUT {{{1 if md.numoutput~=length(md.parameteroutput), error('model not consistent: numoutput should be the same size as parameteroutput'); end %}}} %CONNECTIVITY {{{1 if (md.dim==2), if md.connectivity<9, error('model not consistent: connectivity should be at least 9 for 2d models'); end end if md.dim==3, if md.connectivity<24, error('model not consistent: connectivity should be at least 24 for 3d models'); end end %}}} %PARALLEL{{{1 if ~strcmpi(md.cluster,'none'), %NAN VALUES fields={'time','np'}; checknan(md,fields); %FIELD > 0 fields={'time','np'}; checkgreaterstrict(md,fields,0); end %}}} % Solution checks %DIAGNOSTIC{{{1 if md.analysis_type==DiagnosticSolutionEnum, %CHECK THAT WE ARE NOT FULLY CONSTRAINED if isempty(find(~md.spcvelocity(:,1:2))), error(['model not consistent: model ' md.name ' is totally constrained horizontally, no need to solve!']); end if (md.dim==3), if isempty(find(~md.spcvelocity(:,3))), error(['model not consistent: model ' md.name ' is totally constrained vertically, no need to solve!']); end end %HUTTER ON ICESHELF WARNING if any(md.elements_type(:,1)==HutterFormulationEnum & md.elementoniceshelf), disp(sprintf('\n !!! Warning: Hutter''s model is not consistent on ice shelves !!!\n')); end %SINGULAR if ~any(sum(md.spcvelocity(:,1:2),2)==2), error(['model not consistent: model ' md.name ' is not well posed (singular). You need at least one grid with fixed velocity!']) end %DIRICHLET IF THICKNESS <= 0 if any(md.thickness<=0), pos=find(md.thickness<=0); if any(find(md.spcthickness(pos,1)==0)), error(['model not consistent: model ' md.name ' has some grids with 0 thickness']); end end %INITIAL VELOCITY if length(md.vx)==md.numberofgrids & length(md.vy)==md.numberofgrids, fields={'vx','vy'}; checknan(md,fields); end end %}}} %PROGNOSTIC{{{1 if md.analysis_type==PrognosticSolutionEnum, %INITIAL VELOCITIES fields={'vx','vy'}; checksize(md,fields,[md.numberofgrids 1]); checknan(md,fields); %CHECK THAT WE ARE NOT FULLY CONSTRAINED if (md.dim==2), if isempty(find(~md.spcthickness(:,1))), error(['model not consistent: model ' md.name ' is totally constrained for prognostic, no need to solve!']); end end end %}}} %STEADYSTATE{{{1 if md.analysis_type==SteadystateSolutionEnum, %NDT if md.dt~=0, error(['model not consistent: for a steadystate computation, dt must be zero.']); end %PRESSURE if isnans(md.pressure), error(['model not consistent: for a steadystate computation, the model must have an initial pressure, even lithostatic will do.']); end %eps: if isnan(md.eps_rel), error(['model not consistent: for a steadystate computation, eps_rel (relative convergence criterion) must be defined!']); end %dim: if (md.dim==2), error(['model not consistent: for a steadystate computation, model needs to be 3d']); end end %}}} %THERMAL {{{1 %THERMAL STEADY AND THERMAL TRANSIENT if md.analysis_type==ThermalSolutionEnum, %EXTRUSION if (md.dim==2), error(['model not consistent: for a ' md.analysis_type ' computation, the model must be 3d, extrude it first!']) end %CHECK THAT WE ARE NOT FULLY CONSTRAINED if isempty(find(~md.spctemperature(:,1))), error(['model not consistent: model ' md.name ' is totally constrained for temperature, no need to solve!']); end %VELOCITIES AND PRESSURE fields={'vx','vy','vz','pressure'}; checksize(md,fields,[md.numberofgrids 1]); checknan(md,fields); end %THERMAL TRANSIENT if md.analysis_type==ThermalSolutionEnum & md.dt~=0, %DT and NDT fields={'dt','ndt'}; checkgreaterstrict(md,fields,0); %INITIAL TEMPERATURE, MELTING AND ACCUMULATION fields={'temperature','accumulation_rate','melting_rate'}; checksize(md,fields,[md.numberofgrids 1]); checknan(md,fields); %INITIAL TEMPERATURE fields={'temperature','spctemperature(:,2)','observed_temperature'}; checkgreater(md,fields,0) end %}}} %BALANCEDTHICKNESS{{{1 if md.analysis_type==BalancedthicknessSolutionEnum %VELOCITIES MELTING AND ACCUMULATION fields={'vx','vy','accumulation_rate','melting_rate','dhdt'}; checksize(md,fields,[md.numberofgrids 1]); checknan(md,fields); %SPC if any(md.spcthickness(find(md.gridonboundary))~=1), error(['model not consistent: model ' md.name ' should have all the nodes on boundary constrained in field spcthickness']); end end %}}} %BALANCEDVELOCITIES{{{1 if md.analysis_type==BalancedvelocitiesSolutionEnum %VELOCITIES MELTING AND ACCUMULATION fields={'vx','vy','accumulation_rate','melting_rate'}; checksize(md,fields,[md.numberofgrids 1]); checknan(md,fields); %SPC if any(md.spcvelocity(find(md.gridonboundary),[1:2])~=1), error(['model not consistent: model ' md.name ' should have all the nodes on boundary constrained in field spcvelocity']); end end %}}} %CONTROL{{{1 if md.control_analysis, %CONTROL TYPE if ~ischar(md.control_type), error('model not consistent: control_type should be a string'); end if ~(strcmpi(md.control_type,'rheology_B') | strcmpi(md.control_type,'drag_coefficient')), error('model not consistent: control_type should be rheology_B or drag_coefficient'); end %LENGTH CONTROL FIELDS fields={'maxiter','optscal','fit','cm_jump'}; checksize(md,fields,[md.nsteps 1]); %FIT checkvalues(md,{'fit'},[0 1 2 3 4]); %WEIGHTS fields={'weights'}; checksize(md,fields,[md.numberofgrids 1]); checkgreater(md,fields,0); %OBSERVED VELOCITIES fields={'vx_obs','vy_obs'}; checksize(md,fields,[md.numberofgrids 1]); checknan(md,fields); %DIRICHLET IF THICKNESS <= 0 if any(md.thickness<=0), pos=find(md.thickness<=0); if any(find(md.spcthickness(pos,1)==0)), error(['model not consistent: model ' md.name ' has some grids with 0 thickness']); end end %parameters fields={'cm_noisedmp'}; checknan(md,fields); end %}}} %QMU {{{1 if md.qmu_analysis, if md.qmu_params.evaluation_concurrency~=1, error(['model not consistent: concurrency should be set to 1 when running dakota in library mode']); end if ~isempty(md.part), if numel(md.part)~=md.numberofgrids, error(['model not consistent: user supplied partition for qmu analysis should have size md.numberofgrids x 1 ']); end if find(md.part)>=md.numberofgrids, error(['model not consistent: user supplied partition should be indexed from 0 (c-convention)']); end if min(md.part)~=0, error(['model not consistent: partition vector not indexed from 0 on']); end if max(md.part)>=md.numberofgrids, error(['model not consistent: partition vector cannot have maximum index larger than number of grids']); end if ~isempty(find(md.part<0)), error(['model not consistent: partition vector cannot have values less than 0']); end if ~isempty(find(md.part>=md.npart)), error(['model not consistent: partition vector cannot have values more than md.npart-1']); end if max(md.part)>=md.npart, error(['model not consistent: for qmu analysis, partitioning vector cannot go over npart, number of partition areas']); end end if md.eps_rel>1.1*10^-5, error(['model not consistent: for qmu analysis, eps_rel should be least than 10^-5, 10^-15 being a better value']); end end if strcmpi(md.analysis_type,'qmu'), if ~strcmpi(md.cluster,'none'), if md.waitonlock==0, error(['model is not correctly configured: waitonlock should be activated when running qmu in parallel mode!']); end end end %}}} end %checks additional functions %checklength {{{1 function checklength(md,fields,fieldlength) %CHECKSIZE - check length of a field for i=1:length(fields), if length(eval(['md.' fields{i}]))~=fieldlength, error(['model not consistent: field ' fields{i} ' length should be ' num2str(fieldlength)]); end end end %}}} %checksize {{{1 function checksize(md,fields,fieldsize) %CHECKSIZE - check size of a field for i=1:length(fields), if isnan(fieldsize(1)), if (size(eval(['md.' fields{i}]),2)~=fieldsize(2)), %LOG warnings: if strcmpi(fields{i},'pressureload'), disp(' '); disp(' If pressureload does not have the right size (one column missing), this is due to a change in md.pressure.'); disp(' To update your model, use the following line'); disp(' md.pressureload=[md.pressureload WaterEnum*md.elementoniceshelf(md.pressureload(:,end))+AirEnum*md.elementonicesheet(md.pressureload(:,end))];'); disp(' '); end error(['model not consistent: field ' fields{i} ' should have ' num2str(fieldsize(2)) ' columns']); end elseif isnan(fieldsize(2)), if (size(eval(['md.' fields{i}]),1)~=fieldsize(1)), error(['model not consistent: field ' fields{i} ' should have ' num2str(fieldsize(1)) ' rows']); end else if ((size(eval(['md.' fields{i}]),1)~=fieldsize(1)) | (size(eval(['md.' fields{i}]),2)~=fieldsize(2))) %LOG warnings: if strcmpi(fields{i},'weights'), disp(' '); disp(' ''weights'' is a new field that should be of length numberofgrids.'); disp(' To update your model, use the following line'); disp(' md.weights=ones(md.numberofgrids,1)'); disp(' '); end error(['model not consistent: field ' fields{i} ' size should be ' num2str(fieldsize(1)) ' x ' num2str(fieldsize(2))]); end end end end %}}} %checknan {{{1 function checknan(md,fields) %CHECKNAN - check nan values of a field for i=1:length(fields), if any(isnan(eval(['md.' fields{i}]))), error(['model not consistent: NaN values in field ' fields{i}]); end end end %}}} %checkreal{{{1 function checkreal(md,fields) %CHECKREAL - check real values of a field for i=1:length(fields), if any(eval(['~isreal(md.' fields{i} ')'])), error(['model not consistent: complex values in field ' fields{i}]); end end end %}}} %checkgreaterstrict{{{1 function checkgreaterstrict(md,fields,lowerbound) %CHECKGREATERSTRICT - check values of a field for i=1:length(fields), if any(eval(['md.' fields{i} '<=' num2str(lowerbound) ])), error(['model not consistent: field ' fields{i} ' should have values stricly above ' num2str(lowerbound)]); end end end %}}} %checkgreater{{{1 function checkgreater(md,fields,lowerbound) %CHECKGREATER - check values of a field for i=1:length(fields), if any(eval(['md.' fields{i} '<' num2str(lowerbound) ])), error(['model not consistent: field ' fields{i} ' should have values above ' num2str(lowerbound)]); end end end %}}} %checklessstrict{{{1 function checklessstrict(md,fields,upperbound) %CHECKLESSSTRICT - check values of a field for i=1:length(fields), if any(eval(['md.' fields{i} '>=' num2str(upperbound) ])), error(['model not consistent: field ' fields{i} ' should have values stricly below ' num2str(upperbound)]); end end end %}}} %checkless{{{1 function checkless(md,fields,upperbound) %CHECKLESS - check values of a field for i=1:length(fields), if any(eval(['md.' fields{i} '>' num2str(upperbound) ])), error(['model not consistent: field ' fields{i} ' should have values below ' num2str(upperbound)]); end end end %}}} %checkvalues {{{1 function checkvalues(md,fields,values) %CHECKVALUE - check that a field has specified values for i=1:length(fields), if eval(['any(~ismember( md.' fields{i} ',values))']), error(['model not consistent: field ' fields{i} ' should have values in ' num2str(values)]); end end end %}}}