%MATICE class definition % % Usage: % matice=matice(); classdef matice properties (SetAccess=public) rho_ice = 0.; rho_water = 0.; rho_freshwater = 0.; mu_water = 0.; heatcapacity = 0.; latentheat = 0.; thermalconductivity = 0.; temperateiceconductivity = 0.; meltingpoint = 0.; beta = 0.; mixed_layer_capacity = 0.; thermal_exchange_velocity = 0.; rheology_B = NaN; rheology_n = NaN; rheology_law = ''; %gia: lithosphere_shear_modulus = 0.; lithosphere_density = 0.; mantle_shear_modulus = 0.; mantle_density = 0.; %slr earth_density = 0; end methods function self = extrude(self,md) % {{{ self.rheology_B=project3d(md,'vector',self.rheology_B,'type','node'); self.rheology_n=project3d(md,'vector',self.rheology_n,'type','element'); end % }}} function self = matice(varargin) % {{{ switch nargin case 0 self=setdefaultparameters(self); case 1 inputstruct=varargin{1}; list1 = properties('matice'); list2 = fieldnames(inputstruct); for i=1:length(list1) fieldname = list1{i}; if ismember(fieldname,list2), self.(fieldname) = inputstruct.(fieldname); end end otherwise error('constructor not supported'); end end % }}} function self = setdefaultparameters(self) % {{{ %ice density (kg/m^3) self.rho_ice=917.; %ocean water density (kg/m^3) self.rho_water=1023.; %fresh water density (kg/m^3) self.rho_freshwater=1000.; %water viscosity (N.s/m^2) self.mu_water=0.001787; %ice heat capacity cp (J/kg/K) self.heatcapacity=2093.; %ice latent heat of fusion L (J/kg) self.latentheat=3.34*10^5; %ice thermal conductivity (W/m/K) self.thermalconductivity=2.4; %wet ice thermal conductivity (W/m/K) self.temperateiceconductivity=.24; %the melting point of ice at 1 atmosphere of pressure in K self.meltingpoint=273.15; %rate of change of melting point with pressure (K/Pa) self.beta=9.8*10^-8; %mixed layer (ice-water interface) heat capacity (J/kg/K) self.mixed_layer_capacity=3974.; %thermal exchange velocity (ice-water interface) (m/s) self.thermal_exchange_velocity=1.00*10^-4; %Rheology law: what is the temperature dependence of B with T %available: none, paterson and arrhenius self.rheology_law='Paterson'; % GIA: self.lithosphere_shear_modulus = 6.7*10^10; % (Pa) self.lithosphere_density = 3.32; % (g/cm^-3) self.mantle_shear_modulus = 1.45*10^11; % (Pa) self.mantle_density = 3.34; % (g/cm^-3) %SLR self.earth_density= 5512; % average density of the Earth, (kg/m^3) end % }}} function md = checkconsistency(self,md,solution,analyses) % {{{ md = checkfield(md,'fieldname','materials.rho_ice','>',0); md = checkfield(md,'fieldname','materials.rho_water','>',0); md = checkfield(md,'fieldname','materials.rho_freshwater','>',0); md = checkfield(md,'fieldname','materials.mu_water','>',0); md = checkfield(md,'fieldname','materials.rheology_B','>',0,'timeseries',1,'NaN',1,'Inf',1); md = checkfield(md,'fieldname','materials.rheology_n','>',0,'size',[md.mesh.numberofelements 1]); md = checkfield(md,'fieldname','materials.rheology_law','values',{'None' 'Cuffey' 'CuffeyTemperate' 'Paterson' 'Arrhenius' 'LliboutryDuval'}); if ismember('GiaAnalysis',analyses), md = checkfield(md,'fieldname','materials.lithosphere_shear_modulus','>',0,'numel',1); md = checkfield(md,'fieldname','materials.lithosphere_density','>',0,'numel',1); md = checkfield(md,'fieldname','materials.mantle_shear_modulus','>',0,'numel',1); md = checkfield(md,'fieldname','materials.mantle_density','>',0,'numel',1); end if ismember('SealevelriseAnalysis',analyses), md = checkfield(md,'fieldname','materials.earth_density','>',0,'numel',1); end end % }}} function disp(self) % {{{ disp(sprintf(' Materials:')); fielddisplay(self,'rho_ice','ice density [kg/m^3]'); fielddisplay(self,'rho_water','ocean water density [kg/m^3]'); fielddisplay(self,'rho_freshwater','fresh water density [kg/m^3]'); fielddisplay(self,'mu_water','water viscosity [N s/m^2]'); fielddisplay(self,'heatcapacity','heat capacity [J/kg/K]'); fielddisplay(self,'thermalconductivity',['ice thermal conductivity [W/m/K]']); fielddisplay(self,'temperateiceconductivity','temperate ice thermal conductivity [W/m/K]'); fielddisplay(self,'meltingpoint','melting point of ice at 1atm in K'); fielddisplay(self,'latentheat','latent heat of fusion [J/kg]'); fielddisplay(self,'beta','rate of change of melting point with pressure [K/Pa]'); fielddisplay(self,'mixed_layer_capacity','mixed layer capacity [W/kg/K]'); fielddisplay(self,'thermal_exchange_velocity','thermal exchange velocity [m/s]'); fielddisplay(self,'rheology_B','flow law parameter [Pa/s^(1/n)]'); fielddisplay(self,'rheology_n','Glen''s flow law exponent'); fielddisplay(self,'rheology_law',['law for the temperature dependance of the rheology: ''None'', ''Cuffey'', ''CuffeyTemperate'', ''Paterson'', ''Arrhenius'' or ''LliboutryDuval''']); fielddisplay(self,'lithosphere_shear_modulus','Lithosphere shear modulus [Pa]'); fielddisplay(self,'lithosphere_density','Lithosphere density [g/cm^-3]'); fielddisplay(self,'mantle_shear_modulus','Mantle shear modulus [Pa]'); fielddisplay(self,'mantle_density','Mantle density [g/cm^-3]'); fielddisplay(self,'earth_density','Mantle density [kg/m^-3]'); end % }}} function marshall(self,prefix,md,fid) % {{{ WriteData(fid,prefix,'name','md.materials.type','data',3,'format','Integer'); WriteData(fid,prefix,'object',self,'class','materials','fieldname','rho_ice','format','Double'); WriteData(fid,prefix,'object',self,'class','materials','fieldname','rho_water','format','Double'); WriteData(fid,prefix,'object',self,'class','materials','fieldname','rho_freshwater','format','Double'); WriteData(fid,prefix,'object',self,'class','materials','fieldname','mu_water','format','Double'); WriteData(fid,prefix,'object',self,'class','materials','fieldname','heatcapacity','format','Double'); WriteData(fid,prefix,'object',self,'class','materials','fieldname','latentheat','format','Double'); WriteData(fid,prefix,'object',self,'class','materials','fieldname','thermalconductivity','format','Double'); WriteData(fid,prefix,'object',self,'class','materials','fieldname','temperateiceconductivity','format','Double'); WriteData(fid,prefix,'object',self,'class','materials','fieldname','meltingpoint','format','Double'); WriteData(fid,prefix,'object',self,'class','materials','fieldname','beta','format','Double'); WriteData(fid,prefix,'object',self,'class','materials','fieldname','mixed_layer_capacity','format','Double'); WriteData(fid,prefix,'object',self,'class','materials','fieldname','thermal_exchange_velocity','format','Double'); WriteData(fid,prefix,'object',self,'class','materials','fieldname','rheology_B','format','DoubleMat','mattype',1,'timeserieslength',md.mesh.numberofvertices+1,'yts',md.constants.yts); WriteData(fid,prefix,'object',self,'class','materials','fieldname','rheology_n','format','DoubleMat','mattype',2); WriteData(fid,prefix,'data',self.rheology_law,'name','md.materials.rheology_law','format','String'); WriteData(fid,prefix,'object',self,'class','materials','fieldname','lithosphere_shear_modulus','format','Double'); WriteData(fid,prefix,'object',self,'class','materials','fieldname','lithosphere_density','format','Double','scale',10^3); WriteData(fid,prefix,'object',self,'class','materials','fieldname','mantle_shear_modulus','format','Double'); WriteData(fid,prefix,'object',self,'class','materials','fieldname','mantle_density','format','Double','scale',10^3); WriteData(fid,prefix,'object',self,'class','materials','fieldname','earth_density','format','Double'); end % }}} function savemodeljs(self,fid,modelname) % {{{ writejsdouble(fid,[modelname '.materials.rho_ice'],self.rho_ice); writejsdouble(fid,[modelname '.materials.rho_water'],self.rho_water); writejsdouble(fid,[modelname '.materials.rho_freshwater'],self.rho_freshwater); writejsdouble(fid,[modelname '.materials.mu_water'],self.mu_water); writejsdouble(fid,[modelname '.materials.heatcapacity'],self.heatcapacity); writejsdouble(fid,[modelname '.materials.latentheat'],self.latentheat); writejsdouble(fid,[modelname '.materials.thermalconductivity'],self.thermalconductivity); writejsdouble(fid,[modelname '.materials.temperateiceconductivity'],self.temperateiceconductivity); writejsdouble(fid,[modelname '.materials.meltingpoint'],self.meltingpoint); writejsdouble(fid,[modelname '.materials.beta'],self.beta); writejsdouble(fid,[modelname '.materials.mixed_layer_capacity'],self.mixed_layer_capacity); writejsdouble(fid,[modelname '.materials.thermal_exchange_velocity'],self.thermal_exchange_velocity); writejsdouble(fid,[modelname '.materials.mixed_layer_capacity'],self.mixed_layer_capacity); writejs1Darray(fid,[modelname '.materials.rheology_B'],self.rheology_B); writejs1Darray(fid,[modelname '.materials.rheology_n'],self.rheology_n); writejsstring(fid,[modelname '.materials.rheology_law'],self.rheology_law); writejsdouble(fid,[modelname '.materials.lithosphere_shear_modulus'],self.lithosphere_shear_modulus); writejsdouble(fid,[modelname '.materials.lithosphere_density'],self.lithosphere_density); writejsdouble(fid,[modelname '.materials.mantle_shear_modulus'],self.mantle_shear_modulus); writejsdouble(fid,[modelname '.materials.mantle_density'],self.mantle_density); writejsdouble(fid,[modelname '.materials.earth_density'],self.earth_density); end % }}} end end