source: issm/trunk/src/c/objects/Inputs/PentaVertexInput.cpp@ 3855

Last change on this file since 3855 was 3855, checked in by Mathieu Morlighem, 15 years ago

better strainrates call

File size: 26.8 KB
Line 
1/*!\file PentaVertexInput.c
2 * \brief: implementation of the PentaVertexInput object
3 */
4
5#ifdef HAVE_CONFIG_H
6 #include "config.h"
7#else
8#error "Cannot compile with HAVE_CONFIG_H symbol! run configure first!"
9#endif
10
11#include "stdio.h"
12#include <string.h>
13#include "../objects.h"
14#include "../../EnumDefinitions/EnumDefinitions.h"
15#include "../../shared/shared.h"
16#include "../../DataSet/DataSet.h"
17#include "../../include/include.h"
18
19/*Object constructors and destructor*/
20/*FUNCTION PentaVertexInput::PentaVertexInput(){{{1*/
21PentaVertexInput::PentaVertexInput(){
22 return;
23}
24/*}}}*/
25/*FUNCTION PentaVertexInput::PentaVertexInput(int in_enum_type,double* values){{{1*/
26PentaVertexInput::PentaVertexInput(int in_enum_type,double* in_values){
27
28 enum_type=in_enum_type;
29 values[0]=in_values[0];
30 values[1]=in_values[1];
31 values[2]=in_values[2];
32 values[3]=in_values[3];
33 values[4]=in_values[4];
34 values[5]=in_values[5];
35}
36/*}}}*/
37/*FUNCTION PentaVertexInput::~PentaVertexInput(){{{1*/
38PentaVertexInput::~PentaVertexInput(){
39 return;
40}
41/*}}}*/
42
43/*Object management*/
44/*FUNCTION PentaVertexInput::copy{{{1*/
45Object* PentaVertexInput::copy() {
46
47 return new PentaVertexInput(this->enum_type,this->values);
48
49}
50/*}}}*/
51/*FUNCTION PentaVertexInput::DeepEcho{{{1*/
52void PentaVertexInput::DeepEcho(void){
53
54 printf("PentaVertexInput:\n");
55 printf(" enum: %i (%s)\n",this->enum_type,EnumAsString(this->enum_type));
56 printf(" values: [%g %g %g %g %g %g]\n",this->values[0],this->values[1],this->values[2],this->values[3],this->values[4],this->values[5]);
57}
58/*}}}*/
59/*FUNCTION PentaVertexInput::Demarshall{{{1*/
60void PentaVertexInput::Demarshall(char** pmarshalled_dataset){
61
62 char* marshalled_dataset=NULL;
63 int i;
64
65 /*recover marshalled_dataset: */
66 marshalled_dataset=*pmarshalled_dataset;
67
68 /*this time, no need to get enum type, the pointer directly points to the beginning of the
69 *object data (thanks to DataSet::Demarshall):*/
70 memcpy(&enum_type,marshalled_dataset,sizeof(enum_type));marshalled_dataset+=sizeof(enum_type);
71 memcpy(&values,marshalled_dataset,sizeof(values));marshalled_dataset+=sizeof(values);
72
73 /*return: */
74 *pmarshalled_dataset=marshalled_dataset;
75 return;
76}
77/*}}}*/
78/*FUNCTION PentaVertexInput::Echo {{{1*/
79void PentaVertexInput::Echo(void){
80 this->DeepEcho();
81}
82/*}}}*/
83/*FUNCTION PentaVertexInput::Enum{{{1*/
84int PentaVertexInput::Enum(void){
85
86 return PentaVertexInputEnum;
87
88}
89/*}}}*/
90/*FUNCTION PentaVertexInput::EnumType{{{1*/
91int PentaVertexInput::EnumType(void){
92
93 return this->enum_type;
94
95}
96/*}}}*/
97/*FUNCTION PentaVertexInput::Id{{{1*/
98int PentaVertexInput::Id(void){ return -1; }
99/*}}}*/
100/*FUNCTION PentaVertexInput::Marshall{{{1*/
101void PentaVertexInput::Marshall(char** pmarshalled_dataset){
102
103 char* marshalled_dataset=NULL;
104 int enum_value=0;
105
106 /*recover marshalled_dataset: */
107 marshalled_dataset=*pmarshalled_dataset;
108
109 /*get enum value of PentaVertexInput: */
110 enum_value=PentaVertexInputEnum;
111
112 /*marshall enum: */
113 memcpy(marshalled_dataset,&enum_value,sizeof(enum_value));marshalled_dataset+=sizeof(enum_value);
114
115 /*marshall PentaVertexInput data: */
116 memcpy(marshalled_dataset,&enum_type,sizeof(enum_type));marshalled_dataset+=sizeof(enum_type);
117 memcpy(marshalled_dataset,&values,sizeof(values));marshalled_dataset+=sizeof(values);
118
119 *pmarshalled_dataset=marshalled_dataset;
120}
121/*}}}*/
122/*FUNCTION PentaVertexInput::MarshallSize{{{1*/
123int PentaVertexInput::MarshallSize(){
124
125 return sizeof(values)+
126 +sizeof(enum_type)+
127 +sizeof(int); //sizeof(int) for enum value
128}
129/*}}}*/
130/*FUNCTION PentaVertexInput::MyRank{{{1*/
131int PentaVertexInput::MyRank(void){
132 extern int my_rank;
133 return my_rank;
134}
135/*}}}*/
136/*FUNCTION PentaVertexInput::SpawnTriaInput{{{1*/
137Input* PentaVertexInput::SpawnTriaInput(int* indices){
138
139 /*output*/
140 TriaVertexInput* outinput=NULL;
141 double newvalues[3];
142
143 /*Loop over the new indices*/
144 for(int i=0;i<3;i++){
145
146 /*Check index value*/
147 ISSMASSERT(indices[i]>=0 && indices[i]<6);
148
149 /*Assign value to new input*/
150 newvalues[i]=this->values[indices[i]];
151 }
152
153 /*Create new Tria input*/
154 outinput=new TriaVertexInput(this->enum_type,&newvalues[0]);
155
156 /*Assign output*/
157 return outinput;
158
159}
160/*}}}*/
161
162/*Object functions*/
163/*FUNCTION PentaVertexInput::GetParameterValue(bool* pvalue) {{{1*/
164void PentaVertexInput::GetParameterValue(bool* pvalue){ISSMERROR(" not supported yet!");}
165/*}}}*/
166/*FUNCTION PentaVertexInput::GetParameterValue(int* pvalue){{{1*/
167void PentaVertexInput::GetParameterValue(int* pvalue){ISSMERROR(" not supported yet!");}
168/*}}}*/
169/*FUNCTION PentaVertexInput::GetParameterValue(double* pvalue){{{1*/
170void PentaVertexInput::GetParameterValue(double* pvalue){ISSMERROR(" not supported yet!");}
171/*}}}*/
172/*FUNCTION PentaVertexInput::GetParameterValue(double* pvalue,Node* node){{{1*/
173void PentaVertexInput::GetParameterValue(double* pvalue,Node* node){ISSMERROR(" not supported yet!");}
174/*}}}*/
175/*FUNCTION PentaVertexInput::GetParameterValue(double* pvalue,Node* node1,Node* node2,double gauss_coord){{{1*/
176void PentaVertexInput::GetParameterValue(double* pvalue,Node* node1,Node* node2,double gauss_coord){ISSMERROR(" not supported yet!");}
177/*}}}*/
178/*FUNCTION PentaVertexInput::GetParameterValue(double* pvalue,double* gauss){{{1*/
179void PentaVertexInput::GetParameterValue(double* pvalue,double* gauss){
180 /*P1 interpolation on Gauss point*/
181
182 /*intermediary*/
183 double l1l6[6];
184
185 /*nodal functions: */
186 GetNodalFunctionsP1(&l1l6[0],gauss);
187
188 /*Assign output pointers:*/
189 *pvalue=l1l6[0]*values[0]+l1l6[1]*values[1]+l1l6[2]*values[2]+l1l6[3]*values[3]+l1l6[4]*values[4]+l1l6[5]*values[5];
190
191}
192/*}}}*/
193/*FUNCTION PentaVertexInput::GetParameterValue(double* pvalue,double* gauss,double defaultvalue){{{1*/
194void PentaVertexInput::GetParameterValue(double* pvalue,double* gauss,double defaultvalue){ISSMERROR(" not supported yet!");}
195/*}}}*/
196/*FUNCTION PentaVertexInput::GetParameterValues(double* values,double* gauss_pointers, int numgauss){{{1*/
197void PentaVertexInput::GetParameterValues(double* values,double* gauss_pointers, int numgauss){
198 /*It is assumed that output values has been correctly allocated*/
199
200 int i,j;
201 double gauss[4];
202
203 for (i=0;i<numgauss;i++){
204
205 /*Get current Gauss point coordinates*/
206 for (j=0;j<4;j++) gauss[j]=gauss_pointers[i*4+j];
207
208 /*Assign parameter value*/
209 GetParameterValue(&values[i],&gauss[0]);
210 }
211}
212/*}}}*/
213/*FUNCTION PentaVertexInput::GetParameterDerivativeValue(double* derivativevalues, double* xyz_list, double* gauss){{{1*/
214void PentaVertexInput::GetParameterDerivativeValue(double* p, double* xyz_list, double* gauss){
215 /*From grid values of parameter p (p_list[0], p_list[1], p_list[2], p_list[3], p_list[4] and p_list[4]), return parameter derivative value at gaussian point specified by gauss_coord:
216 * dp/dx=p_list[0]*dh1/dx+p_list[1]*dh2/dx+p_list[2]*dh3/dx+p_list[3]*dh4/dx+p_list[4]*dh5/dx+p_list[5]*dh6/dx;
217 * dp/dy=p_list[0]*dh1/dy+p_list[1]*dh2/dy+p_list[2]*dh3/dy+p_list[3]*dh4/dy+p_list[4]*dh5/dy+p_list[5]*dh6/dy;
218 * dp/dz=p_list[0]*dh1/dz+p_list[1]*dh2/dz+p_list[2]*dh3/dz+p_list[3]*dh4/dz+p_list[4]*dh5/dz+p_list[5]*dh6/dz;
219 *
220 * p is a vector of size 3x1 already allocated.
221 */
222
223 const int NDOF3=3;
224 const int numgrids=6;
225 double dh1dh6[NDOF3][numgrids];
226
227 /*Get nodal funnctions derivatives in actual coordinate system: */
228 GetNodalFunctionsP1Derivatives(&dh1dh6[0][0],xyz_list, gauss);
229
230 p[0]=this->values[0]*dh1dh6[0][0]+this->values[1]*dh1dh6[0][1]+this->values[2]*dh1dh6[0][2]+this->values[3]*dh1dh6[0][3]+this->values[4]*dh1dh6[0][4]+this->values[5]*dh1dh6[0][5];
231 p[1]=this->values[0]*dh1dh6[1][0]+this->values[1]*dh1dh6[1][1]+this->values[2]*dh1dh6[1][2]+this->values[3]*dh1dh6[1][3]+this->values[4]*dh1dh6[1][4]+this->values[5]*dh1dh6[1][5];
232 p[2]=this->values[0]*dh1dh6[2][0]+this->values[1]*dh1dh6[2][1]+this->values[2]*dh1dh6[2][2]+this->values[3]*dh1dh6[2][3]+this->values[4]*dh1dh6[2][4]+this->values[5]*dh1dh6[2][5];
233
234}
235/*}}}*/
236/*FUNCTION PentaVertexInput::GetVxStrainRate3d(double* epsilonvx,double* xyz_list, double* gauss) {{{1*/
237void PentaVertexInput::GetVxStrainRate3d(double* epsilonvx,double* xyz_list, double* gauss){
238 int i,j;
239
240 const int numgrids=6;
241 const int DOFVELOCITY=3;
242 double B[8][27];
243 double B_reduced[6][DOFVELOCITY*numgrids];
244 double velocity[3][DOFVELOCITY];
245
246 /*Get B matrix: */
247 GetBStokes(&B[0][0], xyz_list, gauss);
248 /*Create a reduced matrix of B to get rid of pressure */
249 for (i=0;i<6;i++){
250 for (j=0;j<3;j++){
251 B_reduced[i][j]=B[i][j];
252 }
253 for (j=4;j<7;j++){
254 B_reduced[i][j-1]=B[i][j];
255 }
256 for (j=8;j<11;j++){
257 B_reduced[i][j-2]=B[i][j];
258 }
259 for (j=12;j<15;j++){
260 B_reduced[i][j-3]=B[i][j];
261 }
262 for (j=16;j<19;j++){
263 B_reduced[i][j-4]=B[i][j];
264 }
265 for (j=20;j<23;j++){
266 B_reduced[i][j-5]=B[i][j];
267 }
268 }
269
270 /*Here, we are computing the strain rate of (vx,0,0)*/
271 for(i=0;i<numgrids;i++){
272 velocity[i][0]=this->values[i];
273 velocity[i][1]=0.0;
274 velocity[i][2]=0.0;
275 }
276 /*Multiply B by velocity, to get strain rate: */
277 MatrixMultiply(&B_reduced[0][0],6,DOFVELOCITY*numgrids,0,&velocity[0][0],DOFVELOCITY*numgrids,1,0,epsilonvx,0);
278
279}
280/*}}}*/
281/*FUNCTION PentaVertexInput::GetVyStrainRate3d(double* epsilonvy,double* xyz_list, double* gauss) {{{1*/
282void PentaVertexInput::GetVyStrainRate3d(double* epsilonvy,double* xyz_list, double* gauss){
283 int i,j;
284
285 const int numgrids=6;
286 const int DOFVELOCITY=3;
287 double B[8][27];
288 double B_reduced[6][DOFVELOCITY*numgrids];
289 double velocity[3][DOFVELOCITY];
290
291 /*Get B matrix: */
292 GetBStokes(&B[0][0], xyz_list, gauss);
293 /*Create a reduced matrix of B to get rid of pressure */
294 for (i=0;i<6;i++){
295 for (j=0;j<3;j++){
296 B_reduced[i][j]=B[i][j];
297 }
298 for (j=4;j<7;j++){
299 B_reduced[i][j-1]=B[i][j];
300 }
301 for (j=8;j<11;j++){
302 B_reduced[i][j-2]=B[i][j];
303 }
304 for (j=12;j<15;j++){
305 B_reduced[i][j-3]=B[i][j];
306 }
307 for (j=16;j<19;j++){
308 B_reduced[i][j-4]=B[i][j];
309 }
310 for (j=20;j<23;j++){
311 B_reduced[i][j-5]=B[i][j];
312 }
313 }
314
315 /*Here, we are computing the strain rate of (0,vy,0)*/
316 for(i=0;i<numgrids;i++){
317 velocity[i][0]=0.0;
318 velocity[i][1]=this->values[i];
319 velocity[i][2]=0.0;
320 }
321 /*Multiply B by velocity, to get strain rate: */
322 MatrixMultiply(&B_reduced[0][0],6,DOFVELOCITY*numgrids,0,&velocity[0][0],DOFVELOCITY*numgrids,1,0,epsilonvy,0);
323
324}
325/*}}}*/
326/*FUNCTION PentaVertexInput::GetVzStrainRate3d(double* epsilonvz,double* xyz_list, double* gauss) {{{1*/
327void PentaVertexInput::GetVzStrainRate3d(double* epsilonvz,double* xyz_list, double* gauss){
328 int i,j;
329
330 const int numgrids=6;
331 const int DOFVELOCITY=3;
332 double B[8][27];
333 double B_reduced[6][DOFVELOCITY*numgrids];
334 double velocity[3][DOFVELOCITY];
335
336 /*Get B matrix: */
337 GetBStokes(&B[0][0], xyz_list, gauss);
338 /*Create a reduced matrix of B to get rid of pressure */
339 for (i=0;i<6;i++){
340 for (j=0;j<3;j++){
341 B_reduced[i][j]=B[i][j];
342 }
343 for (j=4;j<7;j++){
344 B_reduced[i][j-1]=B[i][j];
345 }
346 for (j=8;j<11;j++){
347 B_reduced[i][j-2]=B[i][j];
348 }
349 for (j=12;j<15;j++){
350 B_reduced[i][j-3]=B[i][j];
351 }
352 for (j=16;j<19;j++){
353 B_reduced[i][j-4]=B[i][j];
354 }
355 for (j=20;j<23;j++){
356 B_reduced[i][j-5]=B[i][j];
357 }
358 }
359
360 /*Here, we are computing the strain rate of (0,0,vz)*/
361 for(i=0;i<numgrids;i++){
362 velocity[i][0]=0.0;
363 velocity[i][1]=0.0;
364 velocity[i][2]=this->values[i];
365 }
366
367 /*Multiply B by velocity, to get strain rate: */
368 MatrixMultiply(&B_reduced[0][0],6,DOFVELOCITY*numgrids,0,&velocity[0][0],DOFVELOCITY*numgrids,1,0,epsilonvz,0);
369
370}
371/*}}}*/
372/*FUNCTION PentaVertexInput::GetVxStrainRate3dPattyn(double* epsilonvx,double* xyz_list, double* gauss) {{{1*/
373void PentaVertexInput::GetVxStrainRate3dPattyn(double* epsilonvx,double* xyz_list, double* gauss){
374
375 int i;
376 const int numgrids=6;
377 const int NDOF2=2;
378 double B[5][NDOF2*numgrids];
379 double velocity[numgrids][NDOF2];
380
381 /*Get B matrix: */
382 GetBPattyn(&B[0][0], xyz_list, gauss);
383
384 /*Here, we are computing the strain rate of (vx,0)*/
385 for(i=0;i<numgrids;i++){
386 velocity[i][0]=this->values[i];
387 velocity[i][1]=0.0;
388 }
389
390 /*Multiply B by velocity, to get strain rate: */
391 MatrixMultiply( &B[0][0],5,NDOF2*numgrids,0,
392 &velocity[0][0],NDOF2*numgrids,1,0,
393 epsilonvx,0);
394
395}
396/*}}}*/
397/*FUNCTION PentaVertexInput::GetVyStrainRate3dPattyn(double* epsilonvy,double* xyz_list, double* gauss) {{{1*/
398void PentaVertexInput::GetVyStrainRate3dPattyn(double* epsilonvy,double* xyz_list, double* gauss){
399
400 int i;
401 const int numgrids=6;
402 const int NDOF2=2;
403 double B[5][NDOF2*numgrids];
404 double velocity[numgrids][NDOF2];
405
406 /*Get B matrix: */
407 GetBPattyn(&B[0][0], xyz_list, gauss);
408
409 /*Here, we are computing the strain rate of (0,vy)*/
410 for(i=0;i<numgrids;i++){
411 velocity[i][0]=0.0;
412 velocity[i][1]=this->values[i];
413 }
414
415 /*Multiply B by velocity, to get strain rate: */
416 MatrixMultiply( &B[0][0],5,NDOF2*numgrids,0,
417 &velocity[0][0],NDOF2*numgrids,1,0,
418 epsilonvy,0);
419
420}
421/*}}}*/
422/*FUNCTION PentaVertexInput::ChangeEnum(int newenumtype){{{1*/
423void PentaVertexInput::ChangeEnum(int newenumtype){
424 this->enum_type=newenumtype;
425}
426/*}}}*/
427/*FUNCTION PentaVertexInput::GetParameterAverage(double* pvalue){{{1*/
428void PentaVertexInput::GetParameterAverage(double* pvalue){
429 *pvalue=1./6.*(values[0]+values[1]+values[2]+values[3]+values[4]+values[5]);
430}
431/*}}}*/
432
433/*Intermediary*/
434/*FUNCTION PentaVertexInput::GetNodalFunctionsP1 {{{1*/
435void PentaVertexInput::GetNodalFunctionsP1(double* l1l6, double* gauss_coord){
436
437 /*This routine returns the values of the nodal functions at the gaussian point.*/
438
439 l1l6[0]=gauss_coord[0]*(1-gauss_coord[3])/2.0;
440
441 l1l6[1]=gauss_coord[1]*(1-gauss_coord[3])/2.0;
442
443 l1l6[2]=gauss_coord[2]*(1-gauss_coord[3])/2.0;
444
445 l1l6[3]=gauss_coord[0]*(1+gauss_coord[3])/2.0;
446
447 l1l6[4]=gauss_coord[1]*(1+gauss_coord[3])/2.0;
448
449 l1l6[5]=gauss_coord[2]*(1+gauss_coord[3])/2.0;
450
451}
452/*}}}*/
453/*FUNCTION PentaVertexInput::GetNodalFunctionsMINI{{{1*/
454void PentaVertexInput::GetNodalFunctionsMINI(double* l1l7, double* gauss_coord){
455
456 /*This routine returns the values of the nodal functions at the gaussian point.*/
457
458 /*First nodal function: */
459 l1l7[0]=gauss_coord[0]*(1.0-gauss_coord[3])/2.0;
460
461 /*Second nodal function: */
462 l1l7[1]=gauss_coord[1]*(1.0-gauss_coord[3])/2.0;
463
464 /*Third nodal function: */
465 l1l7[2]=gauss_coord[2]*(1.0-gauss_coord[3])/2.0;
466
467 /*Fourth nodal function: */
468 l1l7[3]=gauss_coord[0]*(1.0+gauss_coord[3])/2.0;
469
470 /*Fifth nodal function: */
471 l1l7[4]=gauss_coord[1]*(1.0+gauss_coord[3])/2.0;
472
473 /*Sixth nodal function: */
474 l1l7[5]=gauss_coord[2]*(1.0+gauss_coord[3])/2.0;
475
476 /*Seventh nodal function: */
477 l1l7[6]=27*gauss_coord[0]*gauss_coord[1]*gauss_coord[2]*(1.0+gauss_coord[3])*(1.0-gauss_coord[3]);
478
479}
480/*}}}*/
481/*FUNCTION PentaVertexInput::GetNodalFunctionsP1Derivatives {{{1*/
482void PentaVertexInput::GetNodalFunctionsP1Derivatives(double* dh1dh6,double* xyz_list, double* gauss_coord){
483
484 /*This routine returns the values of the nodal functions derivatives (with respect to the actual coordinate system: */
485 int i;
486 const int NDOF3=3;
487 const int numgrids=6;
488
489 double dh1dh6_ref[NDOF3][numgrids];
490 double Jinv[NDOF3][NDOF3];
491
492 /*Get derivative values with respect to parametric coordinate system: */
493 GetNodalFunctionsP1DerivativesReference(&dh1dh6_ref[0][0], gauss_coord);
494
495 /*Get Jacobian invert: */
496 GetJacobianInvert(&Jinv[0][0], xyz_list, gauss_coord);
497
498 /*Build dh1dh3:
499 *
500 * [dhi/dx]= Jinv*[dhi/dr]
501 * [dhi/dy] [dhi/ds]
502 * [dhi/dz] [dhi/dn]
503 */
504
505 for (i=0;i<numgrids;i++){
506 *(dh1dh6+numgrids*0+i)=Jinv[0][0]*dh1dh6_ref[0][i]+Jinv[0][1]*dh1dh6_ref[1][i]+Jinv[0][2]*dh1dh6_ref[2][i];
507 *(dh1dh6+numgrids*1+i)=Jinv[1][0]*dh1dh6_ref[0][i]+Jinv[1][1]*dh1dh6_ref[1][i]+Jinv[1][2]*dh1dh6_ref[2][i];
508 *(dh1dh6+numgrids*2+i)=Jinv[2][0]*dh1dh6_ref[0][i]+Jinv[2][1]*dh1dh6_ref[1][i]+Jinv[2][2]*dh1dh6_ref[2][i];
509 }
510
511}
512/*}}}*/
513/*FUNCTION PentaVertexInput::GetNodalFunctionsMINIDerivatives{{{1*/
514void PentaVertexInput::GetNodalFunctionsMINIDerivatives(double* dh1dh7,double* xyz_list, double* gauss_coord){
515
516 /*This routine returns the values of the nodal functions derivatives (with respect to the
517 * actual coordinate system: */
518
519 int i;
520
521 const int numgrids=7;
522 double dh1dh7_ref[3][numgrids];
523 double Jinv[3][3];
524
525
526 /*Get derivative values with respect to parametric coordinate system: */
527 GetNodalFunctionsMINIDerivativesReference(&dh1dh7_ref[0][0], gauss_coord);
528
529 /*Get Jacobian invert: */
530 GetJacobianInvert(&Jinv[0][0], xyz_list, gauss_coord);
531
532 /*Build dh1dh6:
533 *
534 * [dhi/dx]= Jinv'*[dhi/dr]
535 * [dhi/dy] [dhi/ds]
536 * [dhi/dz] [dhi/dzeta]
537 */
538
539 for (i=0;i<numgrids;i++){
540 *(dh1dh7+numgrids*0+i)=Jinv[0][0]*dh1dh7_ref[0][i]+Jinv[0][1]*dh1dh7_ref[1][i]+Jinv[0][2]*dh1dh7_ref[2][i];
541 *(dh1dh7+numgrids*1+i)=Jinv[1][0]*dh1dh7_ref[0][i]+Jinv[1][1]*dh1dh7_ref[1][i]+Jinv[1][2]*dh1dh7_ref[2][i];
542 *(dh1dh7+numgrids*2+i)=Jinv[2][0]*dh1dh7_ref[0][i]+Jinv[2][1]*dh1dh7_ref[1][i]+Jinv[2][2]*dh1dh7_ref[2][i];
543 }
544
545}
546/*}}}*/
547/*FUNCTION PentaVertexInput::GetNodalFunctionsP1DerivativesReference {{{1*/
548void PentaVertexInput::GetNodalFunctionsP1DerivativesReference(double* dl1dl6,double* gauss_coord){
549
550 /*This routine returns the values of the nodal functions derivatives (with respect to the
551 * natural coordinate system) at the gaussian point. Those values vary along xi,eta,z */
552
553 const int numgrids=6;
554 double A1,A2,A3,z;
555
556 A1=gauss_coord[0]; //first area coordinate value. In term of xi and eta: A1=(1-xi)/2-eta/(2*SQRT3);
557 A2=gauss_coord[1]; //second area coordinate value In term of xi and eta: A2=(1+xi)/2-eta/(2*SQRT3);
558 A3=gauss_coord[2]; //third area coordinate value In term of xi and eta: A3=y/SQRT3;
559 z=gauss_coord[3]; //fourth vertical coordinate value. Corresponding nodal function: (1-z)/2 and (1+z)/2
560
561
562 /*First nodal function derivatives. The corresponding nodal function is N=A1*(1-z)/2. Its derivatives follow*/
563 *(dl1dl6+numgrids*0+0)=-0.5*(1.0-z)/2.0;
564 *(dl1dl6+numgrids*1+0)=-0.5/SQRT3*(1.0-z)/2.0;
565 *(dl1dl6+numgrids*2+0)=-0.5*A1;
566
567 /*Second nodal function: The corresponding nodal function is N=A2*(1-z)/2. Its derivatives follow*/
568 *(dl1dl6+numgrids*0+1)=0.5*(1.0-z)/2.0;
569 *(dl1dl6+numgrids*1+1)=-0.5/SQRT3*(1.0-z)/2.0;
570 *(dl1dl6+numgrids*2+1)=-0.5*A2;
571
572 /*Third nodal function: The corresponding nodal function is N=A3*(1-z)/2. Its derivatives follow*/
573 *(dl1dl6+numgrids*0+2)=0.0;
574 *(dl1dl6+numgrids*1+2)=1.0/SQRT3*(1.0-z)/2.0;
575 *(dl1dl6+numgrids*2+2)=-0.5*A3;
576
577 /*Fourth nodal function: The corresponding nodal function is N=A1*(1+z)/2. Its derivatives follow*/
578 *(dl1dl6+numgrids*0+3)=-0.5*(1.0+z)/2.0;
579 *(dl1dl6+numgrids*1+3)=-0.5/SQRT3*(1.0+z)/2.0;
580 *(dl1dl6+numgrids*2+3)=0.5*A1;
581
582 /*Fifth nodal function: The corresponding nodal function is N=A2*(1+z)/2. Its derivatives follow*/
583 *(dl1dl6+numgrids*0+4)=0.5*(1.0+z)/2.0;
584 *(dl1dl6+numgrids*1+4)=-0.5/SQRT3*(1.0+z)/2.0;
585 *(dl1dl6+numgrids*2+4)=0.5*A2;
586
587 /*Sixth nodal function: The corresponding nodal function is N=A3*(1+z)/2. Its derivatives follow*/
588 *(dl1dl6+numgrids*0+5)=0.0;
589 *(dl1dl6+numgrids*1+5)=1.0/SQRT3*(1.0+z)/2.0;
590 *(dl1dl6+numgrids*2+5)=0.5*A3;
591}
592/*}}}*/
593/*FUNCTION PentaVertexInput::GetNodalFunctionsMINIDerivativesReference{{{1*/
594void PentaVertexInput::GetNodalFunctionsMINIDerivativesReference(double* dl1dl7,double* gauss_coord){
595
596 /*This routine returns the values of the nodal functions derivatives (with respect to the
597 * natural coordinate system) at the gaussian point. */
598
599 int numgrids=7; //six plus bubble grids
600
601 double r=gauss_coord[1]-gauss_coord[0];
602 double s=-3.0/SQRT3*(gauss_coord[0]+gauss_coord[1]-2.0/3.0);
603 double zeta=gauss_coord[3];
604
605 /*First nodal function: */
606 *(dl1dl7+numgrids*0+0)=-0.5*(1.0-zeta)/2.0;
607 *(dl1dl7+numgrids*1+0)=-SQRT3/6.0*(1.0-zeta)/2.0;
608 *(dl1dl7+numgrids*2+0)=-0.5*(-0.5*r-SQRT3/6.0*s+ONETHIRD);
609
610 /*Second nodal function: */
611 *(dl1dl7+numgrids*0+1)=0.5*(1.0-zeta)/2.0;
612 *(dl1dl7+numgrids*1+1)=-SQRT3/6.0*(1.0-zeta)/2.0;
613 *(dl1dl7+numgrids*2+1)=-0.5*(0.5*r-SQRT3/6.0*s+ONETHIRD);
614
615 /*Third nodal function: */
616 *(dl1dl7+numgrids*0+2)=0;
617 *(dl1dl7+numgrids*1+2)=SQRT3/3.0*(1.0-zeta)/2.0;
618 *(dl1dl7+numgrids*2+2)=-0.5*(SQRT3/3.0*s+ONETHIRD);
619
620 /*Fourth nodal function: */
621 *(dl1dl7+numgrids*0+3)=-0.5*(1.0+zeta)/2.0;
622 *(dl1dl7+numgrids*1+3)=-SQRT3/6.0*(1.0+zeta)/2.0;
623 *(dl1dl7+numgrids*2+3)=0.5*(-0.5*r-SQRT3/6.0*s+ONETHIRD);
624
625 /*Fith nodal function: */
626 *(dl1dl7+numgrids*0+4)=0.5*(1.0+zeta)/2.0;
627 *(dl1dl7+numgrids*1+4)=-SQRT3/6.0*(1.0+zeta)/2.0;
628 *(dl1dl7+numgrids*2+4)=0.5*(0.5*r-SQRT3/6.0*s+ONETHIRD);
629
630 /*Sixth nodal function: */
631 *(dl1dl7+numgrids*0+5)=0;
632 *(dl1dl7+numgrids*1+5)=SQRT3/3.0*(1.0+zeta)/2.0;
633 *(dl1dl7+numgrids*2+5)=0.5*(SQRT3/3.0*s+ONETHIRD);
634
635 /*Seventh nodal function: */
636 *(dl1dl7+numgrids*0+6)=9.0/2.0*r*(1.0+zeta)*(zeta-1.0)*(SQRT3*s+1.0);
637 *(dl1dl7+numgrids*1+6)=9.0/4.0*(1+zeta)*(1-zeta)*(SQRT3*pow(s,2.0)-2.0*s-SQRT3*pow(r,2.0));
638 *(dl1dl7+numgrids*2+6)=27*gauss_coord[0]*gauss_coord[1]*gauss_coord[2]*(-2.0*zeta);
639
640}
641/*}}}*/
642/*FUNCTION PentaVertexInput::GetJacobian {{{1*/
643void PentaVertexInput::GetJacobian(double* J, double* xyz_list,double* gauss_coord){
644
645 const int NDOF3=3;
646 int i,j;
647
648 /*The Jacobian is constant over the element, discard the gaussian points.
649 * J is assumed to have been allocated of size NDOF2xNDOF2.*/
650
651 double A1,A2,A3; //area coordinates
652 double xi,eta,zi; //parametric coordinates
653
654 double x1,x2,x3,x4,x5,x6;
655 double y1,y2,y3,y4,y5,y6;
656 double z1,z2,z3,z4,z5,z6;
657
658 /*Figure out xi,eta and zi (parametric coordinates), for this gaussian point: */
659 A1=gauss_coord[0];
660 A2=gauss_coord[1];
661 A3=gauss_coord[2];
662
663 xi=A2-A1;
664 eta=SQRT3*A3;
665 zi=gauss_coord[3];
666
667 x1=*(xyz_list+3*0+0);
668 x2=*(xyz_list+3*1+0);
669 x3=*(xyz_list+3*2+0);
670 x4=*(xyz_list+3*3+0);
671 x5=*(xyz_list+3*4+0);
672 x6=*(xyz_list+3*5+0);
673
674 y1=*(xyz_list+3*0+1);
675 y2=*(xyz_list+3*1+1);
676 y3=*(xyz_list+3*2+1);
677 y4=*(xyz_list+3*3+1);
678 y5=*(xyz_list+3*4+1);
679 y6=*(xyz_list+3*5+1);
680
681 z1=*(xyz_list+3*0+2);
682 z2=*(xyz_list+3*1+2);
683 z3=*(xyz_list+3*2+2);
684 z4=*(xyz_list+3*3+2);
685 z5=*(xyz_list+3*4+2);
686 z6=*(xyz_list+3*5+2);
687
688 *(J+NDOF3*0+0)=0.25*(x1-x2-x4+x5)*zi+0.25*(-x1+x2-x4+x5);
689 *(J+NDOF3*1+0)=SQRT3/12.0*(x1+x2-2*x3-x4-x5+2*x6)*zi+SQRT3/12.0*(-x1-x2+2*x3-x4-x5+2*x6);
690 *(J+NDOF3*2+0)=SQRT3/12.0*(x1+x2-2*x3-x4-x5+2*x6)*eta+1/4*(x1-x2-x4+x5)*xi +0.25*(-x1+x5-x2+x4);
691
692 *(J+NDOF3*0+1)=0.25*(y1-y2-y4+y5)*zi+0.25*(-y1+y2-y4+y5);
693 *(J+NDOF3*1+1)=SQRT3/12.0*(y1+y2-2*y3-y4-y5+2*y6)*zi+SQRT3/12.0*(-y1-y2+2*y3-y4-y5+2*y6);
694 *(J+NDOF3*2+1)=SQRT3/12.0*(y1+y2-2*y3-y4-y5+2*y6)*eta+0.25*(y1-y2-y4+y5)*xi+0.25*(y4-y1+y5-y2);
695
696 *(J+NDOF3*0+2)=0.25*(z1-z2-z4+z5)*zi+0.25*(-z1+z2-z4+z5);
697 *(J+NDOF3*1+2)=SQRT3/12.0*(z1+z2-2*z3-z4-z5+2*z6)*zi+SQRT3/12.0*(-z1-z2+2*z3-z4-z5+2*z6);
698 *(J+NDOF3*2+2)=SQRT3/12.0*(z1+z2-2*z3-z4-z5+2*z6)*eta+0.25*(z1-z2-z4+z5)*xi+0.25*(-z1+z5-z2+z4);
699
700}
701/*}}}*/
702/*FUNCTION PentaVertexInput::GetJacobianInvert {{{1*/
703void PentaVertexInput::GetJacobianInvert(double* Jinv, double* xyz_list,double* gauss_coord){
704
705 double Jdet;
706 const int NDOF3=3;
707
708 /*Call Jacobian routine to get the jacobian:*/
709 GetJacobian(Jinv, xyz_list, gauss_coord);
710
711 /*Invert Jacobian matrix: */
712 MatrixInverse(Jinv,NDOF3,NDOF3,NULL,0,&Jdet);
713}
714/*}}}*/
715/*FUNCTION PentaVertexInput::GetBPattyn {{{1*/
716void PentaVertexInput::GetBPattyn(double* B, double* xyz_list, double* gauss_coord){
717 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF2.
718 * For grid i, Bi can be expressed in the actual coordinate system
719 * by:
720 * Bi=[ dh/dx 0 ]
721 * [ 0 dh/dy ]
722 * [ 1/2*dh/dy 1/2*dh/dx ]
723 * [ 1/2*dh/dz 0 ]
724 * [ 0 1/2*dh/dz ]
725 * where h is the interpolation function for grid i.
726 *
727 * We assume B has been allocated already, of size: 5x(NDOF2*numgrids)
728 */
729
730 int i;
731 const int numgrids=6;
732 const int NDOF3=3;
733 const int NDOF2=2;
734
735 double dh1dh6[NDOF3][numgrids];
736
737 /*Get dh1dh6 in actual coordinate system: */
738 GetNodalFunctionsP1Derivatives(&dh1dh6[0][0],xyz_list, gauss_coord);
739
740 /*Build B: */
741 for (i=0;i<numgrids;i++){
742 *(B+NDOF2*numgrids*0+NDOF2*i)=dh1dh6[0][i];
743 *(B+NDOF2*numgrids*0+NDOF2*i+1)=0.0;
744
745 *(B+NDOF2*numgrids*1+NDOF2*i)=0.0;
746 *(B+NDOF2*numgrids*1+NDOF2*i+1)=dh1dh6[1][i];
747
748 *(B+NDOF2*numgrids*2+NDOF2*i)=(float).5*dh1dh6[1][i];
749 *(B+NDOF2*numgrids*2+NDOF2*i+1)=(float).5*dh1dh6[0][i];
750
751 *(B+NDOF2*numgrids*3+NDOF2*i)=(float).5*dh1dh6[2][i];
752 *(B+NDOF2*numgrids*3+NDOF2*i+1)=0.0;
753
754 *(B+NDOF2*numgrids*4+NDOF2*i)=0.0;
755 *(B+NDOF2*numgrids*4+NDOF2*i+1)=(float).5*dh1dh6[2][i];
756 }
757
758}
759/*}}}*/
760/*FUNCTION PentaVertexInput::GetBStokes {{{1*/
761void PentaVertexInput::GetBStokes(double* B, double* xyz_list, double* gauss_coord){
762
763 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 3*DOFPERGRID.
764 * For grid i, Bi can be expressed in the actual coordinate system
765 * by: Bi=[ dh/dx 0 0 0 ]
766 * [ 0 dh/dy 0 0 ]
767 * [ 0 0 dh/dy 0 ]
768 * [ 1/2*dh/dy 1/2*dh/dx 0 0 ]
769 * [ 1/2*dh/dz 0 1/2*dh/dx 0 ]
770 * [ 0 1/2*dh/dz 1/2*dh/dy 0 ]
771 * [ 0 0 0 h ]
772 * [ dh/dx dh/dy dh/dz 0 ]
773 * where h is the interpolation function for grid i.
774 * Same thing for Bb except the last column that does not exist.
775 */
776
777 int i;
778 const int calculationdof=3;
779 const int numgrids=6;
780 int DOFPERGRID=4;
781
782 double dh1dh7[calculationdof][numgrids+1];
783 double l1l6[numgrids];
784
785
786 /*Get dh1dh7 in actual coordinate system: */
787 GetNodalFunctionsMINIDerivatives(&dh1dh7[0][0],xyz_list, gauss_coord);
788 GetNodalFunctionsP1(l1l6, gauss_coord);
789
790 /*Build B: */
791 for (i=0;i<numgrids+1;i++){
792 *(B+(DOFPERGRID*numgrids+3)*0+DOFPERGRID*i)=dh1dh7[0][i]; //B[0][DOFPERGRID*i]=dh1dh6[0][i];
793 *(B+(DOFPERGRID*numgrids+3)*0+DOFPERGRID*i+1)=0;
794 *(B+(DOFPERGRID*numgrids+3)*0+DOFPERGRID*i+2)=0;
795 *(B+(DOFPERGRID*numgrids+3)*1+DOFPERGRID*i)=0;
796 *(B+(DOFPERGRID*numgrids+3)*1+DOFPERGRID*i+1)=dh1dh7[1][i];
797 *(B+(DOFPERGRID*numgrids+3)*1+DOFPERGRID*i+2)=0;
798 *(B+(DOFPERGRID*numgrids+3)*2+DOFPERGRID*i)=0;
799 *(B+(DOFPERGRID*numgrids+3)*2+DOFPERGRID*i+1)=0;
800 *(B+(DOFPERGRID*numgrids+3)*2+DOFPERGRID*i+2)=dh1dh7[2][i];
801 *(B+(DOFPERGRID*numgrids+3)*3+DOFPERGRID*i)=(float).5*dh1dh7[1][i];
802 *(B+(DOFPERGRID*numgrids+3)*3+DOFPERGRID*i+1)=(float).5*dh1dh7[0][i];
803 *(B+(DOFPERGRID*numgrids+3)*3+DOFPERGRID*i+2)=0;
804 *(B+(DOFPERGRID*numgrids+3)*4+DOFPERGRID*i)=(float).5*dh1dh7[2][i];
805 *(B+(DOFPERGRID*numgrids+3)*4+DOFPERGRID*i+1)=0;
806 *(B+(DOFPERGRID*numgrids+3)*4+DOFPERGRID*i+2)=(float).5*dh1dh7[0][i];
807 *(B+(DOFPERGRID*numgrids+3)*5+DOFPERGRID*i)=0;
808 *(B+(DOFPERGRID*numgrids+3)*5+DOFPERGRID*i+1)=(float).5*dh1dh7[2][i];
809 *(B+(DOFPERGRID*numgrids+3)*5+DOFPERGRID*i+2)=(float).5*dh1dh7[1][i];
810 *(B+(DOFPERGRID*numgrids+3)*6+DOFPERGRID*i)=0;
811 *(B+(DOFPERGRID*numgrids+3)*6+DOFPERGRID*i+1)=0;
812 *(B+(DOFPERGRID*numgrids+3)*6+DOFPERGRID*i+2)=0;
813 *(B+(DOFPERGRID*numgrids+3)*7+DOFPERGRID*i)=dh1dh7[0][i];
814 *(B+(DOFPERGRID*numgrids+3)*7+DOFPERGRID*i+1)=dh1dh7[1][i];
815 *(B+(DOFPERGRID*numgrids+3)*7+DOFPERGRID*i+2)=dh1dh7[2][i];
816 }
817
818 for (i=0;i<numgrids;i++){ //last column not for the bubble function
819 *(B+(DOFPERGRID*numgrids+3)*0+DOFPERGRID*i+3)=0;
820 *(B+(DOFPERGRID*numgrids+3)*1+DOFPERGRID*i+3)=0;
821 *(B+(DOFPERGRID*numgrids+3)*2+DOFPERGRID*i+3)=0;
822 *(B+(DOFPERGRID*numgrids+3)*3+DOFPERGRID*i+3)=0;
823 *(B+(DOFPERGRID*numgrids+3)*4+DOFPERGRID*i+3)=0;
824 *(B+(DOFPERGRID*numgrids+3)*5+DOFPERGRID*i+3)=0;
825 *(B+(DOFPERGRID*numgrids+3)*6+DOFPERGRID*i+3)=l1l6[i];
826 *(B+(DOFPERGRID*numgrids+3)*7+DOFPERGRID*i+3)=0;
827 }
828
829}
830/*}}}*/
Note: See TracBrowser for help on using the repository browser.