1 | /*
|
---|
2 | * GradJSearch.c:
|
---|
3 | */
|
---|
4 |
|
---|
5 | #include "../../../config.h"
|
---|
6 |
|
---|
7 | #if defined(_PARALLEL_) && defined(_HAVE_PETSC_)
|
---|
8 |
|
---|
9 | #include "../include/cielo.h"
|
---|
10 | #include "../modules.h"
|
---|
11 | #include "./parallel.h"
|
---|
12 |
|
---|
13 | #undef __FUNCT__
|
---|
14 | #define __FUNCT__ "GradJSearch"
|
---|
15 | #undef CLEANUP
|
---|
16 | #define CLEANUP GradJSearchLocalCleanup();
|
---|
17 |
|
---|
18 | void GradJSearchLocalCleanup(void);
|
---|
19 |
|
---|
20 |
|
---|
21 | int GradJSearch(double* search_vector,FemModel* femmodel,int step){
|
---|
22 |
|
---|
23 | /*Error management: */
|
---|
24 | int noerr=1;
|
---|
25 | int i,n;
|
---|
26 | int dummy;
|
---|
27 | ParameterInputs* inputs=NULL;
|
---|
28 | int status;
|
---|
29 |
|
---|
30 | //status=GoldenSearch(search_vector,femmodel->workspaceparams->J+step,-1,1,femmodel->workspaceparams->tolx,(int)femmodel->workspaceparams->maxiter[step],
|
---|
31 | // femmodel->workspaceparams->fit[step],femmodel->workspaceparams->optscal[step],&objectivefunctionC,femmodel); //do only one dimension search for now.
|
---|
32 |
|
---|
33 | status=BrentSearch(search_vector,femmodel->workspaceparams->J+step,-1,1,femmodel->workspaceparams->tolx,(int)femmodel->workspaceparams->maxiter[step],
|
---|
34 | femmodel->workspaceparams->fit[step],femmodel->workspaceparams->optscal[step],&objectivefunctionC,femmodel); //do only one dimension search for now.
|
---|
35 |
|
---|
36 | TESTEXIT(noerr);
|
---|
37 |
|
---|
38 | return status;
|
---|
39 | }
|
---|
40 |
|
---|
41 | void GradJSearchLocalCleanup(void){
|
---|
42 | return;
|
---|
43 | }
|
---|
44 |
|
---|
45 | int GoldenSearch(double* psearch_scalar,double* pJ,double xa, double xb, double tolerance, int maxiter, double fit,double optscal,double (*f)(double*,double,double,FemModel*,ParameterInputs*),FemModel* femmodel){
|
---|
46 |
|
---|
47 | double xc, xd, fc, fd;
|
---|
48 | double oneminustau = 1 - (sqrt(5) - 1) / 2;
|
---|
49 | int iter = 0;
|
---|
50 | ParameterInputs* inputs=NULL;
|
---|
51 | int status;
|
---|
52 |
|
---|
53 | inputs=NewParameterInputs();
|
---|
54 |
|
---|
55 | xc = xa + oneminustau * (xb - xa);
|
---|
56 | fc = (*f)(&xc,fit,optscal,femmodel,inputs);
|
---|
57 | xd = xb - oneminustau * (xb - xa);
|
---|
58 | fd = (*f)(&xd,fit,optscal,femmodel,inputs);
|
---|
59 | do {
|
---|
60 | iter++;
|
---|
61 | if (fc < fd) {
|
---|
62 | xb = xd;
|
---|
63 | xd = xc;
|
---|
64 | xc = xa + oneminustau * (xb - xa);
|
---|
65 | fd = fc;
|
---|
66 | fc = (*f)(&xc,fit,optscal,femmodel,inputs);
|
---|
67 | }
|
---|
68 | else {
|
---|
69 | xa = xc;
|
---|
70 | xc = xd;
|
---|
71 | xd = xb - oneminustau * (xb - xa);
|
---|
72 | fc = fd;
|
---|
73 | fd = (*f)(&xd,fit,optscal,femmodel,inputs);
|
---|
74 | }
|
---|
75 | _printf_(" iter# %i f(x) %g x %g toler %g/%g iter %i/%i\n",iter,(fc+fd)/2,(xa+xb)/2,fabs(xb-xa),tolerance,iter,maxiter);
|
---|
76 | }
|
---|
77 | while (fabs(xb - xa) > tolerance && iter < maxiter);
|
---|
78 |
|
---|
79 | if (fabs(xb-xa)<tolerance)status=0;
|
---|
80 | else status=1;
|
---|
81 |
|
---|
82 | /*Assign output pointers: */
|
---|
83 | *psearch_scalar=(xa+xb)/2;
|
---|
84 | *pJ=(fc+fd)/2;
|
---|
85 |
|
---|
86 | return status;
|
---|
87 | }
|
---|
88 |
|
---|
89 | int BrentSearch(double* psearch_scalar,double* pJ,double a, double b, double tolerance, int maxiter, double fit,double optscal,double (*f)(double*,double,double,FemModel*,ParameterInputs*),FemModel* femmodel){
|
---|
90 |
|
---|
91 | /* This routine is optimizing a given function using Brent's method
|
---|
92 | * (Golden or parabolic procedure)*/
|
---|
93 |
|
---|
94 | /*optimization variable: */
|
---|
95 | double si;
|
---|
96 | double gold;
|
---|
97 | double intervalgold;
|
---|
98 | double oldintervalgold;
|
---|
99 | double parab_num,parab_den;
|
---|
100 | double distance;
|
---|
101 |
|
---|
102 | /*function values: */
|
---|
103 | double fxmax,fxmin,fxbest,fval;
|
---|
104 | double fx,fx1,fx2;
|
---|
105 |
|
---|
106 | /*x : */
|
---|
107 | double xmax,xmin,xbest;
|
---|
108 | double x,x1,x2,xm,xval;
|
---|
109 |
|
---|
110 | /*tolerances: */
|
---|
111 | double tol1,tol2,seps;
|
---|
112 |
|
---|
113 | /*counters: */
|
---|
114 | int iter,goldenflag,loop;
|
---|
115 |
|
---|
116 | /*inputs: */
|
---|
117 | int status;
|
---|
118 | ParameterInputs* inputs=NULL;
|
---|
119 |
|
---|
120 | /*Recover inputs: */
|
---|
121 | inputs=NewParameterInputs();
|
---|
122 |
|
---|
123 | //initialize counter and boundaries
|
---|
124 | iter=0;
|
---|
125 |
|
---|
126 | //get the value of the function at the first boundary
|
---|
127 | fxmin = (*f)(&a,fit,optscal,femmodel,inputs);
|
---|
128 |
|
---|
129 | //display result
|
---|
130 | _printf_("\n Iteration x f(x) Tolerance Procedure\n\n");
|
---|
131 | _printf_(" %s %12.6g %12.6g %s"," N/A",a,fxmin," N/A boundary\n");
|
---|
132 |
|
---|
133 | //get the value of the function at the first boundary b and display result
|
---|
134 | fxmax = (*f)(&b,fit,optscal,femmodel,inputs);
|
---|
135 | _printf_(" %s %12.6g %12.6g %s"," N/A",b,fxmax," N/A boundary\n");
|
---|
136 |
|
---|
137 | //initialize the other variables
|
---|
138 | seps=sqrt(DBL_EPSILON); //precision of a double
|
---|
139 | distance=0.0; //new_x=old_x + distance
|
---|
140 | gold=0.5*(3.0-sqrt(5.0)); //gold = 1 - golden ratio
|
---|
141 | intervalgold=0.0; //distance used by Golden procedure
|
---|
142 |
|
---|
143 | //Compute initial point
|
---|
144 |
|
---|
145 | //1: initialize the value of the 4 x needed (x1,x2,x,xbest)
|
---|
146 | x1=a+gold*(b-a);
|
---|
147 | x2=x1;
|
---|
148 | xbest=x1;
|
---|
149 | x=xbest;
|
---|
150 |
|
---|
151 | //2: call the function to be evaluated
|
---|
152 | fxbest = (*f)(&x,fit,optscal,femmodel,inputs);
|
---|
153 | iter=iter+1;
|
---|
154 |
|
---|
155 | //3: update the other variables
|
---|
156 | fx1=fxbest;
|
---|
157 | fx2=fxbest;
|
---|
158 | //xm is always in the middle of a and b
|
---|
159 | xm=0.5*(a+b);
|
---|
160 | //update tolerances
|
---|
161 | tol1=seps*sqrt(pow(xbest,2))+tolerance/3.0;
|
---|
162 | tol2=2.0*tol1;
|
---|
163 |
|
---|
164 | //4: print result
|
---|
165 | _printf_(" %5i %12.6g %12.6g %12.6g %s\n",iter,xbest,fxbest,pow(pow(xbest-xm,2),0.5)," initial");
|
---|
166 |
|
---|
167 | //Main Loop
|
---|
168 | loop=1;
|
---|
169 | while(loop){
|
---|
170 |
|
---|
171 | goldenflag=1;
|
---|
172 |
|
---|
173 | // Is a parabolic fit possible ?
|
---|
174 | if (sqrt(pow(intervalgold,2))>tol1){
|
---|
175 |
|
---|
176 | // Yes, so fit parabola
|
---|
177 | goldenflag=0;
|
---|
178 | parab_num=(xbest-x1)*(xbest-x1)*(fxbest-fx2)-(xbest-x2)*(xbest-x2)*(fxbest-fx1);;
|
---|
179 | parab_den=2.0*(xbest-x1)*(fxbest-fx2)-2.0*(xbest-x2)*(fxbest-fx1);
|
---|
180 |
|
---|
181 | //reverse p if necessary
|
---|
182 | if(parab_den>0.0){
|
---|
183 | parab_num=-parab_num;
|
---|
184 | }
|
---|
185 | parab_den=sqrt(pow(parab_den,2));
|
---|
186 | oldintervalgold=intervalgold;
|
---|
187 | intervalgold=distance;
|
---|
188 |
|
---|
189 | // Is the parabola acceptable
|
---|
190 | if (( sqrt(pow(parab_num,2)) < sqrt(pow(0.5*parab_den*oldintervalgold,2))) &&
|
---|
191 | (parab_num>parab_den*(a-xbest)) &&
|
---|
192 | (parab_num<parab_den*(b-xbest))){
|
---|
193 |
|
---|
194 | // Yes, parabolic interpolation step
|
---|
195 | distance=parab_num/parab_den;
|
---|
196 | x=xbest+distance;
|
---|
197 |
|
---|
198 | // f must not be evaluated too close to min_x or max_x
|
---|
199 | if (((x-a)<tol2) || ((b-x)<tol2)){
|
---|
200 |
|
---|
201 | if ((xm-xbest)<0.0){
|
---|
202 | si=-1;
|
---|
203 | }
|
---|
204 | else{
|
---|
205 | si=1;
|
---|
206 | }
|
---|
207 |
|
---|
208 | //compute new distance
|
---|
209 | distance=tol1*si;
|
---|
210 | }
|
---|
211 | }
|
---|
212 | else{
|
---|
213 |
|
---|
214 | // Not acceptable, must do a golden section step
|
---|
215 | goldenflag=1;
|
---|
216 | }
|
---|
217 | }
|
---|
218 |
|
---|
219 | //Golden procedure
|
---|
220 | if(goldenflag){
|
---|
221 |
|
---|
222 | // compute the new distance d
|
---|
223 | if(xbest>=xm){
|
---|
224 | intervalgold=a-xbest;
|
---|
225 | }
|
---|
226 | else{
|
---|
227 | intervalgold=b-xbest;
|
---|
228 | }
|
---|
229 | distance=gold*intervalgold;
|
---|
230 | }
|
---|
231 |
|
---|
232 | // The function must not be evaluated too close to xbest
|
---|
233 | if(distance<0){
|
---|
234 | si=-1;
|
---|
235 | }
|
---|
236 | else{
|
---|
237 | si=1;
|
---|
238 | }
|
---|
239 | if (sqrt(pow(distance,2))>tol1){
|
---|
240 | x=xbest+si*sqrt(pow(distance,2));
|
---|
241 | }
|
---|
242 | else{
|
---|
243 | x=xbest+si*tol1;
|
---|
244 | }
|
---|
245 |
|
---|
246 | //evaluate function on x
|
---|
247 | fx = (*f)(&x,fit,optscal,femmodel,inputs);
|
---|
248 | iter=iter+1;
|
---|
249 |
|
---|
250 | // Update a, b, xm, x1, x2, tol1, tol2
|
---|
251 | if (fx<=fxbest){
|
---|
252 | if (x>=xbest){
|
---|
253 | a=xbest;
|
---|
254 | }
|
---|
255 | else{
|
---|
256 | b=xbest;
|
---|
257 | }
|
---|
258 | x1=x2; fx1=fx2;
|
---|
259 | x2=xbest; fx2=fxbest;
|
---|
260 | xbest=x; fxbest=fx;
|
---|
261 | }
|
---|
262 |
|
---|
263 | else{ // fx > fxbest
|
---|
264 | if (x < xbest){
|
---|
265 | a=x;
|
---|
266 | }
|
---|
267 | else{
|
---|
268 | b=x;
|
---|
269 | }
|
---|
270 | if ((fx<=fx2) || (x2==xbest)){
|
---|
271 | x1=x2; fx1=fx2;
|
---|
272 | x2=x; fx2=fx;
|
---|
273 | }
|
---|
274 | else if ( (fx <= fx1) || (x1 == xbest) || (x1 == x2) ){
|
---|
275 | x1=x; fx1=fx;
|
---|
276 | }
|
---|
277 | }
|
---|
278 | xm = 0.5*(a+b);
|
---|
279 | tol1=seps*pow(pow(xbest,2),0.5)+tolerance/3.0;
|
---|
280 | tol2=2.0*tol1;
|
---|
281 |
|
---|
282 | //print result
|
---|
283 | if (goldenflag){
|
---|
284 | _printf_(" %5i %12.6g %12.6g %12.6g %s\n",iter,x,fx,pow(pow(xbest-xm,2),0.5)," golden");
|
---|
285 | }
|
---|
286 | else{
|
---|
287 | _printf_(" %5i %12.6g %12.6g %12.6g %s\n",iter,x,fx,pow(pow(xbest-xm,2),0.5)," parabolic");
|
---|
288 | }
|
---|
289 |
|
---|
290 | //Stop the optimization?
|
---|
291 | if (sqrt(pow(xbest-xm,2)) < (tol2-0.5*(b-a))){
|
---|
292 | _printf_("\nOptimization terminated:\nthe current x satisfies the termination criteria using 'tolx' of %g \n", tolerance);
|
---|
293 | loop=0;
|
---|
294 | status=0;
|
---|
295 | }
|
---|
296 | else if (iter>=maxiter){
|
---|
297 | _printf_("\nExiting: Maximum number of iterations has been exceeded - increase 'maxiter'\n");
|
---|
298 | loop=0;
|
---|
299 | status=1;
|
---|
300 | }
|
---|
301 | else{
|
---|
302 | //continue
|
---|
303 | loop=1;
|
---|
304 | }
|
---|
305 | }//end while
|
---|
306 |
|
---|
307 | //Now, check that the value on the boundaries are not better than current fxbest
|
---|
308 | if (fxbest>fxmin){
|
---|
309 | xval=xmin;
|
---|
310 | fval=fxmin;
|
---|
311 | }
|
---|
312 | else if (fxbest>fxmax){
|
---|
313 | xval=xmax;
|
---|
314 | fval=fxmax;
|
---|
315 | }
|
---|
316 | else{
|
---|
317 | xval=xbest;
|
---|
318 | fval=fxbest;
|
---|
319 | }
|
---|
320 |
|
---|
321 | /*Assign output pointers: */
|
---|
322 | *psearch_scalar=xval;
|
---|
323 | *pJ=fval;
|
---|
324 |
|
---|
325 | return status;
|
---|
326 | }
|
---|
327 | #endif //#if defined(_PARALLEL_) && defined(_HAVE_PETSC_)
|
---|
328 |
|
---|