source: issm/trunk/src/c/objects/Inputs/PentaVertexInput.cpp@ 4698

Last change on this file since 4698 was 4698, checked in by Mathieu Morlighem, 15 years ago

deleted GetParameterValue(node list) function of inputs (moved to elements)

File size: 31.3 KB
Line 
1/*!\file PentaVertexInput.c
2 * \brief: implementation of the PentaVertexInput object
3 */
4
5#ifdef HAVE_CONFIG_H
6 #include "config.h"
7#else
8#error "Cannot compile with HAVE_CONFIG_H symbol! run configure first!"
9#endif
10
11#include "stdio.h"
12#include <string.h>
13#include "../objects.h"
14#include "../../EnumDefinitions/EnumDefinitions.h"
15#include "../../shared/shared.h"
16#include "../../Container/Container.h"
17#include "../../include/include.h"
18
19/*PentaVertexInput constructors and destructor*/
20/*FUNCTION PentaVertexInput::PentaVertexInput(){{{1*/
21PentaVertexInput::PentaVertexInput(){
22 return;
23}
24/*}}}*/
25/*FUNCTION PentaVertexInput::PentaVertexInput(int in_enum_type,double* values){{{1*/
26PentaVertexInput::PentaVertexInput(int in_enum_type,double* in_values){
27
28 enum_type=in_enum_type;
29 values[0]=in_values[0];
30 values[1]=in_values[1];
31 values[2]=in_values[2];
32 values[3]=in_values[3];
33 values[4]=in_values[4];
34 values[5]=in_values[5];
35}
36/*}}}*/
37/*FUNCTION PentaVertexInput::~PentaVertexInput(){{{1*/
38PentaVertexInput::~PentaVertexInput(){
39 return;
40}
41/*}}}*/
42
43/*Object virtual functions definitions:*/
44/*FUNCTION PentaVertexInput::Echo {{{1*/
45void PentaVertexInput::Echo(void){
46 this->DeepEcho();
47}
48/*}}}*/
49/*FUNCTION PentaVertexInput::DeepEcho{{{1*/
50void PentaVertexInput::DeepEcho(void){
51
52 printf("PentaVertexInput:\n");
53 printf(" enum: %i (%s)\n",this->enum_type,EnumAsString(this->enum_type));
54 printf(" values: [%g %g %g %g %g %g]\n",this->values[0],this->values[1],this->values[2],this->values[3],this->values[4],this->values[5]);
55}
56/*}}}*/
57/*FUNCTION PentaVertexInput::Id{{{1*/
58int PentaVertexInput::Id(void){ return -1; }
59/*}}}*/
60/*FUNCTION PentaVertexInput::MyRank{{{1*/
61int PentaVertexInput::MyRank(void){
62 extern int my_rank;
63 return my_rank;
64}
65/*}}}*/
66/*FUNCTION PentaVertexInput::Marshall{{{1*/
67void PentaVertexInput::Marshall(char** pmarshalled_dataset){
68
69 char* marshalled_dataset=NULL;
70 int enum_value=0;
71
72 /*recover marshalled_dataset: */
73 marshalled_dataset=*pmarshalled_dataset;
74
75 /*get enum value of PentaVertexInput: */
76 enum_value=PentaVertexInputEnum;
77
78 /*marshall enum: */
79 memcpy(marshalled_dataset,&enum_value,sizeof(enum_value));marshalled_dataset+=sizeof(enum_value);
80
81 /*marshall PentaVertexInput data: */
82 memcpy(marshalled_dataset,&enum_type,sizeof(enum_type));marshalled_dataset+=sizeof(enum_type);
83 memcpy(marshalled_dataset,&values,sizeof(values));marshalled_dataset+=sizeof(values);
84
85 *pmarshalled_dataset=marshalled_dataset;
86}
87/*}}}*/
88/*FUNCTION PentaVertexInput::MarshallSize{{{1*/
89int PentaVertexInput::MarshallSize(){
90
91 return sizeof(values)+
92 +sizeof(enum_type)+
93 +sizeof(int); //sizeof(int) for enum value
94}
95/*}}}*/
96/*FUNCTION PentaVertexInput::Demarshall{{{1*/
97void PentaVertexInput::Demarshall(char** pmarshalled_dataset){
98
99 char* marshalled_dataset=NULL;
100 int i;
101
102 /*recover marshalled_dataset: */
103 marshalled_dataset=*pmarshalled_dataset;
104
105 /*this time, no need to get enum type, the pointer directly points to the beginning of the
106 *object data (thanks to DataSet::Demarshall):*/
107 memcpy(&enum_type,marshalled_dataset,sizeof(enum_type));marshalled_dataset+=sizeof(enum_type);
108 memcpy(&values,marshalled_dataset,sizeof(values));marshalled_dataset+=sizeof(values);
109
110 /*return: */
111 *pmarshalled_dataset=marshalled_dataset;
112 return;
113}
114/*}}}*/
115/*FUNCTION PentaVertexInput::Enum{{{1*/
116int PentaVertexInput::Enum(void){
117
118 return PentaVertexInputEnum;
119
120}
121/*}}}*/
122
123/*PentaVertexInput management*/
124/*FUNCTION PentaVertexInput::copy{{{1*/
125Object* PentaVertexInput::copy() {
126
127 return new PentaVertexInput(this->enum_type,this->values);
128
129}
130/*}}}*/
131/*FUNCTION PentaVertexInput::EnumType{{{1*/
132int PentaVertexInput::EnumType(void){
133
134 return this->enum_type;
135
136}
137/*}}}*/
138/*FUNCTION PentaVertexInput::SpawnSingInput{{{1*/
139Input* PentaVertexInput::SpawnSingInput(int index){
140
141 /*output*/
142 SingVertexInput* outinput=NULL;
143
144 /*Create new Sing input (copy of current input)*/
145 ISSMASSERT(index<6 && index>=0);
146 outinput=new SingVertexInput(this->enum_type,this->values[index]);
147
148 /*Assign output*/
149 return outinput;
150
151}
152/*}}}*/
153/*FUNCTION PentaVertexInput::SpawnBeamInput{{{1*/
154Input* PentaVertexInput::SpawnBeamInput(int* indices){
155
156 /*output*/
157 BeamVertexInput* outinput=NULL;
158 double newvalues[2];
159
160 /*Loop over the new indices*/
161 for(int i=0;i<2;i++){
162
163 /*Check index value*/
164 ISSMASSERT(indices[i]>=0 && indices[i]<6);
165
166 /*Assign value to new input*/
167 newvalues[i]=this->values[indices[i]];
168 }
169
170 /*Create new Beam input*/
171 outinput=new BeamVertexInput(this->enum_type,&newvalues[0]);
172
173 /*Assign output*/
174 return outinput;
175
176}
177/*}}}*/
178/*FUNCTION PentaVertexInput::SpawnTriaInput{{{1*/
179Input* PentaVertexInput::SpawnTriaInput(int* indices){
180
181 /*output*/
182 TriaVertexInput* outinput=NULL;
183 double newvalues[3];
184
185 /*Loop over the new indices*/
186 for(int i=0;i<3;i++){
187
188 /*Check index value*/
189 ISSMASSERT(indices[i]>=0 && indices[i]<6);
190
191 /*Assign value to new input*/
192 newvalues[i]=this->values[indices[i]];
193 }
194
195 /*Create new Tria input*/
196 outinput=new TriaVertexInput(this->enum_type,&newvalues[0]);
197
198 /*Assign output*/
199 return outinput;
200
201}
202/*}}}*/
203/*FUNCTION PentaVertexInput::SpawnResult{{{1*/
204ElementResult* PentaVertexInput::SpawnResult(int step, double time){
205
206 return new PentaVertexElementResult(this->enum_type,this->values,step,time);
207
208}
209/*}}}*/
210
211/*Object functions*/
212/*FUNCTION PentaVertexInput::GetParameterValue(bool* pvalue) {{{1*/
213void PentaVertexInput::GetParameterValue(bool* pvalue){ISSMERROR(" not supported yet!");}
214/*}}}*/
215/*FUNCTION PentaVertexInput::GetParameterValue(int* pvalue){{{1*/
216void PentaVertexInput::GetParameterValue(int* pvalue){ISSMERROR(" not supported yet!");}
217/*}}}*/
218/*FUNCTION PentaVertexInput::GetParameterValue(double* pvalue){{{1*/
219void PentaVertexInput::GetParameterValue(double* pvalue){ISSMERROR(" not supported yet!");}
220/*}}}*/
221/*FUNCTION PentaVertexInput::GetParameterValue(double* pvalue,double* gauss){{{1*/
222void PentaVertexInput::GetParameterValue(double* pvalue,double* gauss){
223 /*P1 interpolation on Gauss point*/
224
225 /*intermediary*/
226 double l1l6[6];
227
228 /*nodal functions: */
229 GetNodalFunctionsP1(&l1l6[0],gauss);
230
231 /*Assign output pointers:*/
232 *pvalue=l1l6[0]*values[0]+l1l6[1]*values[1]+l1l6[2]*values[2]+l1l6[3]*values[3]+l1l6[4]*values[4]+l1l6[5]*values[5];
233
234}
235/*}}}*/
236/*FUNCTION PentaVertexInput::GetParameterValue(double* pvalue,double* gauss,double defaultvalue){{{1*/
237void PentaVertexInput::GetParameterValue(double* pvalue,double* gauss,double defaultvalue){ISSMERROR(" not supported yet!");}
238/*}}}*/
239/*FUNCTION PentaVertexInput::GetParameterValues{{{1*/
240void PentaVertexInput::GetParameterValues(double* values,double* gauss_pointers, int numgauss){
241 /*It is assumed that output values has been correctly allocated*/
242
243 int i,j;
244 double gauss[4];
245
246 for (i=0;i<numgauss;i++){
247
248 /*Get current Gauss point coordinates*/
249 for (j=0;j<4;j++) gauss[j]=gauss_pointers[i*4+j];
250
251 /*Assign parameter value*/
252 GetParameterValue(&values[i],&gauss[0]);
253 }
254}
255/*}}}*/
256/*FUNCTION PentaVertexInput::GetParameterDerivativeValue{{{1*/
257void PentaVertexInput::GetParameterDerivativeValue(double* p, double* xyz_list, double* gauss){
258 /*From grid values of parameter p (p_list[0], p_list[1], p_list[2], p_list[3], p_list[4] and p_list[4]), return parameter derivative value at gaussian point specified by gauss_coord:
259 * dp/dx=p_list[0]*dh1/dx+p_list[1]*dh2/dx+p_list[2]*dh3/dx+p_list[3]*dh4/dx+p_list[4]*dh5/dx+p_list[5]*dh6/dx;
260 * dp/dy=p_list[0]*dh1/dy+p_list[1]*dh2/dy+p_list[2]*dh3/dy+p_list[3]*dh4/dy+p_list[4]*dh5/dy+p_list[5]*dh6/dy;
261 * dp/dz=p_list[0]*dh1/dz+p_list[1]*dh2/dz+p_list[2]*dh3/dz+p_list[3]*dh4/dz+p_list[4]*dh5/dz+p_list[5]*dh6/dz;
262 *
263 * p is a vector of size 3x1 already allocated.
264 */
265
266 const int NDOF3=3;
267 const int numgrids=6;
268 double dh1dh6[NDOF3][numgrids];
269
270 /*Get nodal funnctions derivatives in actual coordinate system: */
271 GetNodalFunctionsP1Derivatives(&dh1dh6[0][0],xyz_list, gauss);
272
273 p[0]=this->values[0]*dh1dh6[0][0]+this->values[1]*dh1dh6[0][1]+this->values[2]*dh1dh6[0][2]+this->values[3]*dh1dh6[0][3]+this->values[4]*dh1dh6[0][4]+this->values[5]*dh1dh6[0][5];
274 p[1]=this->values[0]*dh1dh6[1][0]+this->values[1]*dh1dh6[1][1]+this->values[2]*dh1dh6[1][2]+this->values[3]*dh1dh6[1][3]+this->values[4]*dh1dh6[1][4]+this->values[5]*dh1dh6[1][5];
275 p[2]=this->values[0]*dh1dh6[2][0]+this->values[1]*dh1dh6[2][1]+this->values[2]*dh1dh6[2][2]+this->values[3]*dh1dh6[2][3]+this->values[4]*dh1dh6[2][4]+this->values[5]*dh1dh6[2][5];
276
277}
278/*}}}*/
279/*FUNCTION PentaVertexInput::GetVxStrainRate3d{{{1*/
280void PentaVertexInput::GetVxStrainRate3d(double* epsilonvx,double* xyz_list, double* gauss){
281 int i,j;
282
283 const int numgrids=6;
284 const int DOFVELOCITY=3;
285 double B[8][27];
286 double B_reduced[6][DOFVELOCITY*numgrids];
287 double velocity[numgrids][DOFVELOCITY];
288
289 /*Get B matrix: */
290 GetBStokes(&B[0][0], xyz_list, gauss);
291 /*Create a reduced matrix of B to get rid of pressure */
292 for (i=0;i<6;i++){
293 for (j=0;j<3;j++){
294 B_reduced[i][j]=B[i][j];
295 }
296 for (j=4;j<7;j++){
297 B_reduced[i][j-1]=B[i][j];
298 }
299 for (j=8;j<11;j++){
300 B_reduced[i][j-2]=B[i][j];
301 }
302 for (j=12;j<15;j++){
303 B_reduced[i][j-3]=B[i][j];
304 }
305 for (j=16;j<19;j++){
306 B_reduced[i][j-4]=B[i][j];
307 }
308 for (j=20;j<23;j++){
309 B_reduced[i][j-5]=B[i][j];
310 }
311 }
312
313 /*Here, we are computing the strain rate of (vx,0,0)*/
314 for(i=0;i<numgrids;i++){
315 velocity[i][0]=this->values[i];
316 velocity[i][1]=0.0;
317 velocity[i][2]=0.0;
318 }
319 /*Multiply B by velocity, to get strain rate: */
320 MatrixMultiply(&B_reduced[0][0],6,DOFVELOCITY*numgrids,0,&velocity[0][0],DOFVELOCITY*numgrids,1,0,epsilonvx,0);
321
322}
323/*}}}*/
324/*FUNCTION PentaVertexInput::GetVyStrainRate3d{{{1*/
325void PentaVertexInput::GetVyStrainRate3d(double* epsilonvy,double* xyz_list, double* gauss){
326 int i,j;
327
328 const int numgrids=6;
329 const int DOFVELOCITY=3;
330 double B[8][27];
331 double B_reduced[6][DOFVELOCITY*numgrids];
332 double velocity[numgrids][DOFVELOCITY];
333
334 /*Get B matrix: */
335 GetBStokes(&B[0][0], xyz_list, gauss);
336 /*Create a reduced matrix of B to get rid of pressure */
337 for (i=0;i<6;i++){
338 for (j=0;j<3;j++){
339 B_reduced[i][j]=B[i][j];
340 }
341 for (j=4;j<7;j++){
342 B_reduced[i][j-1]=B[i][j];
343 }
344 for (j=8;j<11;j++){
345 B_reduced[i][j-2]=B[i][j];
346 }
347 for (j=12;j<15;j++){
348 B_reduced[i][j-3]=B[i][j];
349 }
350 for (j=16;j<19;j++){
351 B_reduced[i][j-4]=B[i][j];
352 }
353 for (j=20;j<23;j++){
354 B_reduced[i][j-5]=B[i][j];
355 }
356 }
357
358 /*Here, we are computing the strain rate of (0,vy,0)*/
359 for(i=0;i<numgrids;i++){
360 velocity[i][0]=0.0;
361 velocity[i][1]=this->values[i];
362 velocity[i][2]=0.0;
363 }
364 /*Multiply B by velocity, to get strain rate: */
365 MatrixMultiply(&B_reduced[0][0],6,DOFVELOCITY*numgrids,0,&velocity[0][0],DOFVELOCITY*numgrids,1,0,epsilonvy,0);
366
367}
368/*}}}*/
369/*FUNCTION PentaVertexInput::GetVzStrainRate3d{{{1*/
370void PentaVertexInput::GetVzStrainRate3d(double* epsilonvz,double* xyz_list, double* gauss){
371 int i,j;
372
373 const int numgrids=6;
374 const int DOFVELOCITY=3;
375 double B[8][27];
376 double B_reduced[6][DOFVELOCITY*numgrids];
377 double velocity[numgrids][DOFVELOCITY];
378
379 /*Get B matrix: */
380 GetBStokes(&B[0][0], xyz_list, gauss);
381 /*Create a reduced matrix of B to get rid of pressure */
382 for (i=0;i<6;i++){
383 for (j=0;j<3;j++){
384 B_reduced[i][j]=B[i][j];
385 }
386 for (j=4;j<7;j++){
387 B_reduced[i][j-1]=B[i][j];
388 }
389 for (j=8;j<11;j++){
390 B_reduced[i][j-2]=B[i][j];
391 }
392 for (j=12;j<15;j++){
393 B_reduced[i][j-3]=B[i][j];
394 }
395 for (j=16;j<19;j++){
396 B_reduced[i][j-4]=B[i][j];
397 }
398 for (j=20;j<23;j++){
399 B_reduced[i][j-5]=B[i][j];
400 }
401 }
402
403 /*Here, we are computing the strain rate of (0,0,vz)*/
404 for(i=0;i<numgrids;i++){
405 velocity[i][0]=0.0;
406 velocity[i][1]=0.0;
407 velocity[i][2]=this->values[i];
408 }
409
410 /*Multiply B by velocity, to get strain rate: */
411 MatrixMultiply(&B_reduced[0][0],6,DOFVELOCITY*numgrids,0,&velocity[0][0],DOFVELOCITY*numgrids,1,0,epsilonvz,0);
412
413}
414/*}}}*/
415/*FUNCTION PentaVertexInput::GetVxStrainRate3dPattyn{{{1*/
416void PentaVertexInput::GetVxStrainRate3dPattyn(double* epsilonvx,double* xyz_list, double* gauss){
417
418 int i;
419 const int numgrids=6;
420 const int NDOF2=2;
421 double B[5][NDOF2*numgrids];
422 double velocity[numgrids][NDOF2];
423
424 /*Get B matrix: */
425 GetBPattyn(&B[0][0], xyz_list, gauss);
426
427 /*Here, we are computing the strain rate of (vx,0)*/
428 for(i=0;i<numgrids;i++){
429 velocity[i][0]=this->values[i];
430 velocity[i][1]=0.0;
431 }
432
433 /*Multiply B by velocity, to get strain rate: */
434 MatrixMultiply( &B[0][0],5,NDOF2*numgrids,0,
435 &velocity[0][0],NDOF2*numgrids,1,0,
436 epsilonvx,0);
437
438}
439/*}}}*/
440/*FUNCTION PentaVertexInput::GetVyStrainRate3dPattyn{{{1*/
441void PentaVertexInput::GetVyStrainRate3dPattyn(double* epsilonvy,double* xyz_list, double* gauss){
442
443 int i;
444 const int numgrids=6;
445 const int NDOF2=2;
446 double B[5][NDOF2*numgrids];
447 double velocity[numgrids][NDOF2];
448
449 /*Get B matrix: */
450 GetBPattyn(&B[0][0], xyz_list, gauss);
451
452 /*Here, we are computing the strain rate of (0,vy)*/
453 for(i=0;i<numgrids;i++){
454 velocity[i][0]=0.0;
455 velocity[i][1]=this->values[i];
456 }
457
458 /*Multiply B by velocity, to get strain rate: */
459 MatrixMultiply( &B[0][0],5,NDOF2*numgrids,0,
460 &velocity[0][0],NDOF2*numgrids,1,0,
461 epsilonvy,0);
462
463}
464/*}}}*/
465/*FUNCTION PentaVertexInput::ChangeEnum{{{1*/
466void PentaVertexInput::ChangeEnum(int newenumtype){
467 this->enum_type=newenumtype;
468}
469/*}}}*/
470/*FUNCTION PentaVertexInput::GetParameterAverage{{{1*/
471void PentaVertexInput::GetParameterAverage(double* pvalue){
472 *pvalue=1./6.*(values[0]+values[1]+values[2]+values[3]+values[4]+values[5]);
473}
474/*}}}*/
475
476/*Intermediary*/
477/*FUNCTION PentaVertexInput::GetNodalFunctionsP1 {{{1*/
478void PentaVertexInput::GetNodalFunctionsP1(double* l1l6, double* gauss_coord){
479
480 /*This routine returns the values of the nodal functions at the gaussian point.*/
481
482 l1l6[0]=gauss_coord[0]*(1-gauss_coord[3])/2.0;
483
484 l1l6[1]=gauss_coord[1]*(1-gauss_coord[3])/2.0;
485
486 l1l6[2]=gauss_coord[2]*(1-gauss_coord[3])/2.0;
487
488 l1l6[3]=gauss_coord[0]*(1+gauss_coord[3])/2.0;
489
490 l1l6[4]=gauss_coord[1]*(1+gauss_coord[3])/2.0;
491
492 l1l6[5]=gauss_coord[2]*(1+gauss_coord[3])/2.0;
493
494}
495/*}}}*/
496/*FUNCTION PentaVertexInput::GetNodalFunctionsMINI{{{1*/
497void PentaVertexInput::GetNodalFunctionsMINI(double* l1l7, double* gauss_coord){
498
499 /*This routine returns the values of the nodal functions at the gaussian point.*/
500
501 /*First nodal function: */
502 l1l7[0]=gauss_coord[0]*(1.0-gauss_coord[3])/2.0;
503
504 /*Second nodal function: */
505 l1l7[1]=gauss_coord[1]*(1.0-gauss_coord[3])/2.0;
506
507 /*Third nodal function: */
508 l1l7[2]=gauss_coord[2]*(1.0-gauss_coord[3])/2.0;
509
510 /*Fourth nodal function: */
511 l1l7[3]=gauss_coord[0]*(1.0+gauss_coord[3])/2.0;
512
513 /*Fifth nodal function: */
514 l1l7[4]=gauss_coord[1]*(1.0+gauss_coord[3])/2.0;
515
516 /*Sixth nodal function: */
517 l1l7[5]=gauss_coord[2]*(1.0+gauss_coord[3])/2.0;
518
519 /*Seventh nodal function: */
520 l1l7[6]=27*gauss_coord[0]*gauss_coord[1]*gauss_coord[2]*(1.0+gauss_coord[3])*(1.0-gauss_coord[3]);
521
522}
523/*}}}*/
524/*FUNCTION PentaVertexInput::GetNodalFunctionsP1Derivatives {{{1*/
525void PentaVertexInput::GetNodalFunctionsP1Derivatives(double* dh1dh6,double* xyz_list, double* gauss_coord){
526
527 /*This routine returns the values of the nodal functions derivatives (with respect to the actual coordinate system: */
528 int i;
529 const int NDOF3=3;
530 const int numgrids=6;
531
532 double dh1dh6_ref[NDOF3][numgrids];
533 double Jinv[NDOF3][NDOF3];
534
535 /*Get derivative values with respect to parametric coordinate system: */
536 GetNodalFunctionsP1DerivativesReference(&dh1dh6_ref[0][0], gauss_coord);
537
538 /*Get Jacobian invert: */
539 GetJacobianInvert(&Jinv[0][0], xyz_list, gauss_coord);
540
541 /*Build dh1dh3:
542 *
543 * [dhi/dx]= Jinv*[dhi/dr]
544 * [dhi/dy] [dhi/ds]
545 * [dhi/dz] [dhi/dn]
546 */
547
548 for (i=0;i<numgrids;i++){
549 *(dh1dh6+numgrids*0+i)=Jinv[0][0]*dh1dh6_ref[0][i]+Jinv[0][1]*dh1dh6_ref[1][i]+Jinv[0][2]*dh1dh6_ref[2][i];
550 *(dh1dh6+numgrids*1+i)=Jinv[1][0]*dh1dh6_ref[0][i]+Jinv[1][1]*dh1dh6_ref[1][i]+Jinv[1][2]*dh1dh6_ref[2][i];
551 *(dh1dh6+numgrids*2+i)=Jinv[2][0]*dh1dh6_ref[0][i]+Jinv[2][1]*dh1dh6_ref[1][i]+Jinv[2][2]*dh1dh6_ref[2][i];
552 }
553
554}
555/*}}}*/
556/*FUNCTION PentaVertexInput::GetNodalFunctionsMINIDerivatives{{{1*/
557void PentaVertexInput::GetNodalFunctionsMINIDerivatives(double* dh1dh7,double* xyz_list, double* gauss_coord){
558
559 /*This routine returns the values of the nodal functions derivatives (with respect to the
560 * actual coordinate system: */
561
562 int i;
563
564 const int numgrids=7;
565 double dh1dh7_ref[3][numgrids];
566 double Jinv[3][3];
567
568
569 /*Get derivative values with respect to parametric coordinate system: */
570 GetNodalFunctionsMINIDerivativesReference(&dh1dh7_ref[0][0], gauss_coord);
571
572 /*Get Jacobian invert: */
573 GetJacobianInvert(&Jinv[0][0], xyz_list, gauss_coord);
574
575 /*Build dh1dh6:
576 *
577 * [dhi/dx]= Jinv'*[dhi/dr]
578 * [dhi/dy] [dhi/ds]
579 * [dhi/dz] [dhi/dzeta]
580 */
581
582 for (i=0;i<numgrids;i++){
583 *(dh1dh7+numgrids*0+i)=Jinv[0][0]*dh1dh7_ref[0][i]+Jinv[0][1]*dh1dh7_ref[1][i]+Jinv[0][2]*dh1dh7_ref[2][i];
584 *(dh1dh7+numgrids*1+i)=Jinv[1][0]*dh1dh7_ref[0][i]+Jinv[1][1]*dh1dh7_ref[1][i]+Jinv[1][2]*dh1dh7_ref[2][i];
585 *(dh1dh7+numgrids*2+i)=Jinv[2][0]*dh1dh7_ref[0][i]+Jinv[2][1]*dh1dh7_ref[1][i]+Jinv[2][2]*dh1dh7_ref[2][i];
586 }
587
588}
589/*}}}*/
590/*FUNCTION PentaVertexInput::GetNodalFunctionsP1DerivativesReference {{{1*/
591void PentaVertexInput::GetNodalFunctionsP1DerivativesReference(double* dl1dl6,double* gauss_coord){
592
593 /*This routine returns the values of the nodal functions derivatives (with respect to the
594 * natural coordinate system) at the gaussian point. Those values vary along xi,eta,z */
595
596 const int numgrids=6;
597 double A1,A2,A3,z;
598
599 A1=gauss_coord[0]; //first area coordinate value. In term of xi and eta: A1=(1-xi)/2-eta/(2*SQRT3);
600 A2=gauss_coord[1]; //second area coordinate value In term of xi and eta: A2=(1+xi)/2-eta/(2*SQRT3);
601 A3=gauss_coord[2]; //third area coordinate value In term of xi and eta: A3=y/SQRT3;
602 z=gauss_coord[3]; //fourth vertical coordinate value. Corresponding nodal function: (1-z)/2 and (1+z)/2
603
604
605 /*First nodal function derivatives. The corresponding nodal function is N=A1*(1-z)/2. Its derivatives follow*/
606 *(dl1dl6+numgrids*0+0)=-0.5*(1.0-z)/2.0;
607 *(dl1dl6+numgrids*1+0)=-0.5/SQRT3*(1.0-z)/2.0;
608 *(dl1dl6+numgrids*2+0)=-0.5*A1;
609
610 /*Second nodal function: The corresponding nodal function is N=A2*(1-z)/2. Its derivatives follow*/
611 *(dl1dl6+numgrids*0+1)=0.5*(1.0-z)/2.0;
612 *(dl1dl6+numgrids*1+1)=-0.5/SQRT3*(1.0-z)/2.0;
613 *(dl1dl6+numgrids*2+1)=-0.5*A2;
614
615 /*Third nodal function: The corresponding nodal function is N=A3*(1-z)/2. Its derivatives follow*/
616 *(dl1dl6+numgrids*0+2)=0.0;
617 *(dl1dl6+numgrids*1+2)=1.0/SQRT3*(1.0-z)/2.0;
618 *(dl1dl6+numgrids*2+2)=-0.5*A3;
619
620 /*Fourth nodal function: The corresponding nodal function is N=A1*(1+z)/2. Its derivatives follow*/
621 *(dl1dl6+numgrids*0+3)=-0.5*(1.0+z)/2.0;
622 *(dl1dl6+numgrids*1+3)=-0.5/SQRT3*(1.0+z)/2.0;
623 *(dl1dl6+numgrids*2+3)=0.5*A1;
624
625 /*Fifth nodal function: The corresponding nodal function is N=A2*(1+z)/2. Its derivatives follow*/
626 *(dl1dl6+numgrids*0+4)=0.5*(1.0+z)/2.0;
627 *(dl1dl6+numgrids*1+4)=-0.5/SQRT3*(1.0+z)/2.0;
628 *(dl1dl6+numgrids*2+4)=0.5*A2;
629
630 /*Sixth nodal function: The corresponding nodal function is N=A3*(1+z)/2. Its derivatives follow*/
631 *(dl1dl6+numgrids*0+5)=0.0;
632 *(dl1dl6+numgrids*1+5)=1.0/SQRT3*(1.0+z)/2.0;
633 *(dl1dl6+numgrids*2+5)=0.5*A3;
634}
635/*}}}*/
636/*FUNCTION PentaVertexInput::GetNodalFunctionsMINIDerivativesReference{{{1*/
637void PentaVertexInput::GetNodalFunctionsMINIDerivativesReference(double* dl1dl7,double* gauss_coord){
638
639 /*This routine returns the values of the nodal functions derivatives (with respect to the
640 * natural coordinate system) at the gaussian point. */
641
642 int numgrids=7; //six plus bubble grids
643
644 double r=gauss_coord[1]-gauss_coord[0];
645 double s=-3.0/SQRT3*(gauss_coord[0]+gauss_coord[1]-2.0/3.0);
646 double zeta=gauss_coord[3];
647
648 /*First nodal function: */
649 *(dl1dl7+numgrids*0+0)=-0.5*(1.0-zeta)/2.0;
650 *(dl1dl7+numgrids*1+0)=-SQRT3/6.0*(1.0-zeta)/2.0;
651 *(dl1dl7+numgrids*2+0)=-0.5*(-0.5*r-SQRT3/6.0*s+ONETHIRD);
652
653 /*Second nodal function: */
654 *(dl1dl7+numgrids*0+1)=0.5*(1.0-zeta)/2.0;
655 *(dl1dl7+numgrids*1+1)=-SQRT3/6.0*(1.0-zeta)/2.0;
656 *(dl1dl7+numgrids*2+1)=-0.5*(0.5*r-SQRT3/6.0*s+ONETHIRD);
657
658 /*Third nodal function: */
659 *(dl1dl7+numgrids*0+2)=0;
660 *(dl1dl7+numgrids*1+2)=SQRT3/3.0*(1.0-zeta)/2.0;
661 *(dl1dl7+numgrids*2+2)=-0.5*(SQRT3/3.0*s+ONETHIRD);
662
663 /*Fourth nodal function: */
664 *(dl1dl7+numgrids*0+3)=-0.5*(1.0+zeta)/2.0;
665 *(dl1dl7+numgrids*1+3)=-SQRT3/6.0*(1.0+zeta)/2.0;
666 *(dl1dl7+numgrids*2+3)=0.5*(-0.5*r-SQRT3/6.0*s+ONETHIRD);
667
668 /*Fith nodal function: */
669 *(dl1dl7+numgrids*0+4)=0.5*(1.0+zeta)/2.0;
670 *(dl1dl7+numgrids*1+4)=-SQRT3/6.0*(1.0+zeta)/2.0;
671 *(dl1dl7+numgrids*2+4)=0.5*(0.5*r-SQRT3/6.0*s+ONETHIRD);
672
673 /*Sixth nodal function: */
674 *(dl1dl7+numgrids*0+5)=0;
675 *(dl1dl7+numgrids*1+5)=SQRT3/3.0*(1.0+zeta)/2.0;
676 *(dl1dl7+numgrids*2+5)=0.5*(SQRT3/3.0*s+ONETHIRD);
677
678 /*Seventh nodal function: */
679 *(dl1dl7+numgrids*0+6)=9.0/2.0*r*(1.0+zeta)*(zeta-1.0)*(SQRT3*s+1.0);
680 *(dl1dl7+numgrids*1+6)=9.0/4.0*(1+zeta)*(1-zeta)*(SQRT3*pow(s,2.0)-2.0*s-SQRT3*pow(r,2.0));
681 *(dl1dl7+numgrids*2+6)=27*gauss_coord[0]*gauss_coord[1]*gauss_coord[2]*(-2.0*zeta);
682
683}
684/*}}}*/
685/*FUNCTION PentaVertexInput::GetJacobian {{{1*/
686void PentaVertexInput::GetJacobian(double* J, double* xyz_list,double* gauss_coord){
687
688 const int NDOF3=3;
689 int i,j;
690
691 /*The Jacobian is constant over the element, discard the gaussian points.
692 * J is assumed to have been allocated of size NDOF2xNDOF2.*/
693
694 double A1,A2,A3; //area coordinates
695 double xi,eta,zi; //parametric coordinates
696
697 double x1,x2,x3,x4,x5,x6;
698 double y1,y2,y3,y4,y5,y6;
699 double z1,z2,z3,z4,z5,z6;
700
701 /*Figure out xi,eta and zi (parametric coordinates), for this gaussian point: */
702 A1=gauss_coord[0];
703 A2=gauss_coord[1];
704 A3=gauss_coord[2];
705
706 xi=A2-A1;
707 eta=SQRT3*A3;
708 zi=gauss_coord[3];
709
710 x1=*(xyz_list+3*0+0);
711 x2=*(xyz_list+3*1+0);
712 x3=*(xyz_list+3*2+0);
713 x4=*(xyz_list+3*3+0);
714 x5=*(xyz_list+3*4+0);
715 x6=*(xyz_list+3*5+0);
716
717 y1=*(xyz_list+3*0+1);
718 y2=*(xyz_list+3*1+1);
719 y3=*(xyz_list+3*2+1);
720 y4=*(xyz_list+3*3+1);
721 y5=*(xyz_list+3*4+1);
722 y6=*(xyz_list+3*5+1);
723
724 z1=*(xyz_list+3*0+2);
725 z2=*(xyz_list+3*1+2);
726 z3=*(xyz_list+3*2+2);
727 z4=*(xyz_list+3*3+2);
728 z5=*(xyz_list+3*4+2);
729 z6=*(xyz_list+3*5+2);
730
731 *(J+NDOF3*0+0)=0.25*(x1-x2-x4+x5)*zi+0.25*(-x1+x2-x4+x5);
732 *(J+NDOF3*1+0)=SQRT3/12.0*(x1+x2-2*x3-x4-x5+2*x6)*zi+SQRT3/12.0*(-x1-x2+2*x3-x4-x5+2*x6);
733 *(J+NDOF3*2+0)=SQRT3/12.0*(x1+x2-2*x3-x4-x5+2*x6)*eta+1/4*(x1-x2-x4+x5)*xi +0.25*(-x1+x5-x2+x4);
734
735 *(J+NDOF3*0+1)=0.25*(y1-y2-y4+y5)*zi+0.25*(-y1+y2-y4+y5);
736 *(J+NDOF3*1+1)=SQRT3/12.0*(y1+y2-2*y3-y4-y5+2*y6)*zi+SQRT3/12.0*(-y1-y2+2*y3-y4-y5+2*y6);
737 *(J+NDOF3*2+1)=SQRT3/12.0*(y1+y2-2*y3-y4-y5+2*y6)*eta+0.25*(y1-y2-y4+y5)*xi+0.25*(y4-y1+y5-y2);
738
739 *(J+NDOF3*0+2)=0.25*(z1-z2-z4+z5)*zi+0.25*(-z1+z2-z4+z5);
740 *(J+NDOF3*1+2)=SQRT3/12.0*(z1+z2-2*z3-z4-z5+2*z6)*zi+SQRT3/12.0*(-z1-z2+2*z3-z4-z5+2*z6);
741 *(J+NDOF3*2+2)=SQRT3/12.0*(z1+z2-2*z3-z4-z5+2*z6)*eta+0.25*(z1-z2-z4+z5)*xi+0.25*(-z1+z5-z2+z4);
742
743}
744/*}}}*/
745/*FUNCTION PentaVertexInput::GetJacobianInvert {{{1*/
746void PentaVertexInput::GetJacobianInvert(double* Jinv, double* xyz_list,double* gauss_coord){
747
748 double Jdet;
749 const int NDOF3=3;
750
751 /*Call Jacobian routine to get the jacobian:*/
752 GetJacobian(Jinv, xyz_list, gauss_coord);
753
754 /*Invert Jacobian matrix: */
755 MatrixInverse(Jinv,NDOF3,NDOF3,NULL,0,&Jdet);
756}
757/*}}}*/
758/*FUNCTION PentaVertexInput::GetBPattyn {{{1*/
759void PentaVertexInput::GetBPattyn(double* B, double* xyz_list, double* gauss_coord){
760 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF2.
761 * For grid i, Bi can be expressed in the actual coordinate system
762 * by:
763 * Bi=[ dh/dx 0 ]
764 * [ 0 dh/dy ]
765 * [ 1/2*dh/dy 1/2*dh/dx ]
766 * [ 1/2*dh/dz 0 ]
767 * [ 0 1/2*dh/dz ]
768 * where h is the interpolation function for grid i.
769 *
770 * We assume B has been allocated already, of size: 5x(NDOF2*numgrids)
771 */
772
773 int i;
774 const int numgrids=6;
775 const int NDOF3=3;
776 const int NDOF2=2;
777
778 double dh1dh6[NDOF3][numgrids];
779
780 /*Get dh1dh6 in actual coordinate system: */
781 GetNodalFunctionsP1Derivatives(&dh1dh6[0][0],xyz_list, gauss_coord);
782
783 /*Build B: */
784 for (i=0;i<numgrids;i++){
785 *(B+NDOF2*numgrids*0+NDOF2*i)=dh1dh6[0][i];
786 *(B+NDOF2*numgrids*0+NDOF2*i+1)=0.0;
787
788 *(B+NDOF2*numgrids*1+NDOF2*i)=0.0;
789 *(B+NDOF2*numgrids*1+NDOF2*i+1)=dh1dh6[1][i];
790
791 *(B+NDOF2*numgrids*2+NDOF2*i)=(float).5*dh1dh6[1][i];
792 *(B+NDOF2*numgrids*2+NDOF2*i+1)=(float).5*dh1dh6[0][i];
793
794 *(B+NDOF2*numgrids*3+NDOF2*i)=(float).5*dh1dh6[2][i];
795 *(B+NDOF2*numgrids*3+NDOF2*i+1)=0.0;
796
797 *(B+NDOF2*numgrids*4+NDOF2*i)=0.0;
798 *(B+NDOF2*numgrids*4+NDOF2*i+1)=(float).5*dh1dh6[2][i];
799 }
800
801}
802/*}}}*/
803/*FUNCTION PentaVertexInput::GetBStokes {{{1*/
804void PentaVertexInput::GetBStokes(double* B, double* xyz_list, double* gauss_coord){
805
806 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 3*DOFPERGRID.
807 * For grid i, Bi can be expressed in the actual coordinate system
808 * by: Bi=[ dh/dx 0 0 0 ]
809 * [ 0 dh/dy 0 0 ]
810 * [ 0 0 dh/dy 0 ]
811 * [ 1/2*dh/dy 1/2*dh/dx 0 0 ]
812 * [ 1/2*dh/dz 0 1/2*dh/dx 0 ]
813 * [ 0 1/2*dh/dz 1/2*dh/dy 0 ]
814 * [ 0 0 0 h ]
815 * [ dh/dx dh/dy dh/dz 0 ]
816 * where h is the interpolation function for grid i.
817 * Same thing for Bb except the last column that does not exist.
818 */
819
820 int i;
821 const int calculationdof=3;
822 const int numgrids=6;
823 int DOFPERGRID=4;
824
825 double dh1dh7[calculationdof][numgrids+1];
826 double l1l6[numgrids];
827
828
829 /*Get dh1dh7 in actual coordinate system: */
830 GetNodalFunctionsMINIDerivatives(&dh1dh7[0][0],xyz_list, gauss_coord);
831 GetNodalFunctionsP1(l1l6, gauss_coord);
832
833 /*Build B: */
834 for (i=0;i<numgrids+1;i++){
835 *(B+(DOFPERGRID*numgrids+3)*0+DOFPERGRID*i)=dh1dh7[0][i]; //B[0][DOFPERGRID*i]=dh1dh6[0][i];
836 *(B+(DOFPERGRID*numgrids+3)*0+DOFPERGRID*i+1)=0;
837 *(B+(DOFPERGRID*numgrids+3)*0+DOFPERGRID*i+2)=0;
838 *(B+(DOFPERGRID*numgrids+3)*1+DOFPERGRID*i)=0;
839 *(B+(DOFPERGRID*numgrids+3)*1+DOFPERGRID*i+1)=dh1dh7[1][i];
840 *(B+(DOFPERGRID*numgrids+3)*1+DOFPERGRID*i+2)=0;
841 *(B+(DOFPERGRID*numgrids+3)*2+DOFPERGRID*i)=0;
842 *(B+(DOFPERGRID*numgrids+3)*2+DOFPERGRID*i+1)=0;
843 *(B+(DOFPERGRID*numgrids+3)*2+DOFPERGRID*i+2)=dh1dh7[2][i];
844 *(B+(DOFPERGRID*numgrids+3)*3+DOFPERGRID*i)=(float).5*dh1dh7[1][i];
845 *(B+(DOFPERGRID*numgrids+3)*3+DOFPERGRID*i+1)=(float).5*dh1dh7[0][i];
846 *(B+(DOFPERGRID*numgrids+3)*3+DOFPERGRID*i+2)=0;
847 *(B+(DOFPERGRID*numgrids+3)*4+DOFPERGRID*i)=(float).5*dh1dh7[2][i];
848 *(B+(DOFPERGRID*numgrids+3)*4+DOFPERGRID*i+1)=0;
849 *(B+(DOFPERGRID*numgrids+3)*4+DOFPERGRID*i+2)=(float).5*dh1dh7[0][i];
850 *(B+(DOFPERGRID*numgrids+3)*5+DOFPERGRID*i)=0;
851 *(B+(DOFPERGRID*numgrids+3)*5+DOFPERGRID*i+1)=(float).5*dh1dh7[2][i];
852 *(B+(DOFPERGRID*numgrids+3)*5+DOFPERGRID*i+2)=(float).5*dh1dh7[1][i];
853 *(B+(DOFPERGRID*numgrids+3)*6+DOFPERGRID*i)=0;
854 *(B+(DOFPERGRID*numgrids+3)*6+DOFPERGRID*i+1)=0;
855 *(B+(DOFPERGRID*numgrids+3)*6+DOFPERGRID*i+2)=0;
856 *(B+(DOFPERGRID*numgrids+3)*7+DOFPERGRID*i)=dh1dh7[0][i];
857 *(B+(DOFPERGRID*numgrids+3)*7+DOFPERGRID*i+1)=dh1dh7[1][i];
858 *(B+(DOFPERGRID*numgrids+3)*7+DOFPERGRID*i+2)=dh1dh7[2][i];
859 }
860
861 for (i=0;i<numgrids;i++){ //last column not for the bubble function
862 *(B+(DOFPERGRID*numgrids+3)*0+DOFPERGRID*i+3)=0;
863 *(B+(DOFPERGRID*numgrids+3)*1+DOFPERGRID*i+3)=0;
864 *(B+(DOFPERGRID*numgrids+3)*2+DOFPERGRID*i+3)=0;
865 *(B+(DOFPERGRID*numgrids+3)*3+DOFPERGRID*i+3)=0;
866 *(B+(DOFPERGRID*numgrids+3)*4+DOFPERGRID*i+3)=0;
867 *(B+(DOFPERGRID*numgrids+3)*5+DOFPERGRID*i+3)=0;
868 *(B+(DOFPERGRID*numgrids+3)*6+DOFPERGRID*i+3)=l1l6[i];
869 *(B+(DOFPERGRID*numgrids+3)*7+DOFPERGRID*i+3)=0;
870 }
871
872}
873/*}}}*/
874/*FUNCTION PentaVertexInput::SquareMin{{{1*/
875void PentaVertexInput::SquareMin(double* psquaremin, bool process_units,Parameters* parameters){
876
877 int i;
878 const int numnodes=6;
879 double valuescopy[numnodes];
880 double squaremin;
881
882 /*First, copy values, to process units if requested: */
883 for(i=0;i<numnodes;i++)valuescopy[i]=this->values[i];
884
885 /*Process units if requested: */
886 if(process_units)NodalValuesUnitConversion(&valuescopy[0],numnodes,enum_type,parameters);
887
888 /*Now, figure out minimum of valuescopy: */
889 squaremin=pow(valuescopy[0],2);
890 for(i=1;i<numnodes;i++){
891 if(pow(valuescopy[i],2)<squaremin)squaremin=pow(valuescopy[i],2);
892 }
893 /*Assign output pointers:*/
894 *psquaremin=squaremin;
895}
896/*}}}*/
897/*FUNCTION PentaVertexInput::Scale{{{1*/
898void PentaVertexInput::Scale(double scale_factor){
899
900 int i;
901 const int numgrids=6;
902
903 for(i=0;i<numgrids;i++)values[i]=values[i]*scale_factor;
904}
905/*}}}*/
906/*FUNCTION PentaVertexInput::AXPY{{{1*/
907void PentaVertexInput::AXPY(Input* xinput,double scalar){
908
909 int i;
910 const int numgrids=6;
911 PentaVertexInput* xpentavertexinput=NULL;
912
913 /*xinput is of the same type, so cast it: */
914 xpentavertexinput=(PentaVertexInput*)xinput;
915
916 /*Carry out the AXPY operation depending on type:*/
917 switch(xinput->Enum()){
918
919 case PentaVertexInputEnum:
920 for(i=0;i<numgrids;i++)this->values[i]=this->values[i]+scalar*xpentavertexinput->values[i];
921 return;
922
923 default:
924 ISSMERROR("not implemented yet");
925 }
926
927}
928/*}}}*/
929/*FUNCTION PentaVertexInput::Constrain{{{1*/
930void PentaVertexInput::Constrain(double cm_min, double cm_max){
931
932 int i;
933 const int numgrids=6;
934
935 if(!isnan(cm_min)) for(i=0;i<numgrids;i++)if (this->values[i]<cm_min)this->values[i]=cm_min;
936 if(!isnan(cm_max)) for(i=0;i<numgrids;i++)if (this->values[i]>cm_max)this->values[i]=cm_max;
937
938}
939/*}}}*/
940/*FUNCTION PentaVertexInput::Extrude{{{1*/
941void PentaVertexInput::Extrude(void){
942
943 int i;
944
945 /*First 3 values copied on 3 last values*/
946 for(i=0;i<3;i++) this->values[3+i]=this->values[i];
947
948}
949/*}}}*/
950/*FUNCTION PentaVertexInput::VerticallyIntegrate{{{1*/
951void PentaVertexInput::VerticallyIntegrate(Input* thickness_input){
952
953 /*Intermediaries*/
954 int i;
955 const int numgrids = 6;
956 int num_thickness_values;
957 double *thickness_values = NULL;
958
959 /*Check that input provided is a thickness*/
960 if (thickness_input->EnumType()!=ThicknessEnum) ISSMERROR("Input provided is not a Thickness (enum_type is %s)",EnumAsString(thickness_input->EnumType()));
961
962 /*Get Thickness value pointer*/
963 thickness_input->GetValuesPtr(&thickness_values,&num_thickness_values);
964
965 /*vertically integrate depending on type:*/
966 switch(thickness_input->Enum()){
967
968 case PentaVertexInputEnum:
969 for(i=0;i<3;i++){
970 this->values[i]=0.5*(this->values[i]+this->values[i+3]) * thickness_values[i];
971 this->values[i+3]=this->values[i];
972 }
973 return;
974
975 default:
976 ISSMERROR("not implemented yet");
977 }
978}
979/*}}}*/
980/*FUNCTION PentaVertexInput::PointwiseDivide{{{1*/
981Input* PentaVertexInput::PointwiseDivide(Input* inputB){
982
983 /*Ouput*/
984 PentaVertexInput* outinput=NULL;
985
986 /*Intermediaries*/
987 int i;
988 PentaVertexInput *xinputB = NULL;
989 int B_numvalues;
990 double *B_values = NULL;
991 const int numgrids = 6;
992 double AdotBvalues[numgrids];
993
994 /*Check that inputB is of the same type*/
995 if (inputB->Enum()!=PentaVertexInputEnum) ISSMERROR("Operation not permitted because inputB is of type %s",EnumAsString(inputB->Enum()));
996 xinputB=(PentaVertexInput*)inputB;
997
998 /*Create point wise sum*/
999 for(i=0;i<numgrids;i++){
1000 ISSMASSERT(xinputB->values[i]!=0);
1001 AdotBvalues[i]=this->values[i]/xinputB->values[i];
1002 }
1003
1004 /*Create new Sing input (copy of current input)*/
1005 outinput=new PentaVertexInput(this->enum_type,&AdotBvalues[0]);
1006
1007 /*Return output pointer*/
1008 return outinput;
1009
1010}
1011/*}}}*/
1012/*FUNCTION PentaVertexInput::GetVectorFromInputs{{{1*/
1013void PentaVertexInput::GetVectorFromInputs(Vec vector,int* doflist){
1014
1015 const int numvertices=6;
1016 VecSetValues(vector,numvertices,doflist,(const double*)this->values,INSERT_VALUES);
1017
1018} /*}}}*/
1019/*FUNCTION PentaVertexInput::GetValuesPtr{{{1*/
1020void PentaVertexInput::GetValuesPtr(double** pvalues,int* pnum_values){
1021
1022 *pvalues=this->values;
1023 *pnum_values=6;
1024
1025}
1026/*}}}*/
Note: See TracBrowser for help on using the repository browser.