1 | function factors=importancefactors(md,variablename,responsename)
|
---|
2 | %IMPORTANCEFACTORS - compute importance factors for a certain variable and response.
|
---|
3 | %
|
---|
4 | % Usage:
|
---|
5 | % factors=importancefactors(md,variablename,responsename)
|
---|
6 | %
|
---|
7 | %
|
---|
8 | % Example: factors=importancefactors(md,'drag','max_vel');
|
---|
9 | %
|
---|
10 |
|
---|
11 |
|
---|
12 | variablenamelength=length(variablename);
|
---|
13 |
|
---|
14 | %go through all response functions and find the one corresponding to the correct responsename
|
---|
15 | responsefunctions=md.dakotaresults.dresp_out;
|
---|
16 | found=0;
|
---|
17 | for i=1:length(responsefunctions),
|
---|
18 | if strcmpi(responsefunctions(i).descriptor,responsename),
|
---|
19 | found=i;
|
---|
20 | break;
|
---|
21 | end
|
---|
22 | end
|
---|
23 | if ~found,
|
---|
24 | error('importancefactors error message: could not find correct response function');
|
---|
25 | end
|
---|
26 | responsefunctions=responsefunctions(found);
|
---|
27 | nfun=size(responsefunctions.var,1);
|
---|
28 |
|
---|
29 | %Now recover response to the correct design variable
|
---|
30 | importancefactors=zeros(1,0);
|
---|
31 | count=0;
|
---|
32 | for i=1:nfun,
|
---|
33 | desvar=responsefunctions.var{i};
|
---|
34 | if strncmpi(desvar,variablename,variablenamelength),
|
---|
35 | importancefactors(end+1)=responsefunctions.impfac(i);
|
---|
36 | count=count+1;
|
---|
37 | end
|
---|
38 | end
|
---|
39 |
|
---|
40 | if count==0,
|
---|
41 | error('importancefactors error message: could not find to response functions with corresponding design variable');
|
---|
42 | end
|
---|
43 |
|
---|
44 | if count==1, %we have scalar
|
---|
45 | factors=importancefactors;
|
---|
46 | return;
|
---|
47 | else
|
---|
48 | %Ok, get partitioning, unless already supplied
|
---|
49 | if isempty(md.part),
|
---|
50 | [epart npart]=MeshPartition(md,md.npart);
|
---|
51 | else
|
---|
52 | npart=md.part+1;
|
---|
53 | end
|
---|
54 |
|
---|
55 | %distribute importance factor
|
---|
56 | factors=importancefactors(npart)';
|
---|
57 | end
|
---|