1 | /*!\file GEMB module from Alex Gardner.
|
---|
2 | * \brief: calculates SMB
|
---|
3 | */
|
---|
4 |
|
---|
5 | #include "./SurfaceMassBalancex.h"
|
---|
6 | #include "../../shared/shared.h"
|
---|
7 | #include "../../toolkits/toolkits.h"
|
---|
8 | #include "../modules.h"
|
---|
9 | #include "../../classes/Inputs/TransientInput.h"
|
---|
10 |
|
---|
11 | const double Pi = 3.141592653589793;
|
---|
12 | const double CtoK = 273.15; // Kelvin to Celcius conversion/ice melt. point T in K
|
---|
13 | const double dts = 86400.0; // Number of seconds in a day
|
---|
14 |
|
---|
15 | /* Tolerances have to be defined for if loops involving some specific values
|
---|
16 | like densitiy of ice or melting point temp because values are "rounded"
|
---|
17 | (e.g rho ice = 909.99... instead of 910.0) and we don't always go into the right loop */
|
---|
18 | const double Ttol = 1e-10;
|
---|
19 | const double Dtol = 1e-11;
|
---|
20 | const double Gdntol = 1e-10;
|
---|
21 | const double Wtol = 1e-13;
|
---|
22 | const double Ptol = 1e-6;
|
---|
23 |
|
---|
24 | const double CI = 2102.0; // heat capacity of snow/ice (J kg-1 k-1)
|
---|
25 | const double LF = 0.3345E6; // latent heat of fusion (J kg-1)
|
---|
26 | const double LV = 2.495E6; // latent heat of vaporization (J kg-1)
|
---|
27 | const double LS = 2.8295E6; // latent heat of sublimation (J kg-1)
|
---|
28 | const double SB = 5.67E-8; // Stefan-Boltzmann constant (W m-2 K-4)
|
---|
29 | const double CA = 1005.0; // heat capacity of air (J kg-1 K-1)
|
---|
30 | const double R = 8.314; // gas constant (J mol-1 K-1)
|
---|
31 |
|
---|
32 | const double Delflag=-99999;
|
---|
33 |
|
---|
34 | void Gembx(FemModel* femmodel){ /*{{{*/
|
---|
35 |
|
---|
36 | int count=0;
|
---|
37 | IssmDouble time,dt,finaltime;
|
---|
38 | IssmDouble timeclim=0.0;
|
---|
39 | IssmDouble t,smb_dt;
|
---|
40 | IssmDouble delta;
|
---|
41 | bool isclimatology=false;
|
---|
42 | bool linear_interp=true;
|
---|
43 |
|
---|
44 | femmodel->parameters->FindParam(&linear_interp,TimesteppingInterpForcingsEnum); /*is interpolation requested*/
|
---|
45 | femmodel->parameters->FindParam(&time,TimeEnum); /*transient core time at which we run the smb core*/
|
---|
46 | femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum); /*transient core time step*/
|
---|
47 | femmodel->parameters->FindParam(&finaltime,TimesteppingFinalTimeEnum);
|
---|
48 | femmodel->parameters->FindParam(&smb_dt,SmbDtEnum); /*time period for the smb solution, usually smaller than the glaciological dt*/
|
---|
49 | femmodel->parameters->FindParam(&isclimatology,SmbIsclimatologyEnum);
|
---|
50 |
|
---|
51 | //before starting loop, realize that the transient core runs this smb_core at time = time +deltaT.
|
---|
52 | //go back to time - deltaT:
|
---|
53 | time-=dt;
|
---|
54 |
|
---|
55 | IssmDouble timeinputs = time;
|
---|
56 |
|
---|
57 | /*Start loop: */
|
---|
58 | count=1;
|
---|
59 | for (t=time;t<=time+dt-smb_dt;t=t+smb_dt){
|
---|
60 |
|
---|
61 | for(Object* & object : femmodel->elements->objects){
|
---|
62 | Element* element=xDynamicCast<Element*>(object);
|
---|
63 |
|
---|
64 | timeclim=time;
|
---|
65 | if (isclimatology){
|
---|
66 | //If this is a climatology, we need to repeat the forcing after the final time
|
---|
67 | TransientInput* Ta_input_tr = element->inputs->GetTransientInput(SmbTaEnum); _assert_(Ta_input_tr);
|
---|
68 |
|
---|
69 | /*Get temperature climatology value*/
|
---|
70 | int offsetend = Ta_input_tr->GetTimeInputOffset(finaltime);
|
---|
71 | IssmDouble time0 = Ta_input_tr->GetTimeByOffset(-1);
|
---|
72 | IssmDouble timeend = Ta_input_tr->GetTimeByOffset(offsetend);
|
---|
73 | timeend = ceil(timeend/dt)*dt;
|
---|
74 | if (time>time0 & timeend>time0){
|
---|
75 | delta=(time-time0) - (timeend-time0)*(reCast<int,IssmDouble>((time-time0)/(timeend-time0)));
|
---|
76 | timeclim=time0+delta;
|
---|
77 | }
|
---|
78 | }
|
---|
79 | if (linear_interp) timeinputs = t-time+timeclim;
|
---|
80 | else timeinputs = t-time+timeclim+smb_dt/2;
|
---|
81 | element->SmbGemb(timeinputs,count);
|
---|
82 | }
|
---|
83 | count=count+1;
|
---|
84 | }
|
---|
85 |
|
---|
86 | } /*}}}*/
|
---|
87 | void GembgridInitialize(IssmDouble** pdz, int* psize, IssmDouble zTop, IssmDouble dzTop, IssmDouble zMax, IssmDouble zY){ /*{{{*/
|
---|
88 |
|
---|
89 | /* This file sets up the initial grid spacing and total grid depth. The
|
---|
90 | grid structure is set as constant grid length 'dzTop' for the top
|
---|
91 | 'zTop' meters of the model grid. Bellow 'zTop' the gid length increases
|
---|
92 | linearly with depth */
|
---|
93 |
|
---|
94 | /*intermediary:*/
|
---|
95 | IssmDouble dgpTop=0.0;
|
---|
96 | int gpTop=0;
|
---|
97 | int gpBottom=0;
|
---|
98 | int i=0;
|
---|
99 | IssmDouble gp0=0.0;
|
---|
100 | IssmDouble z0=0.0;
|
---|
101 | IssmDouble* dzT=NULL;
|
---|
102 | IssmDouble* dzB=NULL;
|
---|
103 |
|
---|
104 | /*output: */
|
---|
105 | IssmDouble* dz=NULL;
|
---|
106 |
|
---|
107 | //----------------------Calculate Grid Lengths------------------------------
|
---|
108 | //calculate number of top grid points
|
---|
109 | dgpTop = zTop/dzTop;
|
---|
110 |
|
---|
111 | //check to see if the top grid cell structure length (dzTop) goes evenly
|
---|
112 | //into specified top structure depth (zTop). Also make sure top grid cell
|
---|
113 | //structure length (dzTop) is greater than 5 cm
|
---|
114 | #ifndef _HAVE_AD_ //avoid the round operation check!
|
---|
115 | if (dgpTop != round(dgpTop)){
|
---|
116 | _error_("top grid cell structure length does not go evenly into specified top structure depth, adjust dzTop or zTop\n");
|
---|
117 | }
|
---|
118 | #endif
|
---|
119 | if(dzTop < 0.05){
|
---|
120 | _printf_("initial top grid cell length (dzTop) is < 0.05 m\n");
|
---|
121 | }
|
---|
122 | gpTop=reCast<int,IssmDouble>(dgpTop);
|
---|
123 |
|
---|
124 | //initialize top grid depth vector
|
---|
125 | dzT = xNew<IssmDouble>(gpTop);
|
---|
126 | for (i=0;i<gpTop;i++)dzT[i]=dzTop;
|
---|
127 |
|
---|
128 | //bottom grid cell depth = x*zY^(cells from to structure)
|
---|
129 | //figure out the number of grid points in the bottom vector (not known a priori)
|
---|
130 | gp0 = dzTop;
|
---|
131 | z0 = zTop;
|
---|
132 | gpBottom = 0;
|
---|
133 | while (zMax > z0){
|
---|
134 | gp0= gp0 * zY;
|
---|
135 | z0 = z0 + gp0;
|
---|
136 | gpBottom++;
|
---|
137 | }
|
---|
138 | //initialize bottom vectors
|
---|
139 | dzB = xNewZeroInit<IssmDouble>(gpBottom);
|
---|
140 | gp0 = dzTop;
|
---|
141 | z0 = zTop;
|
---|
142 | for(i=0;i<gpBottom;i++){
|
---|
143 | gp0=gp0*zY;
|
---|
144 | dzB[i]=gp0;
|
---|
145 | }
|
---|
146 |
|
---|
147 | //combine top and bottom dz vectors
|
---|
148 | dz = xNew<IssmDouble>(gpTop+gpBottom);
|
---|
149 | for(i=0;i<gpTop;i++){
|
---|
150 | dz[i]=dzT[i];
|
---|
151 | }
|
---|
152 | for(i=0;i<gpBottom;i++){
|
---|
153 | dz[gpTop+i]=dzB[i];
|
---|
154 | }
|
---|
155 |
|
---|
156 | /*Free resouces:*/
|
---|
157 | xDelete(dzT);
|
---|
158 | xDelete(dzB);
|
---|
159 |
|
---|
160 | //---------NEED TO IMPLEMENT A PROPER GRID STRECHING ALGORITHM------------
|
---|
161 |
|
---|
162 | /*assign ouput pointers: */
|
---|
163 | *pdz=dz;
|
---|
164 | *psize=gpTop+gpBottom;
|
---|
165 | } /*}}}*/
|
---|
166 | IssmDouble Marbouty(IssmDouble T, IssmDouble d, IssmDouble dT){ /*{{{*/
|
---|
167 |
|
---|
168 | // calculates grain growth according to Fig. 9 of Marbouty, 1980
|
---|
169 | // ------NO GRAIN GROWTH FOR d > 400 kg m-3 because H is set to zero------
|
---|
170 | // ---------------this is a major limitation of the model-------------------
|
---|
171 |
|
---|
172 | // initialize
|
---|
173 | IssmDouble F = 0.0, H=0.0, G=0.0;
|
---|
174 | const IssmDouble E = 0.09; //[mm d-1] model time growth constant E
|
---|
175 | // convert T from K to degC
|
---|
176 | T = T - CtoK;
|
---|
177 |
|
---|
178 | // temperature coefficient F
|
---|
179 | if(T> -6.0+Ttol) F = 0.7 + ((T/-6.0) * 0.3);
|
---|
180 | if(T<= -6.0+Ttol && T> -22.0+Ttol) F = 1.0 - ((T+6.0)/-16.0 * 0.8);
|
---|
181 | if(T<= -22.0+Ttol && T> -40.0+Ttol) F = 0.2 - ((T+22.0)/-18.0 * 0.2);
|
---|
182 |
|
---|
183 | // density coefficient F
|
---|
184 | if(d< 150.0-Dtol) H=1.0;
|
---|
185 |
|
---|
186 | if(d>= 150.0-Dtol && d <400.0-Dtol) H = 1.0 - ((d-150.0)/250.0);
|
---|
187 |
|
---|
188 | // temperature gradient coefficient G
|
---|
189 | if(dT >= 0.16-Ttol && dT < 0.25-Ttol) G = ((dT - 0.16)/0.09) * 0.1;
|
---|
190 | if(dT >= 0.25-Ttol && dT < 0.4-Ttol) G = 0.1 + (((dT - 0.25)/0.15) * 0.57);
|
---|
191 | if(dT >= 0.4-Ttol && dT < 0.5-Ttol) G = 0.67 + (((dT - 0.4)/0.1) * 0.23);
|
---|
192 | if(dT >= 0.5-Ttol && dT < 0.7-Ttol) G = 0.9 + (((dT - 0.5)/0.2) * 0.1);
|
---|
193 | if(dT >= 0.7-Ttol) G = 1.0;
|
---|
194 |
|
---|
195 | // grouped coefficient Q
|
---|
196 | return F*H*G*E;
|
---|
197 |
|
---|
198 | } /*}}}*/
|
---|
199 | void grainGrowth(IssmDouble** pre, IssmDouble** pgdn, IssmDouble** pgsp, IssmDouble* T,IssmDouble* dz,IssmDouble* d, IssmDouble* W,IssmDouble smb_dt,int m,int aIdx,int sid){ /*{{{*/
|
---|
200 |
|
---|
201 | /*Created by: Alex S. Gardner, University of Alberta
|
---|
202 |
|
---|
203 | *Description*: models the effective snow grain size
|
---|
204 |
|
---|
205 | *Reference:*
|
---|
206 | DENDRITIC SNOW METAMORPHISM:
|
---|
207 | Brun, E., P. David, M. Sudul, and G. Brunot, 1992: A numerical model to
|
---|
208 | simulate snow-cover stratigraphy for operational avalanche forecasting.
|
---|
209 | Journal of Glaciology, 38, 13-22.
|
---|
210 |
|
---|
211 | NONDENDRITIC SNOW METAMORPHISM:
|
---|
212 | Dry snow metamorphism:
|
---|
213 | Marbouty, D., 1980: An experimental study of temperature-gradient
|
---|
214 | metamorphism. Journal of Glaciology, 26, 303-312.
|
---|
215 |
|
---|
216 | WET SNOW METAMORPHISM:
|
---|
217 | Brun, E., 1989: Investigation on wet-snow metamorphism in respect of
|
---|
218 | liquid-water content. Annals of Glaciology, 13, 22-26.
|
---|
219 |
|
---|
220 | INPUTS
|
---|
221 | * T: grid cell temperature [k]
|
---|
222 | * dz: grid cell depth [m]
|
---|
223 | * d: grid cell density [kg m-3]
|
---|
224 | * W: water content [kg/m^2]
|
---|
225 | * re: effective grain size [mm]
|
---|
226 | * gdn: grain dentricity
|
---|
227 | * gsp: grain sphericity
|
---|
228 | * dt: time step of input data [s]
|
---|
229 |
|
---|
230 | OUTPUTS
|
---|
231 | * re: effective grain size [mm]
|
---|
232 | * gdn: grain dentricity
|
---|
233 | * gsp: grain sphericity*/
|
---|
234 |
|
---|
235 | /*intermediary: */
|
---|
236 | IssmDouble dt=0.0;
|
---|
237 | IssmDouble* gsz=NULL;
|
---|
238 | IssmDouble* dT=NULL;
|
---|
239 | IssmDouble* zGPC=NULL;
|
---|
240 | IssmDouble* lwc=NULL;
|
---|
241 | IssmDouble Q=0.0;
|
---|
242 |
|
---|
243 | /*output: */
|
---|
244 | IssmDouble* re=NULL;
|
---|
245 | IssmDouble* gdn=NULL;
|
---|
246 | IssmDouble* gsp=NULL;
|
---|
247 |
|
---|
248 | if(VerboseSmb() && sid==0 && IssmComm::GetRank()==0)_printf0_(" grain growth module\n");
|
---|
249 |
|
---|
250 | /*Recover pointers: */
|
---|
251 | re=*pre;
|
---|
252 | gdn=*pgdn;
|
---|
253 | gsp=*pgsp;
|
---|
254 |
|
---|
255 | /*only when aIdx = 1 or 2 do we run grainGrowth: */
|
---|
256 | if(aIdx!=1 && aIdx!=2){
|
---|
257 | /*come out as we came in: */
|
---|
258 | return;
|
---|
259 | }
|
---|
260 |
|
---|
261 | /*Figure out grain size from effective grain radius: */
|
---|
262 | gsz=xNew<IssmDouble>(m); for(int i=0;i<m;i++)gsz[i]=re[i]*2.0;
|
---|
263 |
|
---|
264 | /*Convert dt from seconds to day: */
|
---|
265 | dt=smb_dt/dts;
|
---|
266 |
|
---|
267 | /*Determine liquid-water content in percentage: */
|
---|
268 | lwc=xNew<IssmDouble>(m); for(int i=0;i<m;i++)lwc[i]= W[i] / (d[i]*dz[i])*100.0;
|
---|
269 |
|
---|
270 | //set maximum water content by mass to 9 percent (Brun, 1980)
|
---|
271 | for(int i=0;i<m;i++)if(lwc[i]>9.0+Wtol) lwc[i]=9.0;
|
---|
272 |
|
---|
273 | /* Calculate temperature gradiant across grid cells
|
---|
274 | * Returns the avereage gradient across the upper and lower grid cell */
|
---|
275 |
|
---|
276 | //initialize
|
---|
277 | dT=xNewZeroInit<IssmDouble>(m);
|
---|
278 |
|
---|
279 | //depth of grid point center from surface
|
---|
280 | zGPC=xNewZeroInit<IssmDouble>(m);
|
---|
281 | for(int i=0;i<m;i++){
|
---|
282 | for (int j=0;j<=i;j++) zGPC[i]+=dz[j];
|
---|
283 | zGPC[i]-=(dz[i]/2.0);
|
---|
284 | }
|
---|
285 |
|
---|
286 | // Take forward differences on left and right edges
|
---|
287 | if(m>1){
|
---|
288 | dT[0] = (T[1] - T[0])/(zGPC[1]-zGPC[0]);
|
---|
289 | dT[m-1] = (T[m-1] - T[m-2])/(zGPC[m-1]-zGPC[m-2]);
|
---|
290 | }
|
---|
291 |
|
---|
292 | //Take centered differences on interior points
|
---|
293 | for(int i=1;i<m-1;i++) dT[i] = (T[i+1]-T[i-1])/(zGPC[i+1]-zGPC[i-1]);
|
---|
294 |
|
---|
295 | // take absolute value of temperature gradient
|
---|
296 | for(int i=0;i<m;i++)dT[i]=fabs(dT[i]);
|
---|
297 |
|
---|
298 | /*Snow metamorphism. Depends on value of snow dendricity and wetness of the snowpack: */
|
---|
299 | for(int i=0;i<m;i++){
|
---|
300 | if (gdn[i]>0.0+Gdntol){
|
---|
301 |
|
---|
302 | if(W[i]<=0.0+Wtol){
|
---|
303 | //_printf_("Dendritic dry snow metamorphism\n");
|
---|
304 | //index for dentricity > 0 and T gradients < 5 degC m-1 and >= 5 degC m-1
|
---|
305 | if(dT[i]<=5.0+Ttol){
|
---|
306 | //determine coefficients
|
---|
307 | IssmDouble A = - 2e8 * exp(-6e3 / T[i]) * dt;
|
---|
308 | IssmDouble B = 1e9 * exp(-6e3 / T[i]) * dt;
|
---|
309 | //new dentricity and sphericity for dT < 5 degC m-1
|
---|
310 | gdn[i] += A;
|
---|
311 | gsp[i] += B;
|
---|
312 | }
|
---|
313 | else{
|
---|
314 | // new dendricity and sphericity for dT >= 5 degC m-1
|
---|
315 |
|
---|
316 | //determine coeff0icients
|
---|
317 | IssmDouble C = (-2e8 * exp(-6e3 / T[i]) * dt) * pow(dT[i],.4);
|
---|
318 | gdn[i] +=C;
|
---|
319 | gsp[i] +=C;
|
---|
320 | }
|
---|
321 | }
|
---|
322 | else{
|
---|
323 | // wet snow metamorphism
|
---|
324 | //_printf_("Dendritic wet snow metamorphism\n");
|
---|
325 |
|
---|
326 | //determine coefficient
|
---|
327 | IssmDouble D = (1.0/16.0) * pow(lwc[i],3.0) * dt;
|
---|
328 |
|
---|
329 | // new dendricity for wet snow
|
---|
330 | gdn[i] -= D;
|
---|
331 | // new sphericity for wet snow
|
---|
332 | gsp[i] += D;
|
---|
333 | }
|
---|
334 | // dendricity and sphericity can not be > 1 or < 0
|
---|
335 | if (gdn[i]<0.0+Gdntol)gdn[i]=0.0;
|
---|
336 | if (gsp[i]<0.0+Gdntol)gsp[i]=0.0;
|
---|
337 | if (gdn[i]>1.0-Gdntol)gdn[i]=1.0;
|
---|
338 | if (gsp[i]>1.0-Gdntol)gsp[i]=1.0;
|
---|
339 |
|
---|
340 | // determine new grain size (mm)
|
---|
341 | gsz[i] = 0.1 + (1.0-gdn[i])*0.25 + (0.5-gsp[i])*0.1;
|
---|
342 |
|
---|
343 | }
|
---|
344 | else{
|
---|
345 |
|
---|
346 | //When the state of "faceted crystals" (gsp==0) is fully reached,
|
---|
347 | // snow evolves towards depth hoar if the gradient is
|
---|
348 | // higher than 15 degC m-1 (Brun et al., 1992)
|
---|
349 | //When wet-snow grains (class 6) are submitted to a
|
---|
350 | // temperature gradient higher than 5 degC m-1, their sphericity
|
---|
351 | // decreases according to Equations (4). When sphericity
|
---|
352 | // reaches 0, their size increases according to the functions
|
---|
353 | // determined by Marbouty. (Brun et al., 1992)
|
---|
354 | if(gsp[i]>0.0+Gdntol && gsp[i]<1.0-Gdntol && (dT[i]>15.0+Ttol || (dT[i]>5.0+Ttol && W[i]>0.0+Wtol)) ){
|
---|
355 | //determine coefficients
|
---|
356 | IssmDouble C = (-2e8 * exp(-6e3 / T[i]) * dt) * pow(dT[i],.4);
|
---|
357 | gsp[i] +=C;
|
---|
358 | if (gsp[i]<0.0+Gdntol)gsp[i]=0.0;
|
---|
359 | //determine new grain size (mm)
|
---|
360 | gsz[i] = 0.35 + (0.5-gsp[i])*0.1;
|
---|
361 | }
|
---|
362 | /*Dry snow metamorphism (Marbouty, 1980) grouped model coefficents
|
---|
363 | *from Marbouty, 1980: Figure 9*/
|
---|
364 | else if(W[i]<=0.0+Wtol || (gsp[i]<=0.0+Gdntol && dT[i]>15.0+Ttol) || (gsp[i]<=0.0+Gdntol && dT[i]>5.0+Ttol && W[i]>0.0+Wtol)){
|
---|
365 | //_printf_("Nondendritic snow metamorphism\n");
|
---|
366 | Q = Marbouty(T[i],d[i],dT[i]);
|
---|
367 |
|
---|
368 | // calculate grain growth
|
---|
369 | gsz[i] += (Q*dt);
|
---|
370 | }
|
---|
371 | //Wet snow metamorphism (Brun, 1989)
|
---|
372 | else{
|
---|
373 | //_printf_("Nondendritic wet snow metamorphism\n");
|
---|
374 | //wet rate of change coefficient
|
---|
375 | IssmDouble E = (1.28e-8 + 4.22e-10 * pow(lwc[i],3.0))* (dt *dts); // [mm^3 s^-1]
|
---|
376 |
|
---|
377 | // calculate change in grain volume and convert to grain size
|
---|
378 | gsz[i] = 2.0 * pow(3.0/(Pi * 4.0)*((4.0/ 3.0)*Pi*pow(gsz[i]/2.0,3.0) + E),1.0/3.0);
|
---|
379 | }
|
---|
380 |
|
---|
381 | // grains with sphericity == 1 can not have grain sizes > 2 mm (Brun, 1992)
|
---|
382 | if (fabs(gsp[i]-1.0)<Wtol && gsz[i]>2.0-Wtol) gsz[i]=2.0;
|
---|
383 |
|
---|
384 | // grains with sphericity == 0 can not have grain sizes > 5 mm (Brun, 1992)
|
---|
385 | if (fabs(gsp[i]-1.0)>=Wtol && gsz[i]>5.0-Wtol) gsz[i]=5.0;
|
---|
386 | }
|
---|
387 |
|
---|
388 | //convert grain size back to effective grain radius:
|
---|
389 | re[i]=gsz[i]/2.0;
|
---|
390 | }
|
---|
391 |
|
---|
392 | /*Free resources:*/
|
---|
393 | xDelete<IssmDouble>(gsz);
|
---|
394 | xDelete<IssmDouble>(dT);
|
---|
395 | xDelete<IssmDouble>(zGPC);
|
---|
396 | xDelete<IssmDouble>(lwc);
|
---|
397 |
|
---|
398 | /*Assign output pointers:*/
|
---|
399 | *pre=re;
|
---|
400 | *pgdn=gdn;
|
---|
401 | *pgsp=gsp;
|
---|
402 |
|
---|
403 | } /*}}}*/
|
---|
404 | void albedo(IssmDouble** pa, int aIdx, IssmDouble* re, IssmDouble* dz, IssmDouble* d, IssmDouble cldFrac, IssmDouble aIce, IssmDouble aSnow, IssmDouble aValue, IssmDouble adThresh, IssmDouble* TK, IssmDouble* W, IssmDouble P, IssmDouble EC, IssmDouble Msurf, IssmDouble t0wet, IssmDouble t0dry, IssmDouble K, IssmDouble dt, IssmDouble dIce, int m,int sid) { /*{{{*/
|
---|
405 |
|
---|
406 | //// Calculates Snow, firn and ice albedo as a function of:
|
---|
407 | // 0 : direct input from aValue parameter
|
---|
408 | // 1 : effective grain radius (Gardner & Sharp, 2009)
|
---|
409 | // 2 : effective grain radius (Brun et al., 1992, Lefebre et al., 2003)
|
---|
410 | // 3 : density and cloud amount (Greuell & Konzelmann, 1994)
|
---|
411 | // 4 : exponential time decay & wetness (Bougamont & Bamber, 2005)
|
---|
412 |
|
---|
413 | //// Inputs
|
---|
414 | // aIdx = albedo method to use
|
---|
415 |
|
---|
416 | // Method 0
|
---|
417 | // aValue = direct input value for albedo, override all changes to albedo
|
---|
418 |
|
---|
419 | // adThresh
|
---|
420 | // Apply below method to all areas with densities below this value,
|
---|
421 | // or else apply direct input value, allowing albedo to be altered.
|
---|
422 | // Default value is rho water (1023 kg m-3).
|
---|
423 |
|
---|
424 | // Methods 1 & 2
|
---|
425 | // re = surface effective grain radius [mm]
|
---|
426 |
|
---|
427 | // Methods 3
|
---|
428 | // d = snow surface density [kg m-3]
|
---|
429 | // n = cloud amount
|
---|
430 | // aIce = albedo of ice
|
---|
431 | // aSnow = albedo of fresh snow
|
---|
432 |
|
---|
433 | // Methods 4
|
---|
434 | // aIce = albedo of ice
|
---|
435 | // aSnow = albedo of fresh snow
|
---|
436 | // a = grid cell albedo from prevous time step;
|
---|
437 | // T = grid cell temperature [k]
|
---|
438 | // W = pore water [kg]
|
---|
439 | // P = precipitation [mm w.e.] or [kg m-3]
|
---|
440 | // EC = surface evaporation (-) condensation (+) [kg m-2]
|
---|
441 | // t0wet = time scale for wet snow (15-21.9) [d]
|
---|
442 | // t0dry = warm snow timescale [15] [d]
|
---|
443 | // K = time scale temperature coef. (7) [d]
|
---|
444 | // dt = time step of input data [s]
|
---|
445 |
|
---|
446 | //// Output
|
---|
447 | // a = grid cell albedo
|
---|
448 |
|
---|
449 | //// Usage
|
---|
450 | // Method 1
|
---|
451 | // a = albedo(1, 0.1);
|
---|
452 |
|
---|
453 | // Method 4
|
---|
454 | // a = albedo(4, [], [], [], 0.48, 0.85, [0.8 0.5 ... 0.48], ...
|
---|
455 | // [273 272.5 ... 265], [0 0.001 ... 0], 0, 0.01, 15, 15, 7, 3600)
|
---|
456 |
|
---|
457 | /*output: */
|
---|
458 | IssmDouble* a=NULL;
|
---|
459 |
|
---|
460 | if(VerboseSmb() && sid==0 && IssmComm::GetRank()==0)_printf0_(" albedo module\n");
|
---|
461 |
|
---|
462 | /*Recover pointers: */
|
---|
463 | a=*pa;
|
---|
464 |
|
---|
465 | //some constants:
|
---|
466 | const IssmDouble dSnow = 300; // density of fresh snow [kg m-3]
|
---|
467 | const IssmDouble dPHC = 830; //Pore closeoff density
|
---|
468 | const IssmDouble ai_max = 0.58; //maximum ice albedo, from Lefebre,2003
|
---|
469 | const IssmDouble ai_min = aIce; //minimum ice albedo
|
---|
470 | const IssmDouble as_min = 0.65; //minimum snow albedo, from Alexander 2014
|
---|
471 |
|
---|
472 | if(aIdx==0 || (adThresh - d[0])<Dtol){
|
---|
473 | a[0] = aValue;
|
---|
474 | }
|
---|
475 | else{
|
---|
476 | if(aIdx==1){
|
---|
477 | //function of effective grain radius
|
---|
478 |
|
---|
479 | //convert effective radius to specific surface area [cm2 g-1]
|
---|
480 | IssmDouble S = 3.0 / (0.091 * re[0]);
|
---|
481 |
|
---|
482 | //determine broadband albedo
|
---|
483 | a[0]= 1.48 - pow(S,-0.07);
|
---|
484 | }
|
---|
485 | else if(aIdx==2){
|
---|
486 |
|
---|
487 | // Spectral fractions (Lefebre et al., 2003)
|
---|
488 | // [0.3-0.8um 0.8-1.5um 1.5-2.8um]
|
---|
489 |
|
---|
490 | IssmDouble sF[3] = {0.606, 0.301, 0.093};
|
---|
491 |
|
---|
492 | // convert effective radius to grain size in meters
|
---|
493 | IssmDouble gsz = (re[0] * 2.0) / 1000.0;
|
---|
494 |
|
---|
495 | // spectral range:
|
---|
496 | // 0.3 - 0.8um
|
---|
497 | IssmDouble a0 = min(0.98, 1 - 1.58 *pow(gsz,0.5));
|
---|
498 | // 0.8 - 1.5um
|
---|
499 | IssmDouble a1 = max(0., 0.95 - 15.4 *pow(gsz,0.5));
|
---|
500 | // 1.5 - 2.8um
|
---|
501 | IssmDouble a2 = max(0.127, 0.88 + 346.3*gsz - 32.31*pow(gsz,0.5));
|
---|
502 |
|
---|
503 | // broadband surface albedo
|
---|
504 | a[0] = sF[0]*a0 + sF[1]*a1 + sF[2]*a2;
|
---|
505 |
|
---|
506 | }
|
---|
507 | else if(aIdx==3){
|
---|
508 |
|
---|
509 | // a as a function of density
|
---|
510 |
|
---|
511 | // calculate albedo
|
---|
512 | a[0] = aIce + (d[0] - dIce)*(aSnow - aIce) / (dSnow - dIce) + (0.05 * (cldFrac - 0.5));
|
---|
513 | }
|
---|
514 | else if(aIdx==4){
|
---|
515 |
|
---|
516 | // exponential time decay & wetness
|
---|
517 |
|
---|
518 | // change in albedo with time:
|
---|
519 | // (d_a) = (a - a_old)/(t0)
|
---|
520 | // where: t0 = timescale for albedo decay
|
---|
521 |
|
---|
522 | dt = dt / dts; // convert from [s] to [d]
|
---|
523 |
|
---|
524 | // initialize variables
|
---|
525 | IssmDouble* t0=xNew<IssmDouble>(m);
|
---|
526 | IssmDouble* T=xNew<IssmDouble>(m);
|
---|
527 | IssmDouble* t0warm=xNew<IssmDouble>(m);
|
---|
528 | IssmDouble* d_a=xNew<IssmDouble>(m);
|
---|
529 |
|
---|
530 | // specify constants
|
---|
531 | // a_wet = 0.15; // water albedo (0.15)
|
---|
532 | // a_new = aSnow // new snow albedo (0.64 - 0.89)
|
---|
533 | // a_old = aIce; // old snow/ice albedo (0.27-0.53)
|
---|
534 | // t0_wet = t0wet; // time scale for wet snow (15-21.9) [d]
|
---|
535 | // t0_dry = t0dry; // warm snow timescale [15] [d]
|
---|
536 | // K = 7 // time scale temperature coef. (7) [d]
|
---|
537 | // W0 = 300; // 200 - 600 [mm]
|
---|
538 | const IssmDouble z_snow = 15.0; // 16 - 32 [mm]
|
---|
539 |
|
---|
540 | // determine timescale for albedo decay
|
---|
541 | for(int i=0;i<m;i++)if(W[i]>0.0+Wtol)t0[i]=t0wet; // wet snow timescale
|
---|
542 | for(int i=0;i<m;i++)T[i]=TK[i] - CtoK; // change T from K to degC
|
---|
543 | for(int i=0;i<m;i++) t0warm[i]= fabs(T[i]) * K + t0dry; //// 'warm' snow timescale
|
---|
544 | for(int i=0;i<m;i++)if(fabs(W[i])<Wtol && T[i]>=-10.0-Ttol)t0[i]= t0warm[i];
|
---|
545 | for(int i=0;i<m;i++)if(T[i]<-10.0-Ttol) t0[i] = 10.0 * K + t0dry; // 'cold' snow timescale
|
---|
546 |
|
---|
547 | // calculate new albedo
|
---|
548 | for(int i=0;i<m;i++)d_a[i] = (a[i] - aIce) / t0[i] * dt; // change in albedo
|
---|
549 | for(int i=0;i<m;i++)a[i] -= d_a[i]; // new albedo
|
---|
550 |
|
---|
551 | // modification of albedo due to thin layer of snow or solid
|
---|
552 | // condensation (deposition) at the surface
|
---|
553 |
|
---|
554 | // check if condensation occurs & if it is deposited in solid phase
|
---|
555 | if ( EC > 0.0 + Dtol && T[0] < 0.0-Ttol) P = P + (EC/dSnow) * 1000.0; // add cond to precip [mm]
|
---|
556 |
|
---|
557 | a[0] = aSnow - (aSnow - a[0]) * exp(-P/z_snow);
|
---|
558 |
|
---|
559 | //----------THIS NEEDS TO BE IMPLEMENTED AT A LATER DATE------------
|
---|
560 | // modification of albedo due to thin layer of water on the surface
|
---|
561 | // a_surf = a_wet - (a_wet - a_surf) * exp(-W_surf/W0);
|
---|
562 |
|
---|
563 | /*Free resources:*/
|
---|
564 | xDelete<IssmDouble>(t0);
|
---|
565 | xDelete<IssmDouble>(T);
|
---|
566 | xDelete<IssmDouble>(t0warm);
|
---|
567 | xDelete<IssmDouble>(d_a);
|
---|
568 |
|
---|
569 | }
|
---|
570 | else _error_("albedo method switch should range from 0 to 4!");
|
---|
571 |
|
---|
572 | //If we do not have fresh snow
|
---|
573 | if (aIdx<3 && aIdx>0 && (adThresh - d[0])>=Dtol){
|
---|
574 | // In a layer < 10cm, account for mix of ice and snow,
|
---|
575 | // after P. Alexander et al., 2014
|
---|
576 | IssmDouble depthsnow=0.0;
|
---|
577 | IssmDouble aice=0.0;
|
---|
578 | int lice=0;
|
---|
579 | for(int l=0;(l<m & d[l]<dPHC-Dtol);l++){
|
---|
580 | depthsnow=depthsnow+dz[l];
|
---|
581 | lice=l+1;
|
---|
582 | }
|
---|
583 | if (depthsnow<=0.1+Dtol & lice<m & d[lice]>=dPHC-Dtol){
|
---|
584 | aice = ai_max + (as_min - ai_max)*(d[lice]-dIce)/(dPHC-dIce);
|
---|
585 | a[0]= aice + max(a[0]-aice,0.0)*(depthsnow/0.1);
|
---|
586 | }
|
---|
587 |
|
---|
588 | if (d[0]>=dPHC-Dtol){
|
---|
589 | if (d[0]<dIce-Dtol){ //For continuity of albedo in firn i.e. P. Alexander et al., 2014
|
---|
590 |
|
---|
591 | //ai=ai_max + (as_min - ai_max)*(dI-dIce)/(dPHC-dIce);
|
---|
592 | //dPHC is pore close off (830 kg m^-3)
|
---|
593 | //dI is density of the upper firn layer
|
---|
594 |
|
---|
595 | a[0] = ai_max + (as_min - ai_max)*(d[0]-dIce)/(dPHC-dIce);
|
---|
596 |
|
---|
597 | }
|
---|
598 | else{ //surface layer is density of ice
|
---|
599 |
|
---|
600 | //When density is > dIce (typically 910 kg m^-3, 920 is used by Alexander in MAR),
|
---|
601 | //ai=ai_min + (ai_max - ai_min)*e^(-1*(Msw(t)/K))
|
---|
602 | //K is a scale factor (set to 200 kg m^-2)
|
---|
603 | //Msw(t) is the time-dependent accumulated amount of excessive surface meltwater
|
---|
604 | // before run-off in kg m^-2 (melt per GEMB timestep, i.e. 3 hourly)
|
---|
605 | IssmDouble M = Msurf+W[0];
|
---|
606 | a[0]=max(ai_min + (ai_max - ai_min)*exp(-1*(M/200)), ai_min);
|
---|
607 |
|
---|
608 | }
|
---|
609 | }
|
---|
610 | }
|
---|
611 | }
|
---|
612 |
|
---|
613 | // Check for erroneous values
|
---|
614 | if (a[0] > 1) _printf_("albedo > 1.0\n");
|
---|
615 | else if (a[0] < 0) _printf_("albedo is negative\n");
|
---|
616 | else if (xIsNan(a[0])) _error_("albedo == NAN\n");
|
---|
617 |
|
---|
618 | /*Assign output pointers:*/
|
---|
619 | *pa=a;
|
---|
620 |
|
---|
621 | } /*}}}*/
|
---|
622 | void thermo(IssmDouble* pEC, IssmDouble** pT, IssmDouble* pulwrf, IssmDouble* dz, IssmDouble* d, IssmDouble* swf, IssmDouble dlwrf, IssmDouble Ta, IssmDouble V, IssmDouble eAir, IssmDouble pAir, IssmDouble teValue, IssmDouble Ws, IssmDouble dt0, int m, IssmDouble Vz, IssmDouble Tz, IssmDouble thermo_scaling, IssmDouble dIce, int sid, bool isconstrainsurfaceT) { /*{{{*/
|
---|
623 |
|
---|
624 | /* ENGLACIAL THERMODYNAMICS*/
|
---|
625 |
|
---|
626 | /* Description:
|
---|
627 | computes new temperature profile accounting for energy absorption and
|
---|
628 | thermal diffusion.*/
|
---|
629 |
|
---|
630 | // INPUTS
|
---|
631 | // T: grid cell temperature [k]
|
---|
632 | // dz: grid cell depth [m]
|
---|
633 | // d: grid cell density [kg m-3]
|
---|
634 | // swf: shortwave radiation fluxes [W m-2]
|
---|
635 | // dlwrf: downward longwave radiation fluxes [W m-2]
|
---|
636 | // Ta: 2 m air temperature
|
---|
637 | // V: wind velocity [m s-1]
|
---|
638 | // eAir: screen level vapor pressure [Pa]
|
---|
639 | // Ws: surface water content [kg]
|
---|
640 | // dt0: time step of input data [s]
|
---|
641 | // elev: surface elevation [m a.s.l.]
|
---|
642 | // Vz: air temperature height above surface [m]
|
---|
643 | // Tz: wind height above surface [m]
|
---|
644 | // thermo_scaling: scaling factor to multiply the thermal diffusion timestep (delta t)
|
---|
645 |
|
---|
646 | // OUTPUTS
|
---|
647 | // T: grid cell temperature [k]
|
---|
648 | // EC: evaporation/condensation [kg]
|
---|
649 | // ulwrf: upward longwave radiation flux [W m-2]
|
---|
650 |
|
---|
651 | /*intermediary: */
|
---|
652 | IssmDouble* K = NULL;
|
---|
653 | IssmDouble* KU = NULL;
|
---|
654 | IssmDouble* KD = NULL;
|
---|
655 | IssmDouble* KP = NULL;
|
---|
656 | IssmDouble* Au = NULL;
|
---|
657 | IssmDouble* Ad = NULL;
|
---|
658 | IssmDouble* Ap = NULL;
|
---|
659 | IssmDouble* Nu = NULL;
|
---|
660 | IssmDouble* Nd = NULL;
|
---|
661 | IssmDouble* Np = NULL;
|
---|
662 | IssmDouble* dzU = NULL;
|
---|
663 | IssmDouble* dzD = NULL;
|
---|
664 | IssmDouble* sw = NULL;
|
---|
665 | IssmDouble* dT_sw = NULL;
|
---|
666 | IssmDouble* T0 = NULL;
|
---|
667 | IssmDouble* Tu = NULL;
|
---|
668 | IssmDouble* Td = NULL;
|
---|
669 |
|
---|
670 | IssmDouble z0=0.0;
|
---|
671 | IssmDouble dt=0.0;
|
---|
672 | IssmDouble max_fdt=0.0;
|
---|
673 | IssmDouble Ts=0.0;
|
---|
674 | IssmDouble L=0.0;
|
---|
675 | IssmDouble eS=0.0;
|
---|
676 | IssmDouble Ri=0.0;
|
---|
677 | IssmDouble coefM=0.0;
|
---|
678 | IssmDouble coefH=0.0;
|
---|
679 | IssmDouble An=0.0;
|
---|
680 | IssmDouble C=0.0;
|
---|
681 | IssmDouble shf=0.0;
|
---|
682 | IssmDouble ds=0.0;
|
---|
683 | IssmDouble dAir=0.0;
|
---|
684 | IssmDouble TCs=0.0;
|
---|
685 | IssmDouble lhf=0.0;
|
---|
686 | IssmDouble EC_day=0.0;
|
---|
687 | IssmDouble dT_turb=0.0;
|
---|
688 | IssmDouble turb=0.0;
|
---|
689 | IssmDouble ulw=0.0;
|
---|
690 | IssmDouble dT_ulw=0.0;
|
---|
691 | IssmDouble dlw=0.0;
|
---|
692 | IssmDouble dT_dlw=0.0;
|
---|
693 |
|
---|
694 | /*outputs:*/
|
---|
695 | IssmDouble EC=0.0;
|
---|
696 | IssmDouble* T=*pT;
|
---|
697 | IssmDouble ulwrf=0.0;
|
---|
698 |
|
---|
699 | if(VerboseSmb() && sid==0 && IssmComm::GetRank()==0)_printf0_(" thermal module\n");
|
---|
700 |
|
---|
701 | ds = d[0]; // density of top grid cell
|
---|
702 |
|
---|
703 | // calculated air density [kg/m3]
|
---|
704 | dAir = 0.029 * pAir /(R * Ta);
|
---|
705 |
|
---|
706 | // thermal capacity of top grid cell [J/k]
|
---|
707 | TCs = d[0]*dz[0]*CI;
|
---|
708 |
|
---|
709 | //initialize Evaporation - Condenstation
|
---|
710 | EC = 0.0;
|
---|
711 |
|
---|
712 | // check if all SW applied to surface or distributed throught subsurface
|
---|
713 | // swIdx = length(swf) > 1
|
---|
714 |
|
---|
715 | // SURFACE ROUGHNESS (Bougamont, 2006)
|
---|
716 | // wind/temperature surface roughness height [m]
|
---|
717 | if (ds < dIce-Dtol && fabs(Ws) < Wtol) z0 = 0.00012; // 0.12 mm for dry snow
|
---|
718 | else if (ds >= dIce-Dtol) z0 = 0.0032; // 3.2 mm for ice
|
---|
719 | else z0 = 0.0013; // 1.3 mm for wet snow
|
---|
720 |
|
---|
721 | // if V = 0 goes to infinity therfore if V = 0 change
|
---|
722 | if(V<0.01-Dtol)V=0.01;
|
---|
723 |
|
---|
724 | // Bulk-transfer coefficient for turbulent fluxes
|
---|
725 | //An = pow(0.4,2) / pow(log(Tz/z0),2); // Bulk-transfer coefficient
|
---|
726 | An = pow(0.4,2) / (log(Tz/z0)*log(Vz/z0)); // Bulk-transfer coefficient
|
---|
727 | C = An * dAir * V; // shf & lhf common coefficient
|
---|
728 |
|
---|
729 | // THERMAL CONDUCTIVITY (Sturm, 1997: J. Glaciology)
|
---|
730 | // calculate new K profile [W m-1 K-1]
|
---|
731 |
|
---|
732 | // initialize conductivity
|
---|
733 | K= xNewZeroInit<IssmDouble>(m);
|
---|
734 |
|
---|
735 | // for snow and firn (density < 910 kg m-3) (Sturn et al, 1997)
|
---|
736 | for(int i=0;i<m;i++) if(d[i]<dIce-Dtol) K[i] = 0.138 - 1.01E-3 * d[i] + 3.233E-6 * (pow(d[i],2));
|
---|
737 |
|
---|
738 | // for ice (density >= 910 kg m-3)
|
---|
739 | for(int i=0;i<m;i++) if(d[i]>=dIce-Dtol) K[i] = 9.828 * exp(-5.7E-3*T[i]);
|
---|
740 |
|
---|
741 | // THERMAL DIFFUSION COEFFICIENTS
|
---|
742 |
|
---|
743 | // A discretization scheme which truncates the Taylor-Series expansion
|
---|
744 | // after the 3rd term is used. See Patankar 1980, Ch. 3&4
|
---|
745 |
|
---|
746 | // discretized heat equation:
|
---|
747 |
|
---|
748 | // Tp = (Au*Tuo+ Ad*Tdo+ (Ap-Au-Ad)Tpo+ S) / Ap
|
---|
749 |
|
---|
750 | // where neighbor coefficients Au, Ap, & Ad are
|
---|
751 |
|
---|
752 | // Au = [dz_u/2KP + dz_p/2KE]^-1
|
---|
753 | // Ad = [dz_d/2KP + dz_d/2KD]^-1
|
---|
754 | // Ap = d*CI*dz/Dt
|
---|
755 |
|
---|
756 | // and u & d represent grid points up and down from the center grid point
|
---|
757 | // point p and o identifies previous time step values. S is a source term.
|
---|
758 |
|
---|
759 | // u, d, and p conductivities
|
---|
760 | KU = xNew<IssmDouble>(m);
|
---|
761 | KD = xNew<IssmDouble>(m);
|
---|
762 | KP = xNew<IssmDouble>(m);
|
---|
763 |
|
---|
764 | KU[0] = Delflag;
|
---|
765 | KD[m-1] = Delflag;
|
---|
766 | for(int i=1;i<m;i++) KU[i]= K[i-1];
|
---|
767 | for(int i=0;i<m-1;i++) KD[i] = K[i+1];
|
---|
768 | for(int i=0;i<m;i++) KP[i] = K[i];
|
---|
769 |
|
---|
770 | // determine u, d & p cell widths
|
---|
771 | dzU = xNew<IssmDouble>(m);
|
---|
772 | dzD = xNew<IssmDouble>(m);
|
---|
773 | dzU[0]=Delflag;
|
---|
774 | dzD[m-1]=Delflag;
|
---|
775 |
|
---|
776 | for(int i=1;i<m;i++) dzU[i]= dz[i-1];
|
---|
777 | for(int i=0;i<m-1;i++) dzD[i] = dz[i+1];
|
---|
778 |
|
---|
779 | // determine minimum acceptable delta t (diffusion number > 1/2) [s]
|
---|
780 | // NS: 2.16.18 divided dt by scaling factor, default set to 1/11 for stability
|
---|
781 | dt=1e12;
|
---|
782 | for(int i=0;i<m;i++)dt = min(dt,CI * pow(dz[i],2) * d[i] / (3 * K[i]) * thermo_scaling);
|
---|
783 |
|
---|
784 | // smallest possible even integer of 60 min where diffusion number > 1/2
|
---|
785 | // must go evenly into one hour or the data frequency if it is smaller
|
---|
786 |
|
---|
787 | // all integer factors of the number of second in a day (86400 [s])
|
---|
788 | int f[45] = {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 30, 36, 40, 45, 48, 50, 60,
|
---|
789 | 72, 75, 80, 90, 100, 120, 144, 150, 180, 200, 225, 240, 300, 360, 400, 450, 600, 720, 900, 1200, 1800, 3600};
|
---|
790 |
|
---|
791 | // return the min integer factor that is < dt
|
---|
792 | max_fdt=f[0];
|
---|
793 | for(int i=0;i<45;i++){
|
---|
794 | if (f[i]<dt-Dtol)if(f[i]>=max_fdt-Dtol)max_fdt=f[i];
|
---|
795 | }
|
---|
796 | dt=max_fdt;
|
---|
797 |
|
---|
798 | // determine mean (harmonic mean) of K/dz for u, d, & p
|
---|
799 | Au = xNew<IssmDouble>(m);
|
---|
800 | Ad = xNew<IssmDouble>(m);
|
---|
801 | Ap = xNew<IssmDouble>(m);
|
---|
802 | for(int i=0;i<m;i++){
|
---|
803 | Au[i] = pow((dzU[i]/2.0/KP[i] + dz[i]/2.0/KU[i]),-1.0);
|
---|
804 | Ad[i] = pow((dzD[i]/2.0/KP[i] + dz[i]/2.0/KD[i]),-1.0);
|
---|
805 | Ap[i] = (d[i]*dz[i]*CI)/dt;
|
---|
806 | }
|
---|
807 |
|
---|
808 | // create "neighbor" coefficient matrix
|
---|
809 | Nu = xNew<IssmDouble>(m);
|
---|
810 | Nd = xNew<IssmDouble>(m);
|
---|
811 | Np = xNew<IssmDouble>(m);
|
---|
812 | for(int i=0;i<m;i++){
|
---|
813 | Nu[i] = Au[i] / Ap[i];
|
---|
814 | Nd[i] = Ad[i] / Ap[i];
|
---|
815 | Np[i]= 1.0 - Nu[i] - Nd[i];
|
---|
816 | }
|
---|
817 |
|
---|
818 | // specify boundary conditions: constant flux at bottom
|
---|
819 | Nu[m-1] = 0.0;
|
---|
820 | Np[m-1] = 1.0;
|
---|
821 |
|
---|
822 | // zero flux at surface
|
---|
823 | Np[0] = 1.0 - Nd[0];
|
---|
824 |
|
---|
825 | // Create neighbor arrays for diffusion calculations instead of a tridiagonal matrix
|
---|
826 | Nu[0] = 0.0;
|
---|
827 | Nd[m-1] = 0.0;
|
---|
828 |
|
---|
829 | /* RADIATIVE FLUXES*/
|
---|
830 |
|
---|
831 | // energy supplied by shortwave radiation [J]
|
---|
832 | sw = xNew<IssmDouble>(m);
|
---|
833 | for(int i=0;i<m;i++) sw[i]= swf[i] * dt;
|
---|
834 |
|
---|
835 | // temperature change due to SW
|
---|
836 | dT_sw = xNew<IssmDouble>(m);
|
---|
837 | for(int i=0;i<m;i++) dT_sw[i]= sw[i] / (CI * d[i] * dz[i]);
|
---|
838 |
|
---|
839 | // Upward longwave radiation flux is calculated from the snow surface
|
---|
840 | // temperature which is set equal to the average temperature of the
|
---|
841 | // top grid cells.
|
---|
842 |
|
---|
843 | // energy supplied by downward longwave radiation to the top grid cell [J]
|
---|
844 | dlw = dlwrf * dt;
|
---|
845 |
|
---|
846 | // temperature change due to dlw_surf
|
---|
847 | dT_dlw = dlw / TCs;
|
---|
848 |
|
---|
849 | // PREALLOCATE ARRAYS BEFORE LOOP FOR IMPROVED PERFORMANCE
|
---|
850 | T0 = xNewZeroInit<IssmDouble>(m+2);
|
---|
851 | Tu=xNew<IssmDouble>(m);
|
---|
852 | Td=xNew<IssmDouble>(m);
|
---|
853 |
|
---|
854 | /* CALCULATE ENERGY SOURCES AND DIFFUSION FOR EVERY TIME STEP [dt]*/
|
---|
855 | for (IssmDouble i=1;i<=dt0;i+=dt){
|
---|
856 |
|
---|
857 | // PART OF ENERGY CONSERVATION CHECK
|
---|
858 | // store initial temperature
|
---|
859 | //T_init = T;
|
---|
860 |
|
---|
861 | // calculate temperature of snow surface (Ts)
|
---|
862 | // when incoming SW radition is allowed to penetrate the surface,
|
---|
863 | // the modeled energy balance becomes very sensitive to how Ts is
|
---|
864 | // calculated. The estimated enegy balance & melt are significanly
|
---|
865 | // less when Ts is taken as the mean of the x top grid cells.
|
---|
866 | if(m>1) Ts = (T[0] + T[1])/2.0;
|
---|
867 | else Ts = T[0];
|
---|
868 | Ts = min(CtoK,Ts); // don't allow Ts to exceed 273.15 K (0 degC)
|
---|
869 |
|
---|
870 | //TURBULENT HEAT FLUX
|
---|
871 |
|
---|
872 | // Monin-Obukhov Stability Correction
|
---|
873 | // Reference:
|
---|
874 | // Ohmura, A., 1982: Climate and Energy-Balance on the Arctic Tundra.
|
---|
875 | // Journal of Climatology, 2, 65-84.
|
---|
876 |
|
---|
877 | // calculate the Bulk Richardson Number (Ri)
|
---|
878 | Ri = (2.0*9.81* (Vz - z0) * (Ta - Ts)) / ((Ta + Ts)* pow(V,2.0));
|
---|
879 | //Ri = (2.0*9.81*(Ta - Ts)) / ((Tz - z0)*(Ta + Ts)* pow(V/(Vz - z0),2.0));
|
---|
880 |
|
---|
881 | // calculate Monin-Obukhov stability factors 'coefM' and 'coefH'
|
---|
882 |
|
---|
883 | // do not allow Ri to exceed 0.16
|
---|
884 | // Ri = min(Ri, 0.19);
|
---|
885 | Ri = min(Ri, 0.16); //Ohmura, 1982
|
---|
886 |
|
---|
887 | // calculate momentum 'coefM' stability factor
|
---|
888 | if (Ri > 0.0+Ttol){
|
---|
889 | // if stable
|
---|
890 | coefM = 1.0/(1.0-5.2*Ri);
|
---|
891 | }
|
---|
892 | else {
|
---|
893 | coefM =pow (1.0-18*Ri,-0.25);
|
---|
894 | }
|
---|
895 |
|
---|
896 | // calculate heat/wind 'coef_H' stability factor
|
---|
897 | if (Ri <= -0.03+Ttol) coefH = coefM/1.3;
|
---|
898 | else coefH = coefM;
|
---|
899 |
|
---|
900 | //// Sensible Heat
|
---|
901 | // calculate the sensible heat flux [W m-2](Patterson, 1998)
|
---|
902 | shf = C * CA * (Ta - Ts);
|
---|
903 |
|
---|
904 | // adjust using Monin-Obukhov stability theory
|
---|
905 | shf = shf / (coefM * coefH);
|
---|
906 |
|
---|
907 | //// Latent Heat
|
---|
908 | // determine if snow pack is melting & calcualte surface vapour pressure over ice or liquid water
|
---|
909 | if (Ts >= CtoK-Ttol){
|
---|
910 | L = LV; //for liquid water at 273.15 k to vapor
|
---|
911 |
|
---|
912 | //for liquid surface (assume liquid on surface when Ts == 0 deg C)
|
---|
913 | // Wright (1997), US Meteorological Handbook from Murphy and Koop, 2005 Appendix A
|
---|
914 | eS = 611.21 * exp(17.502 * (Ts - CtoK) / (240.97 + Ts - CtoK));
|
---|
915 | }
|
---|
916 | else{
|
---|
917 | L = LS; // latent heat of sublimation
|
---|
918 |
|
---|
919 | // for an ice surface Murphy and Koop, 2005 [Equation 7]
|
---|
920 | eS = exp(9.550426 - 5723.265/Ts + 3.53068 * log(Ts) - 0.00728332 * Ts);
|
---|
921 | }
|
---|
922 |
|
---|
923 | // Latent heat flux [W m-2]
|
---|
924 | lhf = C * L * (eAir - eS) * 0.622 / pAir;
|
---|
925 |
|
---|
926 | // adjust using Monin-Obukhov stability theory (if lhf '+' then there is energy and mass gained at the surface,
|
---|
927 | // if '-' then there is mass and energy loss at the surface.
|
---|
928 | lhf = lhf / (coefM * coefH);
|
---|
929 |
|
---|
930 | //mass loss (-)/acreation(+) due to evaporation/condensation [kg]
|
---|
931 | EC_day = lhf * dts / L;
|
---|
932 |
|
---|
933 | // temperature change due turbulent fluxes
|
---|
934 | turb = (shf + lhf)* dt;
|
---|
935 | dT_turb = turb / TCs;
|
---|
936 |
|
---|
937 | // upward longwave contribution
|
---|
938 | //ulw = - (SB * pow(Ts,4.0)* teValue) * dt; // - deltatest here
|
---|
939 | IssmDouble deltatest=0;
|
---|
940 | ulw = - (SB * pow(Ts,4.0)* teValue - deltatest) * dt; // - deltatest here
|
---|
941 | ulwrf = ulwrf - ulw/dt0;
|
---|
942 |
|
---|
943 | dT_ulw = ulw / TCs;
|
---|
944 |
|
---|
945 | // new grid point temperature
|
---|
946 |
|
---|
947 | //SW penetrates surface
|
---|
948 | if(!isconstrainsurfaceT) for(int j=0;j<m;j++) T[j] = T[j] + dT_sw[j];
|
---|
949 | if(!isconstrainsurfaceT) T[0] = T[0] + dT_dlw + dT_ulw + dT_turb;
|
---|
950 |
|
---|
951 | // temperature diffusion
|
---|
952 | for(int j=0;j<m;j++) T0[1+j]=T[j];
|
---|
953 | for(int j=0;j<m;j++) Tu[j] = T0[j];
|
---|
954 | for(int j=0;j<m;j++) Td[j] = T0[2+j];
|
---|
955 | for(int j=0;j<m;j++) T[j] = (Np[j] * T[j]) + (Nu[j] * Tu[j]) + (Nd[j] * Td[j]);
|
---|
956 |
|
---|
957 | // calculate cumulative evaporation (+)/condensation(-)
|
---|
958 | if(!isconstrainsurfaceT) EC = EC + (EC_day/dts)*dt;
|
---|
959 |
|
---|
960 | /* CHECK FOR ENERGY (E) CONSERVATION [UNITS: J]
|
---|
961 | //energy flux across lower boundary (energy supplied by underling ice)
|
---|
962 | base_flux = Ad(-1)*(T_init()-T_init(-1)) * dt;
|
---|
963 |
|
---|
964 | E_used = sum((T - T_init) * (d*dz*CI));
|
---|
965 | E_sup = ((sum(swf) * dt) + dlw + ulw + turb + base_flux);
|
---|
966 |
|
---|
967 | E_diff = E_used - E_sup;
|
---|
968 |
|
---|
969 | if fabs(E_diff) > 1E-6 || isnan(E_diff)
|
---|
970 | disp(T(1))
|
---|
971 | _error_("energy not conserved in thermodynamics equations");
|
---|
972 | */
|
---|
973 | }
|
---|
974 |
|
---|
975 | /*Free resources:*/
|
---|
976 | xDelete<IssmDouble>(K);
|
---|
977 | xDelete<IssmDouble>(KU);
|
---|
978 | xDelete<IssmDouble>(KD);
|
---|
979 | xDelete<IssmDouble>(KP);
|
---|
980 | xDelete<IssmDouble>(Au);
|
---|
981 | xDelete<IssmDouble>(Ad);
|
---|
982 | xDelete<IssmDouble>(Ap);
|
---|
983 | xDelete<IssmDouble>(Nu);
|
---|
984 | xDelete<IssmDouble>(Nd);
|
---|
985 | xDelete<IssmDouble>(Np);
|
---|
986 | xDelete<IssmDouble>(dzU);
|
---|
987 | xDelete<IssmDouble>(dzD);
|
---|
988 | xDelete<IssmDouble>(sw);
|
---|
989 | xDelete<IssmDouble>(dT_sw);
|
---|
990 | xDelete<IssmDouble>(T0);
|
---|
991 | xDelete<IssmDouble>(Tu);
|
---|
992 | xDelete<IssmDouble>(Td);
|
---|
993 |
|
---|
994 | /*Assign output pointers:*/
|
---|
995 | *pEC=EC;
|
---|
996 | *pT=T;
|
---|
997 | *pulwrf=ulwrf;
|
---|
998 |
|
---|
999 | } /*}}}*/
|
---|
1000 | void shortwave(IssmDouble** pswf, int swIdx, int aIdx, IssmDouble dsw, IssmDouble as, IssmDouble* d, IssmDouble* dz, IssmDouble* re, IssmDouble dIce, int m, int sid){ /*{{{*/
|
---|
1001 |
|
---|
1002 | // DISTRIBUTES ABSORBED SHORTWAVE RADIATION WITHIN SNOW/ICE
|
---|
1003 |
|
---|
1004 | // swIdx = 0 : all absorbed SW energy is assigned to the top grid cell
|
---|
1005 |
|
---|
1006 | // swIdx = 1 : absorbed SW is distributed with depth as a function of:
|
---|
1007 | // default : snow density (taken from Bassford, 2004)
|
---|
1008 | // if aIdx=2 : grain size in 3 spectral bands (Brun et al., 1992)
|
---|
1009 |
|
---|
1010 | // Inputs
|
---|
1011 | // swIdx = shortwave allowed to penetrate surface (0 = No, 1 = Yes)
|
---|
1012 | // aIdx = method for calculating albedo (1-4)
|
---|
1013 | // dsw = downward shortwave radiative flux [w m-2]
|
---|
1014 | // as = surface albedo
|
---|
1015 | // d = grid cell density [kg m-3]
|
---|
1016 | // dz = grid cell depth [m]
|
---|
1017 | // re = grid cell effective grain radius [mm]
|
---|
1018 |
|
---|
1019 | // Outputs
|
---|
1020 | // swf = absorbed shortwave radiation [W m-2]
|
---|
1021 | //
|
---|
1022 |
|
---|
1023 | /*outputs: */
|
---|
1024 | IssmDouble* swf=NULL;
|
---|
1025 |
|
---|
1026 | if(VerboseSmb() && sid==0 && IssmComm::GetRank()==0)_printf0_(" shortwave module\n");
|
---|
1027 |
|
---|
1028 | /*Initialize and allocate: */
|
---|
1029 | swf=xNewZeroInit<IssmDouble>(m);
|
---|
1030 |
|
---|
1031 | // SHORTWAVE FUNCTION
|
---|
1032 | if (swIdx == 0) {// all sw radation is absorbed in by the top grid cell
|
---|
1033 |
|
---|
1034 | // calculate surface shortwave radiation fluxes [W m-2]
|
---|
1035 | swf[0] = (1.0 - as) * dsw;
|
---|
1036 | }
|
---|
1037 | else{ // sw radation is absorbed at depth within the glacier
|
---|
1038 |
|
---|
1039 | if (aIdx == 2){ // function of effective radius (3 spectral bands)
|
---|
1040 |
|
---|
1041 | IssmDouble * gsz=NULL;
|
---|
1042 | IssmDouble * B1_cum=NULL;
|
---|
1043 | IssmDouble * B2_cum=NULL;
|
---|
1044 | IssmDouble* h =NULL;
|
---|
1045 | IssmDouble* B1 =NULL;
|
---|
1046 | IssmDouble* B2 =NULL;
|
---|
1047 | IssmDouble* exp1 = NULL;
|
---|
1048 | IssmDouble* exp2 = NULL;
|
---|
1049 | IssmDouble* Qs1 = NULL;
|
---|
1050 | IssmDouble* Qs2 = NULL;
|
---|
1051 |
|
---|
1052 | // convert effective radius [mm] to grain size [m]
|
---|
1053 | gsz=xNew<IssmDouble>(m);
|
---|
1054 | for(int i=0;i<m;i++) gsz[i]= (re[i] * 2.0) / 1000.0;
|
---|
1055 |
|
---|
1056 | // Spectral fractions [0.3-0.8um 0.8-1.5um 1.5-2.8um]
|
---|
1057 | // (Lefebre et al., 2003)
|
---|
1058 | IssmDouble sF[3] = {0.606, 0.301, 0.093};
|
---|
1059 |
|
---|
1060 | // initialize variables
|
---|
1061 | B1_cum=xNew<IssmDouble>(m+1);
|
---|
1062 | B2_cum=xNew<IssmDouble>(m+1);
|
---|
1063 | for(int i=0;i<m+1;i++){
|
---|
1064 | B1_cum[i]=1.0;
|
---|
1065 | B2_cum[i]=1.0;
|
---|
1066 | }
|
---|
1067 |
|
---|
1068 | // spectral albedos:
|
---|
1069 | // 0.3 - 0.8um
|
---|
1070 | IssmDouble a0 = min(0.98, 1.0 - 1.58 *pow(gsz[0],0.5));
|
---|
1071 | // 0.8 - 1.5um
|
---|
1072 | IssmDouble a1 = max(0.0, 0.95 - 15.4 *pow(gsz[0],0.5));
|
---|
1073 | // 1.5 - 2.8um
|
---|
1074 | IssmDouble a2 = max(0.127, 0.88 + 346.3*gsz[0] - 32.31*pow(gsz[0],0.5));
|
---|
1075 |
|
---|
1076 | // separate net shortwave radiative flux into spectral ranges
|
---|
1077 | IssmDouble swfS[3];
|
---|
1078 | swfS[0] = (sF[0] * dsw) * (1.0 - a0);
|
---|
1079 | swfS[1] = (sF[1] * dsw) * (1.0 - a1);
|
---|
1080 | swfS[2] = (sF[2] * dsw) * (1.0 - a2);
|
---|
1081 |
|
---|
1082 | // absorption coeficient for spectral range:
|
---|
1083 | h =xNew<IssmDouble>(m);
|
---|
1084 | B1 =xNew<IssmDouble>(m);
|
---|
1085 | B2 =xNew<IssmDouble>(m);
|
---|
1086 | for(int i=0;i<m;i++) h[i]= d[i] /(pow(gsz[i],0.5));
|
---|
1087 | for(int i=0;i<m;i++) B1[i] = 0.0192 * h[i]; // 0.3 - 0.8um
|
---|
1088 | for(int i=0;i<m;i++) B2[i]= 0.1098 * h[i]; // 0.8 - 1.5um
|
---|
1089 | // B3 = +inf // 1.5 - 2.8um
|
---|
1090 |
|
---|
1091 | // cumulative extinction factors
|
---|
1092 | exp1 = xNew<IssmDouble>(m);
|
---|
1093 | exp2 = xNew<IssmDouble>(m);
|
---|
1094 | for(int i=0;i<m;i++) exp1[i]=exp(-B1[i]*dz[i]);
|
---|
1095 | for(int i=0;i<m;i++) exp2[i]=exp(-B2[i]*dz[i]);
|
---|
1096 |
|
---|
1097 | for(int i=0;i<m;i++){
|
---|
1098 | IssmDouble cum1=exp1[0];
|
---|
1099 | IssmDouble cum2=exp2[0];
|
---|
1100 | for(int j=1;j<=i;j++){
|
---|
1101 | cum1 = cum1*exp1[j];
|
---|
1102 | cum2 = cum2*exp2[j];
|
---|
1103 | }
|
---|
1104 | B1_cum[i+1]=cum1;
|
---|
1105 | B2_cum[i+1]=cum2;
|
---|
1106 | }
|
---|
1107 |
|
---|
1108 | // flux across grid cell boundaries
|
---|
1109 | Qs1 = xNew<IssmDouble>(m+1);
|
---|
1110 | Qs2 = xNew<IssmDouble>(m+1);
|
---|
1111 | for(int i=0;i<m+1;i++){
|
---|
1112 | Qs1[i] = swfS[0] * B1_cum[i];
|
---|
1113 | Qs2[i] = swfS[1] * B2_cum[i];
|
---|
1114 | }
|
---|
1115 |
|
---|
1116 | // net energy flux to each grid cell
|
---|
1117 | for(int i=0;i<m;i++) swf[i]= (Qs1[i]-Qs1[i+1]) + (Qs2[i]-Qs2[i+1]);
|
---|
1118 |
|
---|
1119 | // add flux absorbed at surface
|
---|
1120 | swf[0] = swf[0]+ swfS[2];
|
---|
1121 |
|
---|
1122 | /*Free resources: */
|
---|
1123 | xDelete<IssmDouble>(gsz);
|
---|
1124 | xDelete<IssmDouble>(B1_cum);
|
---|
1125 | xDelete<IssmDouble>(B2_cum);
|
---|
1126 | xDelete<IssmDouble>(h);
|
---|
1127 | xDelete<IssmDouble>(B1);
|
---|
1128 | xDelete<IssmDouble>(B2);
|
---|
1129 | xDelete<IssmDouble>(exp1);
|
---|
1130 | xDelete<IssmDouble>(exp2);
|
---|
1131 | xDelete<IssmDouble>(Qs1);
|
---|
1132 | xDelete<IssmDouble>(Qs2);
|
---|
1133 |
|
---|
1134 | }
|
---|
1135 | else{ //function of grid cell density
|
---|
1136 |
|
---|
1137 | /*intermediary: */
|
---|
1138 | IssmDouble* B_cum = NULL;
|
---|
1139 | IssmDouble* exp_B = NULL;
|
---|
1140 | IssmDouble* Qs = NULL;
|
---|
1141 | IssmDouble* B = NULL;
|
---|
1142 |
|
---|
1143 | // fraction of sw radiation absorbed in top grid cell (wavelength > 0.8um)
|
---|
1144 | IssmDouble SWs = 0.36;
|
---|
1145 |
|
---|
1146 | // SWs and SWss coefficients need to be better constranted. Greuell
|
---|
1147 | // and Konzelmann 1994 used SWs = 0.36 and SWss = 0.64 as this the
|
---|
1148 | // the % of SW radiation with wavelengths > and < 800 nm
|
---|
1149 | // respectively. This, however, may not account for the fact that
|
---|
1150 | // the albedo of wavelengths > 800 nm has a much lower albedo.
|
---|
1151 |
|
---|
1152 | // calculate surface shortwave radiation fluxes [W m-2]
|
---|
1153 | IssmDouble swf_s = SWs * (1.0 - as) * dsw;
|
---|
1154 |
|
---|
1155 | // calculate surface shortwave radiation fluxes [W m-2]
|
---|
1156 | IssmDouble swf_ss = (1.0-SWs) * (1.0 - as) * dsw;
|
---|
1157 |
|
---|
1158 | // SW allowed to penetrate into snowpack
|
---|
1159 | IssmDouble Bs = 10.0; // snow SW extinction coefficient [m-1] (Bassford,2006)
|
---|
1160 | IssmDouble Bi = 1.3; // ice SW extinction coefficient [m-1] (Bassford,2006)
|
---|
1161 |
|
---|
1162 | // calculate extinction coefficient B [m-1] vector
|
---|
1163 | B=xNew<IssmDouble>(m);
|
---|
1164 | for(int i=0;i<m;i++) B[i] = Bs + (300.0 - d[i]) * ((Bs - Bi)/(dIce - 300.0));
|
---|
1165 |
|
---|
1166 | // cumulative extinction factor
|
---|
1167 | B_cum = xNew<IssmDouble>(m+1);
|
---|
1168 | exp_B = xNew<IssmDouble>(m);
|
---|
1169 | for(int i=0;i<m;i++)exp_B[i]=exp(-B[i]*dz[i]);
|
---|
1170 |
|
---|
1171 | B_cum[0]=1.0;
|
---|
1172 | for(int i=0;i<m;i++){
|
---|
1173 | IssmDouble cum_B=exp_B[0];
|
---|
1174 | for(int j=1;j<=i;j++) cum_B=cum_B*exp_B[j];
|
---|
1175 | B_cum[i+1]= cum_B;
|
---|
1176 | }
|
---|
1177 |
|
---|
1178 | // flux across grid cell boundaries
|
---|
1179 | Qs=xNew<IssmDouble>(m+1);
|
---|
1180 | for(int i=0;i<m+1;i++) Qs[i] = swf_ss * B_cum[i];
|
---|
1181 |
|
---|
1182 | // net energy flux to each grid cell
|
---|
1183 | for(int i=0;i<m;i++) swf[i] = (Qs[i]-Qs[i+1]);
|
---|
1184 |
|
---|
1185 | // add flux absorbed at surface
|
---|
1186 | swf[0] += swf_s;
|
---|
1187 |
|
---|
1188 | /*Free resources:*/
|
---|
1189 | xDelete<IssmDouble>(B_cum);
|
---|
1190 | xDelete<IssmDouble>(exp_B);
|
---|
1191 | xDelete<IssmDouble>(Qs);
|
---|
1192 | xDelete<IssmDouble>(B);
|
---|
1193 | }
|
---|
1194 | }
|
---|
1195 | /*Assign output pointers: */
|
---|
1196 | *pswf=swf;
|
---|
1197 |
|
---|
1198 | } /*}}}*/
|
---|
1199 | void accumulation(IssmDouble** pT, IssmDouble** pdz, IssmDouble** pd, IssmDouble** pW, IssmDouble** pa, IssmDouble** pre, IssmDouble** pgdn, IssmDouble** pgsp, int* pm, int aIdx, int dsnowIdx, IssmDouble Tmean, IssmDouble T_air, IssmDouble P, IssmDouble dzMin, IssmDouble aSnow, IssmDouble C, IssmDouble V, IssmDouble Vmean, IssmDouble dIce, int sid){ /*{{{*/
|
---|
1200 |
|
---|
1201 | // Adds precipitation and deposition to the model grid
|
---|
1202 |
|
---|
1203 | // Author: Alex Gardner, University of Alberta
|
---|
1204 | // Date last modified: JAN, 2008
|
---|
1205 |
|
---|
1206 | /* Description:
|
---|
1207 | adjusts the properties of the top grid cell to account for accumulation
|
---|
1208 | T_air & T = Air and top grid cell temperatures [K]
|
---|
1209 | Tmean = average surface temperature [K]
|
---|
1210 | Vmean = average wind velocity [m s-1]
|
---|
1211 | V = wind velocity [m s-1]
|
---|
1212 | C = average accumulation rate [kg m-2 yr-1]
|
---|
1213 | dz = topgrid cell length [m]
|
---|
1214 | d = density of top grid gell [kg m-3]
|
---|
1215 | P = precipitation [mm w.e.] or [kg m-3]
|
---|
1216 | re = effective grain radius [mm]
|
---|
1217 | gdn = grain dentricity
|
---|
1218 | gsp = grain sphericity*/
|
---|
1219 |
|
---|
1220 | // MAIN FUNCTION
|
---|
1221 | // specify constants
|
---|
1222 | IssmDouble dSnow = 150; // density of snow [kg m-3]
|
---|
1223 | const IssmDouble reNew = 0.05; // new snow grain size [mm]
|
---|
1224 | const IssmDouble gdnNew = 1.0; // new snow dendricity
|
---|
1225 | const IssmDouble gspNew = 0.5; // new snow sphericity
|
---|
1226 |
|
---|
1227 | /*intermediary: */
|
---|
1228 | IssmDouble* mInit=NULL;
|
---|
1229 | bool top=true;
|
---|
1230 | IssmDouble mass=0;
|
---|
1231 | IssmDouble massinit=0;
|
---|
1232 | IssmDouble mass_diff=0;
|
---|
1233 |
|
---|
1234 | /*output: */
|
---|
1235 | IssmDouble* T=NULL;
|
---|
1236 | IssmDouble* dz=NULL;
|
---|
1237 | IssmDouble* d=NULL;
|
---|
1238 | IssmDouble* W=NULL;
|
---|
1239 | IssmDouble* a=NULL;
|
---|
1240 | IssmDouble* re=NULL;
|
---|
1241 | IssmDouble* gdn=NULL;
|
---|
1242 | IssmDouble* gsp=NULL;
|
---|
1243 | int m=0;
|
---|
1244 |
|
---|
1245 | if(VerboseSmb() && sid==0 && IssmComm::GetRank()==0)_printf0_(" accumulation module\n");
|
---|
1246 |
|
---|
1247 | /*Recover pointers: */
|
---|
1248 | T=*pT;
|
---|
1249 | dz=*pdz;
|
---|
1250 | d=*pd;
|
---|
1251 | W=*pW;
|
---|
1252 | a=*pa;
|
---|
1253 | re=*pre;
|
---|
1254 | gdn=*pgdn;
|
---|
1255 | gsp=*pgsp;
|
---|
1256 | m=*pm;
|
---|
1257 |
|
---|
1258 | //Density of fresh snow [kg m-3]
|
---|
1259 | switch (dsnowIdx){
|
---|
1260 | case 0: // Default value defined above
|
---|
1261 | break;
|
---|
1262 |
|
---|
1263 | case 1: // Density of Antarctica snow
|
---|
1264 | dSnow = 350;
|
---|
1265 | //dSnow = 360; //FirnMICE Lundin et al., 2017
|
---|
1266 | break;
|
---|
1267 |
|
---|
1268 | case 2: // Density of Greenland snow, Fausto et al., 2008
|
---|
1269 | dSnow = 315;
|
---|
1270 | break;
|
---|
1271 |
|
---|
1272 | case 3: //Surface snow accumulation density from Kaspers et al., 2004, Antarctica
|
---|
1273 | //dSnow = alpha1 + beta1*T + delta1*C + epsilon1*W
|
---|
1274 | // 7.36x10-2 1.06x10-3 6.69x10-2 4.77x10-3
|
---|
1275 | dSnow=(7.36e-2 + 1.06e-3*min(Tmean,CtoK-Ttol) + 6.69e-2*C/1000 + 4.77e-3*Vmean)*1000;
|
---|
1276 | break;
|
---|
1277 |
|
---|
1278 | case 4: // Kuipers Munneke and others (2015), Greenland
|
---|
1279 | dSnow = 481.0 + 4.834*(Tmean-CtoK);
|
---|
1280 | break;
|
---|
1281 | }
|
---|
1282 |
|
---|
1283 | // determine initial mass
|
---|
1284 | mInit=xNew<IssmDouble>(m);
|
---|
1285 | for(int i=0;i<m;i++) mInit[i]= d[i] * dz[i];
|
---|
1286 | massinit=0.0;
|
---|
1287 | for(int i=0;i<m;i++)massinit+=mInit[i];
|
---|
1288 |
|
---|
1289 | if (P > 0.0+Ptol){
|
---|
1290 |
|
---|
1291 | if (T_air <= CtoK+Ttol){ // if snow
|
---|
1292 |
|
---|
1293 | IssmDouble z_snow = P/dSnow; // depth of snow
|
---|
1294 | IssmDouble dfall = gdnNew;
|
---|
1295 | IssmDouble sfall = gspNew;
|
---|
1296 | IssmDouble refall = reNew;
|
---|
1297 |
|
---|
1298 | //From Vionnet et al., 2012 (Crocus)
|
---|
1299 | dfall = min(max(1.29 - 0.17*V,0.20),1.0);
|
---|
1300 | sfall = min(max(0.08*V + 0.38,0.5),0.9);
|
---|
1301 | refall = max((0.1 + (1.0-dfall)*0.25 + (0.5-sfall)*0.1)/2.0,Gdntol);
|
---|
1302 |
|
---|
1303 | // if snow depth is greater than specified min dz, new cell created
|
---|
1304 | if (z_snow > dzMin+Dtol){
|
---|
1305 |
|
---|
1306 | newcell(&T,T_air,top,m); //new cell T
|
---|
1307 | newcell(&dz,z_snow,top,m); //new cell dz
|
---|
1308 | newcell(&d,dSnow,top,m); //new cell d
|
---|
1309 | newcell(&W,0.0,top,m); //new cell W
|
---|
1310 | newcell(&a,aSnow,top,m); //new cell a
|
---|
1311 | newcell(&re,refall,top,m); //new cell grain size
|
---|
1312 | newcell(&gdn,dfall,top,m); //new cell grain dendricity
|
---|
1313 | newcell(&gsp,sfall,top,m); //new cell grain sphericity
|
---|
1314 | m=m+1;
|
---|
1315 | }
|
---|
1316 | else { // if snow depth is less than specified minimum dz snow
|
---|
1317 |
|
---|
1318 | mass = mInit[0] + P; // grid cell adjust mass
|
---|
1319 |
|
---|
1320 | dz[0] = dz[0] + P/dSnow; // adjust grid cell depth
|
---|
1321 | d[0] = mass / dz[0]; // adjust grid cell density
|
---|
1322 |
|
---|
1323 | // adjust variables as a linearly weighted function of mass
|
---|
1324 | // adjust temperature (assume P is same temp as air)
|
---|
1325 | T[0] = (T_air * P + T[0] * mInit[0])/mass;
|
---|
1326 |
|
---|
1327 | // adjust a, re, gdn & gsp
|
---|
1328 | if(aIdx>0)a[0] = (aSnow * P + a[0] * mInit[0])/mass;
|
---|
1329 | gdn[0] = (dfall * P + gdn[0] * mInit[0])/mass;
|
---|
1330 | gsp[0] = (sfall * P + gsp[0] * mInit[0])/mass;
|
---|
1331 | re[0] = max((0.1 + (1.0-gdn[0])*0.25 + (0.5-gsp[0])*0.1)/2.0,Gdntol);
|
---|
1332 | }
|
---|
1333 | }
|
---|
1334 | else{ // if rain
|
---|
1335 |
|
---|
1336 | /*rain is added by increasing the mass and temperature of the ice
|
---|
1337 | of the top grid cell. Temperatures are set artifically high to
|
---|
1338 | account for the latent heat of fusion. This is the same as
|
---|
1339 | directly adding liquid water to the the snow pack surface but
|
---|
1340 | makes the numerics easier.*/
|
---|
1341 |
|
---|
1342 | // grid cell adjust mass
|
---|
1343 | mass = mInit[0] + P;
|
---|
1344 |
|
---|
1345 | // adjust temperature
|
---|
1346 | // liquid: must account for latent heat of fusion
|
---|
1347 | T[0] = (P *(T_air + LF/CI) + T[0] * mInit[0]) / mass;
|
---|
1348 |
|
---|
1349 | // adjust grid cell density
|
---|
1350 | d[0] = mass / dz[0];
|
---|
1351 |
|
---|
1352 | // if d > the density of ice, d = dIce
|
---|
1353 | if (d[0] > dIce-Dtol){
|
---|
1354 | d[0] = dIce; // adjust d
|
---|
1355 | dz[0] = mass / d[0]; // dz is adjusted to conserve mass
|
---|
1356 | }
|
---|
1357 | }
|
---|
1358 |
|
---|
1359 | // check for conservation of mass
|
---|
1360 | mass=0; for(int i=0;i<m;i++)mass+=d[i]*dz[i];
|
---|
1361 |
|
---|
1362 | mass_diff = mass - massinit - P;
|
---|
1363 |
|
---|
1364 | #ifndef _HAVE_AD_ //avoid round operation. only check in forward mode.
|
---|
1365 | mass_diff = round(mass_diff * 100.0)/100.0;
|
---|
1366 | if (mass_diff > 0) _error_("mass not conserved in accumulation function");
|
---|
1367 | #endif
|
---|
1368 |
|
---|
1369 | }
|
---|
1370 | /*Free resources:*/
|
---|
1371 | if(mInit)xDelete<IssmDouble>(mInit);
|
---|
1372 |
|
---|
1373 | /*Assign output pointers:*/
|
---|
1374 | *pT=T;
|
---|
1375 | *pdz=dz;
|
---|
1376 | *pd=d;
|
---|
1377 | *pW=W;
|
---|
1378 | *pa=a;
|
---|
1379 | *pre=re;
|
---|
1380 | *pgdn=gdn;
|
---|
1381 | *pgsp=gsp;
|
---|
1382 | *pm=m;
|
---|
1383 | } /*}}}*/
|
---|
1384 | void melt(IssmDouble* pM, IssmDouble* pMs, IssmDouble* pR, IssmDouble* pmAdd, IssmDouble* pdz_add, IssmDouble** pT, IssmDouble** pd, IssmDouble** pdz, IssmDouble** pW, IssmDouble** pa, IssmDouble** pre, IssmDouble** pgdn, IssmDouble** pgsp, int* pn, IssmDouble dzMin, IssmDouble zMax, IssmDouble zMin, IssmDouble zTop, IssmDouble zY, IssmDouble dIce, int sid){ /*{{{*/
|
---|
1385 |
|
---|
1386 | //// MELT ROUTINE
|
---|
1387 |
|
---|
1388 | // Description:
|
---|
1389 | // computes the quantity of meltwater due to snow temperature in excess of
|
---|
1390 | // 0 deg C, determines pore water content and adjusts grid spacing
|
---|
1391 |
|
---|
1392 | /*intermediary:*/
|
---|
1393 | IssmDouble* m=NULL;
|
---|
1394 | IssmDouble* maxF=NULL;
|
---|
1395 | IssmDouble* dW=NULL;
|
---|
1396 | IssmDouble* exsW=NULL;
|
---|
1397 | IssmDouble* exsT=NULL;
|
---|
1398 | IssmDouble* surpT=NULL;
|
---|
1399 | IssmDouble* surpE=NULL;
|
---|
1400 | IssmDouble* flxDn=NULL;
|
---|
1401 | IssmDouble ER=0.0;
|
---|
1402 | IssmDouble* EI=NULL;
|
---|
1403 | IssmDouble* EW=NULL;
|
---|
1404 | IssmDouble* M=NULL;
|
---|
1405 | int* D=NULL;
|
---|
1406 |
|
---|
1407 | IssmDouble sumM=0.0;
|
---|
1408 | IssmDouble sumER=0.0;
|
---|
1409 | IssmDouble addE=0.0;
|
---|
1410 | IssmDouble mSum0=0.0;
|
---|
1411 | IssmDouble sumE0=0.0;
|
---|
1412 | IssmDouble mSum1=0.0;
|
---|
1413 | IssmDouble sumE1=0.0;
|
---|
1414 | IssmDouble dE=0.0;
|
---|
1415 | IssmDouble dm=0.0;
|
---|
1416 | IssmDouble X=0.0;
|
---|
1417 | IssmDouble Wi=0.0;
|
---|
1418 |
|
---|
1419 | IssmDouble Ztot=0.0;
|
---|
1420 | IssmDouble T_bot=0.0;
|
---|
1421 | IssmDouble m_bot=0.0;
|
---|
1422 | IssmDouble dz_bot=0.0;
|
---|
1423 | IssmDouble d_bot=0.0;
|
---|
1424 | IssmDouble W_bot=0.0;
|
---|
1425 | IssmDouble a_bot=0.0;
|
---|
1426 | IssmDouble re_bot=0.0;
|
---|
1427 | IssmDouble gdn_bot=0.0;
|
---|
1428 | IssmDouble gsp_bot=0.0;
|
---|
1429 | IssmDouble EI_bot=0.0;
|
---|
1430 | IssmDouble EW_bot=0.0;
|
---|
1431 | bool top=false;
|
---|
1432 |
|
---|
1433 | IssmDouble* Zcum=NULL;
|
---|
1434 | IssmDouble* dzMin2=NULL;
|
---|
1435 | IssmDouble* dzMax2=NULL;
|
---|
1436 | IssmDouble zY2=zY;
|
---|
1437 | bool lastCellFlag = false;
|
---|
1438 | int X1=0;
|
---|
1439 | int X2=0;
|
---|
1440 |
|
---|
1441 | int D_size = 0;
|
---|
1442 |
|
---|
1443 | /*outputs:*/
|
---|
1444 | IssmDouble Msurf = 0.0;
|
---|
1445 | IssmDouble mAdd = 0.0;
|
---|
1446 | IssmDouble surplusE = 0.0;
|
---|
1447 | IssmDouble surplusT = 0.0;
|
---|
1448 | IssmDouble dz_add = 0.0;
|
---|
1449 | IssmDouble Rsum = 0.0;
|
---|
1450 | IssmDouble* T=*pT;
|
---|
1451 | IssmDouble* d=*pd;
|
---|
1452 | IssmDouble* dz=*pdz;
|
---|
1453 | IssmDouble* W=*pW;
|
---|
1454 | IssmDouble* a=*pa;
|
---|
1455 | IssmDouble* re=*pre;
|
---|
1456 | IssmDouble* gdn=*pgdn;
|
---|
1457 | IssmDouble* gsp=*pgsp;
|
---|
1458 | int n=*pn;
|
---|
1459 | IssmDouble* R=NULL;
|
---|
1460 |
|
---|
1461 | if(VerboseSmb() && sid==0 && IssmComm::GetRank()==0)_printf0_(" melt module\n");
|
---|
1462 |
|
---|
1463 | //// INITIALIZATION
|
---|
1464 |
|
---|
1465 | /*Allocations: */
|
---|
1466 | M=xNewZeroInit<IssmDouble>(n);
|
---|
1467 | maxF=xNewZeroInit<IssmDouble>(n);
|
---|
1468 | dW=xNewZeroInit<IssmDouble>(n);
|
---|
1469 |
|
---|
1470 | // store initial mass [kg] and energy [J]
|
---|
1471 | m=xNew<IssmDouble>(n); for(int i=0;i<n;i++) m[i] = dz[i]* d[i]; // grid cell mass [kg]
|
---|
1472 | EI=xNew<IssmDouble>(n); for(int i=0;i<n;i++)EI[i] = m[i] * T[i] * CI; // initial enegy of snow/ice
|
---|
1473 | EW=xNew<IssmDouble>(n); for(int i=0;i<n;i++)EW[i]= W[i] * (LF + CtoK * CI); // initial enegy of water
|
---|
1474 |
|
---|
1475 | mSum0 = cellsum(W,n) + cellsum(m,n); // total mass [kg]
|
---|
1476 | sumE0 = cellsum(EI,n) + cellsum(EW,n); // total energy [J]
|
---|
1477 |
|
---|
1478 | // initialize melt and runoff scalars
|
---|
1479 | Rsum = 0.0; // runoff [kg]
|
---|
1480 | sumM = 0.0; // total melt [kg]
|
---|
1481 | mAdd = 0.0; // mass added/removed to/from base of model [kg]
|
---|
1482 | addE = 0.0; // energy added/removed to/from base of model [J]
|
---|
1483 | dz_add=0.0; // thickness of the layer added/removed to/from base of model [m]
|
---|
1484 |
|
---|
1485 | // calculate temperature excess above 0 deg C
|
---|
1486 | exsT=xNewZeroInit<IssmDouble>(n);
|
---|
1487 | for(int i=0;i<n;i++) exsT[i]= max(0.0, T[i] - CtoK); // [K] to [degC]
|
---|
1488 |
|
---|
1489 | // new grid point center temperature, T [K]
|
---|
1490 | // for(int i=0;i<n;i++) T[i]-=exsT[i];
|
---|
1491 | for(int i=0;i<n;i++) T[i]=min(T[i],CtoK);
|
---|
1492 |
|
---|
1493 | // specify irreducible water content saturation [fraction]
|
---|
1494 | const IssmDouble Swi = 0.07; // assumed constant after Colbeck, 1974
|
---|
1495 | const IssmDouble dPHC = 830; //Pore closeoff density
|
---|
1496 |
|
---|
1497 | //// REFREEZE PORE WATER
|
---|
1498 | // check if any pore water
|
---|
1499 | if (cellsum(W,n) >0.0+Wtol){
|
---|
1500 | if(VerboseSmb() && sid==0 && IssmComm::GetRank()==0)_printf0_(" pore water refreeze\n");
|
---|
1501 | // calculate maximum freeze amount, maxF [kg]
|
---|
1502 | for(int i=0;i<n;i++) maxF[i] = max(0.0, -((T[i] - CtoK) * m[i] * CI) / LF);
|
---|
1503 |
|
---|
1504 | // freeze pore water and change snow/ice properties
|
---|
1505 | for(int i=0;i<n;i++) dW[i] = min(maxF[i], W[i]); // freeze mass [kg]
|
---|
1506 | for(int i=0;i<n;i++) W[i] -= dW[i]; // pore water mass [kg]
|
---|
1507 | for(int i=0;i<n;i++) m[i] += dW[i]; // new mass [kg]
|
---|
1508 | for(int i=0;i<n;i++) d[i] = m[i] / dz[i]; // density [kg m-3]
|
---|
1509 | for(int i=0;i<n;i++) if(m[i]>Wtol) T[i] = T[i] + (dW[i]*(LF+(CtoK - T[i])*CI)/(m[i]*CI)); // temperature [K]
|
---|
1510 |
|
---|
1511 | // if pore water froze in ice then adjust d and dz thickness
|
---|
1512 | for(int i=0;i<n;i++)if(d[i]> dIce-Dtol)d[i]=dIce;
|
---|
1513 | for(int i=0;i<n;i++) dz[i]= m[i]/d[i];
|
---|
1514 |
|
---|
1515 | }
|
---|
1516 |
|
---|
1517 | // squeeze water from snow pack
|
---|
1518 | exsW=xNew<IssmDouble>(n);
|
---|
1519 | for(int i=0;i<n;i++){
|
---|
1520 | Wi= (dIce - d[i]) * Swi * (m[i] / d[i]); // irreducible water content [kg]
|
---|
1521 | exsW[i] = max(0.0, W[i] - Wi); // water "squeezed" from snow [kg]
|
---|
1522 | }
|
---|
1523 |
|
---|
1524 | //// MELT, PERCOLATION AND REFREEZE
|
---|
1525 |
|
---|
1526 | // run melt algorithm if there is melt water or excess pore water
|
---|
1527 | if ((cellsum(exsT,n) > 0.0+Ttol) || (cellsum(exsW,n) > 0.0+Wtol)){
|
---|
1528 | // _printf_(""MELT OCCURS");
|
---|
1529 | // check to see if thermal energy exceeds energy to melt entire cell
|
---|
1530 | // if so redistribute temperature to lower cells (temperature surplus)
|
---|
1531 | // (maximum T of snow before entire grid cell melts is a constant
|
---|
1532 | // LF/CI = 159.1342)
|
---|
1533 | surpT=xNew<IssmDouble>(n); for(int i=0;i<n;i++)surpT[i] = max(0.0, exsT[i]- LF/CI);
|
---|
1534 |
|
---|
1535 | if (cellsum(surpT,n) > 0.0+Ttol ){
|
---|
1536 | // _printf_("T Surplus");
|
---|
1537 | // calculate surplus energy
|
---|
1538 | surpE=xNew<IssmDouble>(n); for(int i=0;i<n;i++)surpE[i] = surpT[i] * CI * m[i];
|
---|
1539 |
|
---|
1540 | int i = 0;
|
---|
1541 | while (cellsum(surpE,n) > 0.0+Ttol && i<n){
|
---|
1542 |
|
---|
1543 | if (i<n-1){
|
---|
1544 | // use surplus energy to increase the temperature of lower cell
|
---|
1545 | T[i+1] = surpE[i]/m[i+1]/CI + T[i+1];
|
---|
1546 |
|
---|
1547 | exsT[i+1] = max(0.0, T[i+1] - CtoK) + exsT[i+1];
|
---|
1548 | T[i+1] = min(CtoK, T[i+1]);
|
---|
1549 |
|
---|
1550 | surpT[i+1] = max(0.0, exsT[i+1] - LF/CI);
|
---|
1551 | surpE[i+1] = surpT[i+1] * CI * m[i+1];
|
---|
1552 | }
|
---|
1553 | else{
|
---|
1554 | surplusT=max(0.0, exsT[i] - LF/CI);
|
---|
1555 | surplusE=surpE[i];
|
---|
1556 | if(VerboseSmb() && sid==0 && IssmComm::GetRank()==0){
|
---|
1557 | _printf0_(" WARNING: surplus energy at the base of GEMB column\n");
|
---|
1558 | }
|
---|
1559 | }
|
---|
1560 |
|
---|
1561 | // adjust current cell properties (again 159.1342 is the max T)
|
---|
1562 | exsT[i] = LF/CI;
|
---|
1563 | surpE[i] = 0.0;
|
---|
1564 | i = i + 1;
|
---|
1565 | }
|
---|
1566 | }
|
---|
1567 |
|
---|
1568 | // convert temperature excess to melt [kg]
|
---|
1569 | IssmDouble Mmax=0.0;
|
---|
1570 | for(int i=0;i<n;i++){
|
---|
1571 | Mmax=exsT[i] * d[i] * dz[i] * CI / LF;
|
---|
1572 | M[i] = min(Mmax, m[i]); // melt
|
---|
1573 | }
|
---|
1574 | Msurf = M[0];
|
---|
1575 | sumM = cellsum(M,n); // total melt [kg]
|
---|
1576 |
|
---|
1577 | // calculate maximum refreeze amount, maxF [kg]
|
---|
1578 | for(int i=0;i<n;i++)maxF[i] = max(0.0, -((T[i] - CtoK) * d[i] * dz[i] * CI)/ LF);
|
---|
1579 |
|
---|
1580 | // initialize refreeze, runoff, flxDn and dW vectors [kg]
|
---|
1581 | IssmDouble* F = xNewZeroInit<IssmDouble>(n);
|
---|
1582 | IssmDouble* R = xNewZeroInit<IssmDouble>(n);
|
---|
1583 |
|
---|
1584 | for(int i=0;i<n;i++)dW[i] = 0.0;
|
---|
1585 | flxDn=xNewZeroInit<IssmDouble>(n+1);
|
---|
1586 |
|
---|
1587 | // determine the deepest grid cell where melt/pore water is generated
|
---|
1588 | X = 0;
|
---|
1589 | for(int i=n-1;i>=0;i--){
|
---|
1590 | if(M[i]> 0.0+Wtol || exsW[i]> 0.0+Wtol){
|
---|
1591 | X=i;
|
---|
1592 | break;
|
---|
1593 | }
|
---|
1594 | }
|
---|
1595 |
|
---|
1596 | IssmDouble depthice=0.0;
|
---|
1597 | //// meltwater percolation
|
---|
1598 | for(int i=0;i<n;i++){
|
---|
1599 | // calculate total melt water entering cell
|
---|
1600 | IssmDouble inM = M[i]+ flxDn[i];
|
---|
1601 |
|
---|
1602 | depthice=0.0;
|
---|
1603 | if (d[i] >= dPHC-Dtol){
|
---|
1604 | for(int l=i;(l<n && d[l]>=dPHC-Dtol);l++) depthice=depthice+dz[l];
|
---|
1605 | }
|
---|
1606 |
|
---|
1607 | // break loop if there is no meltwater and if depth is > mw_depth
|
---|
1608 | if (fabs(inM) < Wtol && i > X){
|
---|
1609 | break;
|
---|
1610 | }
|
---|
1611 | // if reaches impermeable ice layer all liquid water runs off (R)
|
---|
1612 | else if (d[i] >= dIce-Dtol || (d[i] >= dPHC-Dtol && depthice>0.1)){ // dPHC = pore hole close off [kg m-3]
|
---|
1613 | // _printf_("ICE LAYER");
|
---|
1614 | // no water freezes in this cell
|
---|
1615 | // no water percolates to lower cell
|
---|
1616 | // cell ice temperature & density do not change
|
---|
1617 |
|
---|
1618 | m[i] = m[i] - M[i]; // mass after melt
|
---|
1619 | Wi = (dIce-d[i]) * Swi * (m[i]/d[i]); // irreducible water
|
---|
1620 | dW[i] = max(min(inM, Wi - W[i]),-1*W[i]); // change in pore water
|
---|
1621 | R[i] = max(0.0, inM - dW[i]); // runoff
|
---|
1622 | F[i] = 0.0;
|
---|
1623 | }
|
---|
1624 | // check if no energy to refreeze meltwater
|
---|
1625 | else if (fabs(maxF[i]) < Dtol){
|
---|
1626 | // _printf_("REFREEZE == 0");
|
---|
1627 | // no water freezes in this cell
|
---|
1628 | // cell ice temperature & density do not change
|
---|
1629 |
|
---|
1630 | m[i] = m[i] - M[i]; // mass after melt
|
---|
1631 | Wi = (dIce-d[i]) * Swi * (m[i]/d[i]); // irreducible water
|
---|
1632 | dW[i] = max(min(inM, Wi - W[i]),-1*W[i]); // change in pore water
|
---|
1633 | flxDn[i+1] = max(0.0, inM - dW[i]); // meltwater out
|
---|
1634 | R[i] = 0.0;
|
---|
1635 | F[i] = 0.0; // no freeze
|
---|
1636 | }
|
---|
1637 | // some or all meltwater refreezes
|
---|
1638 | else{
|
---|
1639 | // change in density and temperature
|
---|
1640 | // _printf_("MELT REFREEZE");
|
---|
1641 | //-----------------------melt water-----------------------------
|
---|
1642 | m[i] = m[i] - M[i];
|
---|
1643 | IssmDouble dz_0 = m[i]/d[i];
|
---|
1644 | IssmDouble dMax = (dIce - d[i])*dz_0; // d max = dIce
|
---|
1645 | IssmDouble F1 = min(min(inM,dMax),maxF[i]); // maximum refreeze
|
---|
1646 | m[i] = m[i] + F1; // mass after refreeze
|
---|
1647 | d[i] = m[i]/dz_0;
|
---|
1648 |
|
---|
1649 | //-----------------------pore water-----------------------------
|
---|
1650 | Wi = (dIce-d[i])* Swi * dz_0; // irreducible water
|
---|
1651 | dW[i] = min(inM - F1, Wi-W[i]); // change in pore water
|
---|
1652 | if (dW[i] < 0.0-Wtol && -1*dW[i]> W[i]-Wtol ){
|
---|
1653 | dW[i]= -1*W[i];
|
---|
1654 | }
|
---|
1655 | IssmDouble F2 = 0.0;
|
---|
1656 |
|
---|
1657 | if (dW[i] < 0.0-Wtol){ // excess pore water
|
---|
1658 | dMax = (dIce - d[i])*dz_0; // maximum refreeze
|
---|
1659 | IssmDouble maxF2 = min(dMax, maxF[i]-F1); // maximum refreeze
|
---|
1660 | F2 = min(-1*dW[i], maxF2); // pore water refreeze
|
---|
1661 | m[i] = m[i] + F2; // mass after refreeze
|
---|
1662 | d[i] = m[i]/dz_0;
|
---|
1663 | dW[i] = dW[i] - F2;
|
---|
1664 | }
|
---|
1665 |
|
---|
1666 | F[i] = F1 + F2;
|
---|
1667 |
|
---|
1668 | flxDn[i+1] = inM - F1 - dW[i]; // meltwater out
|
---|
1669 | if (m[i]>Wtol){
|
---|
1670 | T[i] = T[i] + ((F1+F2)*(LF+(CtoK - T[i])*CI)/(m[i]*CI));// change in temperature
|
---|
1671 | }
|
---|
1672 |
|
---|
1673 | // check if an ice layer forms
|
---|
1674 | if (fabs(d[i] - dIce) < Dtol){
|
---|
1675 | // _printf_("ICE LAYER FORMS");
|
---|
1676 | // excess water runs off
|
---|
1677 | R[i] = flxDn[i+1];
|
---|
1678 | // no water percolates to lower cell
|
---|
1679 | flxDn[i+1] = 0.0;
|
---|
1680 | }
|
---|
1681 | }
|
---|
1682 | }
|
---|
1683 |
|
---|
1684 | //// GRID CELL SPACING AND MODEL DEPTH
|
---|
1685 | for(int i=0;i<n;i++)if (W[i] < 0.0-Wtol) _error_("negative pore water generated in melt equations");
|
---|
1686 |
|
---|
1687 | // delete all cells with zero mass
|
---|
1688 | // adjust pore water
|
---|
1689 | for(int i=0;i<n;i++)W[i] += dW[i];
|
---|
1690 |
|
---|
1691 | //calculate Rsum:
|
---|
1692 | Rsum=cellsum(R,n) + flxDn[n];
|
---|
1693 |
|
---|
1694 | // delete all cells with zero mass
|
---|
1695 | D_size=0; for(int i=0;i<n;i++)if(m[i]> (0.0+Wtol))D_size++;
|
---|
1696 | D=xNew<int>(D_size);
|
---|
1697 | D_size=0; for(int i=0;i<n;i++)if(m[i]> (0.0+Wtol)){ D[D_size] = i; D_size++;}
|
---|
1698 |
|
---|
1699 | celldelete(&m,n,D,D_size);
|
---|
1700 | celldelete(&W,n,D,D_size);
|
---|
1701 | celldelete(&d,n,D,D_size);
|
---|
1702 | celldelete(&dz,n,D,D_size);
|
---|
1703 | celldelete(&T,n,D,D_size);
|
---|
1704 | celldelete(&a,n,D,D_size);
|
---|
1705 | celldelete(&re,n,D,D_size);
|
---|
1706 | celldelete(&gdn,n,D,D_size);
|
---|
1707 | celldelete(&gsp,n,D,D_size);
|
---|
1708 | celldelete(&EI,n,D,D_size);
|
---|
1709 | celldelete(&EW,n,D,D_size);
|
---|
1710 | n=D_size;
|
---|
1711 | xDelete<int>(D);
|
---|
1712 |
|
---|
1713 | // calculate new grid lengths
|
---|
1714 | for(int i=0;i<n;i++)dz[i] = m[i] / d[i];
|
---|
1715 |
|
---|
1716 | /*Free resources:*/
|
---|
1717 | xDelete<IssmDouble>(F);
|
---|
1718 | xDelete<IssmDouble>(R);
|
---|
1719 | }
|
---|
1720 |
|
---|
1721 | //Merging of cells as they are burried under snow.
|
---|
1722 | Zcum=xNew<IssmDouble>(n);
|
---|
1723 | dzMin2=xNew<IssmDouble>(n);
|
---|
1724 | dzMax2=xNew<IssmDouble>(n);
|
---|
1725 |
|
---|
1726 | X=0;
|
---|
1727 | Zcum[0]=dz[0]; // Compute a cumulative depth vector
|
---|
1728 | for (int i=0;i<n;i++){
|
---|
1729 | if (i==0){
|
---|
1730 | dzMin2[i]=dzMin;
|
---|
1731 | }
|
---|
1732 | else{
|
---|
1733 | Zcum[i]=Zcum[i-1]+dz[i];
|
---|
1734 | if (Zcum[i]<=zTop+Dtol){
|
---|
1735 | dzMin2[i]=dzMin;
|
---|
1736 | X=i;
|
---|
1737 | }
|
---|
1738 | else{
|
---|
1739 | dzMin2[i]=zY2*dzMin2[i-1];
|
---|
1740 | }
|
---|
1741 | }
|
---|
1742 | }
|
---|
1743 |
|
---|
1744 | // Check to see if any cells are too small and need to be merged
|
---|
1745 | for (int i=0; i<n; i++){
|
---|
1746 | if ( (i<=X && dz[i]<dzMin-Dtol) || (i>X && dz[i]<dzMin2[i]-Dtol) ) {
|
---|
1747 |
|
---|
1748 | if (i==n-1){
|
---|
1749 | X2=i;
|
---|
1750 | //find closest cell to merge with
|
---|
1751 | for(int j=n-2;j>=0;j--){
|
---|
1752 | if(m[j]!=Delflag){
|
---|
1753 | X1=j;
|
---|
1754 | break;
|
---|
1755 | }
|
---|
1756 | }
|
---|
1757 | }
|
---|
1758 | else{
|
---|
1759 | X1=i+1;
|
---|
1760 | X2=i;
|
---|
1761 | }
|
---|
1762 |
|
---|
1763 | // adjust variables as a linearly weighted function of mass
|
---|
1764 | IssmDouble m_new = m[X2] + m[X1];
|
---|
1765 | T[X1] = (T[X2]*m[X2] + T[X1]*m[X1]) / m_new;
|
---|
1766 | a[X1] = (a[X2]*m[X2] + a[X1]*m[X1]) / m_new;
|
---|
1767 | re[X1] = (re[X2]*m[X2] + re[X1]*m[X1]) / m_new;
|
---|
1768 | gdn[X1] = (gdn[X2]*m[X2] + gdn[X1]*m[X1]) / m_new;
|
---|
1769 | gsp[X1] = (gsp[X2]*m[X2] + gsp[X1]*m[X1]) / m_new;
|
---|
1770 |
|
---|
1771 | // merge with underlying grid cell and delete old cell
|
---|
1772 | dz[X1] = dz[X2] + dz[X1]; // combine cell depths
|
---|
1773 | d[X1] = m_new / dz[X1]; // combine top densities
|
---|
1774 | W[X1] = W[X1] + W[X2]; // combine liquid water
|
---|
1775 | m[X1] = m_new; // combine top masses
|
---|
1776 |
|
---|
1777 | // set cell to -99999 for deletion
|
---|
1778 | m[X2] = Delflag;
|
---|
1779 | }
|
---|
1780 | }
|
---|
1781 |
|
---|
1782 | // delete combined cells
|
---|
1783 | D_size=0; for(int i=0;i<n;i++)if(m[i]> Delflag+Wtol)D_size++;
|
---|
1784 | D=xNew<int>(D_size);
|
---|
1785 | D_size=0; for(int i=0;i<n;i++)if(m[i]> Delflag+Wtol){ D[D_size] = i; D_size++;}
|
---|
1786 |
|
---|
1787 | celldelete(&m,n,D,D_size);
|
---|
1788 | celldelete(&W,n,D,D_size);
|
---|
1789 | celldelete(&dz,n,D,D_size);
|
---|
1790 | celldelete(&d,n,D,D_size);
|
---|
1791 | celldelete(&T,n,D,D_size);
|
---|
1792 | celldelete(&a,n,D,D_size);
|
---|
1793 | celldelete(&re,n,D,D_size);
|
---|
1794 | celldelete(&gdn,n,D,D_size);
|
---|
1795 | celldelete(&gsp,n,D,D_size);
|
---|
1796 | celldelete(&EI,n,D,D_size);
|
---|
1797 | celldelete(&EW,n,D,D_size);
|
---|
1798 | n=D_size;
|
---|
1799 | xDelete<int>(D);
|
---|
1800 |
|
---|
1801 | // check if any of the cell depths are too large
|
---|
1802 | X=0;
|
---|
1803 | Zcum[0]=dz[0]; // Compute a cumulative depth vector
|
---|
1804 | for (int i=0;i<n;i++){
|
---|
1805 | if (i==0){
|
---|
1806 | dzMax2[i]=dzMin*2;
|
---|
1807 | }
|
---|
1808 | else{
|
---|
1809 | Zcum[i]=Zcum[i-1]+dz[i];
|
---|
1810 | if (Zcum[i]<=zTop+Dtol){
|
---|
1811 | dzMax2[i]=dzMin*2;
|
---|
1812 | X=i;
|
---|
1813 | }
|
---|
1814 | else{
|
---|
1815 | dzMax2[i]=max(zY2*dzMin2[i-1],dzMin*2);
|
---|
1816 | }
|
---|
1817 | }
|
---|
1818 | }
|
---|
1819 |
|
---|
1820 | for (int j=n-1;j>=0;j--){
|
---|
1821 | if ((j<X && dz[j] > dzMax2[j]+Dtol) || (dz[j] > dzMax2[j]*zY2+Dtol)){
|
---|
1822 | // _printf_("dz > dzMin * 2");
|
---|
1823 | // split in two
|
---|
1824 | cellsplit(&dz, n, j,.5);
|
---|
1825 | cellsplit(&W, n, j,.5);
|
---|
1826 | cellsplit(&m, n, j,.5);
|
---|
1827 | cellsplit(&T, n, j,1.0);
|
---|
1828 | cellsplit(&d, n, j,1.0);
|
---|
1829 | cellsplit(&a, n, j,1.0);
|
---|
1830 | cellsplit(&EI, n, j,.5);
|
---|
1831 | cellsplit(&EW, n, j,.5);
|
---|
1832 | cellsplit(&re, n, j,1.0);
|
---|
1833 | cellsplit(&gdn, n, j,1.0);
|
---|
1834 | cellsplit(&gsp, n, j,1.0);
|
---|
1835 | n++;
|
---|
1836 | }
|
---|
1837 | }
|
---|
1838 |
|
---|
1839 | //// CORRECT FOR TOTAL MODEL DEPTH
|
---|
1840 | // WORKS FINE BUT HAS BEEN DISABLED FOR CONVIENCE OF MODEL OUTPUT
|
---|
1841 | // INTERPRETATION
|
---|
1842 | // calculate total model depth
|
---|
1843 | Ztot = cellsum(dz,n);
|
---|
1844 |
|
---|
1845 | if (Ztot < zMin-Dtol){
|
---|
1846 | // printf("Total depth < zMin %f \n", Ztot);
|
---|
1847 | // mass and energy to be added
|
---|
1848 | mAdd = m[n-1]+W[n-1];
|
---|
1849 | addE = T[n-1]*m[n-1]*CI + W[n-1]*(LF+CtoK*CI);
|
---|
1850 |
|
---|
1851 | // add a grid cell of the same size and temperature to the bottom
|
---|
1852 | dz_bot=dz[n-1];
|
---|
1853 | T_bot=T[n-1];
|
---|
1854 | W_bot=W[n-1];
|
---|
1855 | m_bot=m[n-1];
|
---|
1856 | d_bot=d[n-1];
|
---|
1857 | a_bot=a[n-1];
|
---|
1858 | re_bot=re[n-1];
|
---|
1859 | gdn_bot=gdn[n-1];
|
---|
1860 | gsp_bot=gsp[n-1];
|
---|
1861 | EI_bot=EI[n-1];
|
---|
1862 | EW_bot=EW[n-1];
|
---|
1863 |
|
---|
1864 | dz_add=dz_bot;
|
---|
1865 |
|
---|
1866 | newcell(&dz,dz_bot,top,n);
|
---|
1867 | newcell(&T,T_bot,top,n);
|
---|
1868 | newcell(&W,W_bot,top,n);
|
---|
1869 | newcell(&m,m_bot,top,n);
|
---|
1870 | newcell(&d,d_bot,top,n);
|
---|
1871 | newcell(&a,a_bot,top,n);
|
---|
1872 | newcell(&re,re_bot,top,n);
|
---|
1873 | newcell(&gdn,gdn_bot,top,n);
|
---|
1874 | newcell(&gsp,gsp_bot,top,n);
|
---|
1875 | newcell(&EI,EI_bot,top,n);
|
---|
1876 | newcell(&EW,EW_bot,top,n);
|
---|
1877 | n=n+1;
|
---|
1878 | }
|
---|
1879 | else if (Ztot > zMax+Dtol){
|
---|
1880 | // printf("Total depth > zMax %f \n", Ztot);
|
---|
1881 | // mass and energy loss
|
---|
1882 | mAdd = -(m[n-1]+W[n-1]);
|
---|
1883 | addE = -(T[n-1]*m[n-1]*CI) - (W[n-1]*(LF+CtoK*CI));
|
---|
1884 | dz_add=-(dz[n-1]);
|
---|
1885 |
|
---|
1886 | // remove a grid cell from the bottom
|
---|
1887 | D_size=n-1;
|
---|
1888 | D=xNew<int>(D_size);
|
---|
1889 |
|
---|
1890 | for(int i=0;i<n-1;i++) D[i]=i;
|
---|
1891 | celldelete(&dz,n,D,D_size);
|
---|
1892 | celldelete(&T,n,D,D_size);
|
---|
1893 | celldelete(&W,n,D,D_size);
|
---|
1894 | celldelete(&m,n,D,D_size);
|
---|
1895 | celldelete(&d,n,D,D_size);
|
---|
1896 | celldelete(&a,n,D,D_size);
|
---|
1897 | celldelete(&re,n,D,D_size);
|
---|
1898 | celldelete(&gdn,n,D,D_size);
|
---|
1899 | celldelete(&gsp,n,D,D_size);
|
---|
1900 | celldelete(&EI,n,D,D_size);
|
---|
1901 | celldelete(&EW,n,D,D_size);
|
---|
1902 | n=D_size;
|
---|
1903 | xDelete<int>(D);
|
---|
1904 | }
|
---|
1905 |
|
---|
1906 | //// CHECK FOR MASS AND ENERGY CONSERVATION
|
---|
1907 |
|
---|
1908 | // calculate final mass [kg] and energy [J]
|
---|
1909 | sumER = Rsum * (LF + CtoK * CI);
|
---|
1910 | for(int i=0;i<n;i++)EI[i] = m[i] * T[i] * CI;
|
---|
1911 | for(int i=0;i<n;i++)EW[i] = W[i] * (LF + CtoK * CI);
|
---|
1912 |
|
---|
1913 | mSum1 = cellsum(W,n) + cellsum(m,n) + Rsum;
|
---|
1914 | sumE1 = cellsum(EI,n) + cellsum(EW,n);
|
---|
1915 |
|
---|
1916 | /*checks: */
|
---|
1917 | for(int i=0;i<n;i++) if (W[i]<0.0-Wtol) _error_("negative pore water generated in melt equations\n");
|
---|
1918 |
|
---|
1919 | /*only in forward mode! avoid round in AD mode as it is not differentiable: */
|
---|
1920 | #ifndef _HAVE_AD_
|
---|
1921 | dm = round((mSum0 - mSum1 + mAdd)*100.0)/100.0;
|
---|
1922 | dE = round(sumE0 - sumE1 - sumER + addE - surplusE);
|
---|
1923 | if (dm !=0 || dE !=0) _error_("mass or energy are not conserved in melt equations\n"
|
---|
1924 | << "dm: " << dm << " dE: " << dE << "\n");
|
---|
1925 | #endif
|
---|
1926 |
|
---|
1927 | /*Free resources:*/
|
---|
1928 | if(m)xDelete<IssmDouble>(m);
|
---|
1929 | if(EI)xDelete<IssmDouble>(EI);
|
---|
1930 | if(EW)xDelete<IssmDouble>(EW);
|
---|
1931 | if(maxF)xDelete<IssmDouble>(maxF);
|
---|
1932 | if(dW)xDelete<IssmDouble>(dW);
|
---|
1933 | if(exsW)xDelete<IssmDouble>(exsW);
|
---|
1934 | if(exsT)xDelete<IssmDouble>(exsT);
|
---|
1935 | if(surpT)xDelete<IssmDouble>(surpT);
|
---|
1936 | if(surpE)xDelete<IssmDouble>(surpE);
|
---|
1937 | if(flxDn)xDelete<IssmDouble>(flxDn);
|
---|
1938 | if(D)xDelete<int>(D);
|
---|
1939 | if(M)xDelete<IssmDouble>(M);
|
---|
1940 | xDelete<IssmDouble>(Zcum);
|
---|
1941 | xDelete<IssmDouble>(dzMin2);
|
---|
1942 | xDelete<IssmDouble>(dzMax2);
|
---|
1943 |
|
---|
1944 | /*Assign output pointers:*/
|
---|
1945 | *pMs=Msurf;
|
---|
1946 | *pM=sumM;
|
---|
1947 | *pR=Rsum;
|
---|
1948 | *pmAdd=mAdd;
|
---|
1949 | *pdz_add=dz_add;
|
---|
1950 |
|
---|
1951 | *pT=T;
|
---|
1952 | *pd=d;
|
---|
1953 | *pdz=dz;
|
---|
1954 | *pW=W;
|
---|
1955 | *pa=a;
|
---|
1956 | *pre=re;
|
---|
1957 | *pgdn=gdn;
|
---|
1958 | *pgsp=gsp;
|
---|
1959 | *pn=n;
|
---|
1960 |
|
---|
1961 | } /*}}}*/
|
---|
1962 | void densification(IssmDouble** pd,IssmDouble** pdz, IssmDouble* T, IssmDouble* re, int denIdx, int aIdx, int swIdx, IssmDouble adThresh, IssmDouble C, IssmDouble dt, IssmDouble Tmean, IssmDouble dIce, int m, int sid){ /*{{{*/
|
---|
1963 |
|
---|
1964 | //// THIS NEEDS TO BE DOUBLE CHECKED AS THERE SEAMS TO BE LITTLE DENSIFICATION IN THE MODEL OUTOUT [MAYBE COMPACTION IS COMPENSATED FOR BY TRACES OF SNOW???]
|
---|
1965 |
|
---|
1966 | //// FUNCTION INFO
|
---|
1967 |
|
---|
1968 | // Author: Alex Gardner, University of Alberta
|
---|
1969 | // Date last modified: FEB, 2008
|
---|
1970 |
|
---|
1971 | // Description:
|
---|
1972 | // computes the densification of snow/firn using the emperical model of
|
---|
1973 | // Herron and Langway (1980) or the semi-emperical model of Anthern et al.
|
---|
1974 | // (2010)
|
---|
1975 |
|
---|
1976 | // Inputs:
|
---|
1977 | // denIdx = densification model to use:
|
---|
1978 | // 1 = emperical model of Herron and Langway (1980)
|
---|
1979 | // 2 = semi-imerical model of Anthern et al. (2010)
|
---|
1980 | // 3 = physical model from Appendix B of Anthern et al. (2010)
|
---|
1981 | // d = initial snow/firn density [kg m-3]
|
---|
1982 | // T = temperature [K]
|
---|
1983 | // dz = grid cell size [m]
|
---|
1984 | // C = average accumulation rate [kg m-2 yr-1]
|
---|
1985 | // dt = time lapsed [s]
|
---|
1986 | // re = effective grain radius [mm];
|
---|
1987 | // Ta = mean annual temperature
|
---|
1988 |
|
---|
1989 | // Reference:
|
---|
1990 | // Herron and Langway (1980), Anthern et al. (2010)
|
---|
1991 |
|
---|
1992 | //// FOR TESTING
|
---|
1993 | // denIdx = 2;
|
---|
1994 | // d = 800;
|
---|
1995 | // T = 270;
|
---|
1996 | // dz = 0.005;
|
---|
1997 | // C = 200;
|
---|
1998 | // dt = 60*60;
|
---|
1999 | // re = 0.7;
|
---|
2000 | // Tmean = 273.15-18;
|
---|
2001 |
|
---|
2002 | //// MAIN FUNCTION
|
---|
2003 | // specify constants
|
---|
2004 | dt = dt / dts; // convert from [s] to [d]
|
---|
2005 | // R = 8.314 // gas constant [mol-1 K-1]
|
---|
2006 | // Ec = 60 // activation energy for self-diffusion of water
|
---|
2007 | // // molecules through the ice tattice [kJ mol-1]
|
---|
2008 | // Eg = 42.4 // activation energy for grain growth [kJ mol-1]
|
---|
2009 |
|
---|
2010 | /*intermediary: */
|
---|
2011 | IssmDouble c0=0.0;
|
---|
2012 | IssmDouble c1=0.0;
|
---|
2013 | IssmDouble H=0.0;
|
---|
2014 | IssmDouble M0=0.0;
|
---|
2015 | IssmDouble M1=0.0;
|
---|
2016 | IssmDouble c0arth=0.0;
|
---|
2017 | IssmDouble c1arth=0.0;
|
---|
2018 |
|
---|
2019 | /*output: */
|
---|
2020 | IssmDouble* dz=NULL;
|
---|
2021 | IssmDouble* d=NULL;
|
---|
2022 |
|
---|
2023 | if(VerboseSmb() && sid==0 && IssmComm::GetRank()==0)_printf0_(" densification module\n");
|
---|
2024 |
|
---|
2025 | /*Recover pointers: */
|
---|
2026 | dz=*pdz;
|
---|
2027 | d=*pd;
|
---|
2028 |
|
---|
2029 | // initial mass
|
---|
2030 | IssmDouble* mass_init = xNew<IssmDouble>(m);for(int i=0;i<m;i++) mass_init[i]=d[i] * dz[i];
|
---|
2031 |
|
---|
2032 | /*allocations and initialization of overburden pressure and factor H: */
|
---|
2033 | IssmDouble* cumdz = xNew<IssmDouble>(m-1);
|
---|
2034 | cumdz[0]=dz[0];
|
---|
2035 | for(int i=1;i<m-1;i++)cumdz[i]=cumdz[i-1]+dz[i];
|
---|
2036 |
|
---|
2037 | IssmDouble* obp = xNew<IssmDouble>(m);
|
---|
2038 | obp[0]=0.0;
|
---|
2039 | for(int i=1;i<m;i++)obp[i]=cumdz[i-1]*d[i-1];
|
---|
2040 |
|
---|
2041 | // calculate new snow/firn density for:
|
---|
2042 | // snow with densities <= 550 [kg m-3]
|
---|
2043 | // snow with densities > 550 [kg m-3]
|
---|
2044 |
|
---|
2045 | for(int i=0;i<m;i++){
|
---|
2046 | switch (denIdx){
|
---|
2047 | case 1: // Herron and Langway (1980)
|
---|
2048 | c0 = (11.0 * exp(-10160.0 / (T[i] * R))) * C/1000.0;
|
---|
2049 | c1 = (575.0 * exp(-21400.0 / (T[i]* R))) * pow(C/1000.0,.5);
|
---|
2050 | break;
|
---|
2051 |
|
---|
2052 | case 2: // Arthern et al. (2010) [semi-emperical]
|
---|
2053 | // common variable
|
---|
2054 | // NOTE: Ec=60000, Eg=42400 (i.e. should be in J not kJ)
|
---|
2055 | H = exp((-60000.0/(T[i] * R)) + (42400.0/(Tmean * R))) * (C * 9.81);
|
---|
2056 | c0 = 0.07 * H;
|
---|
2057 | c1 = 0.03 * H;
|
---|
2058 | break;
|
---|
2059 |
|
---|
2060 | case 3: // Arthern et al. (2010) [physical model eqn. B1]
|
---|
2061 |
|
---|
2062 | // common variable
|
---|
2063 | H = exp((-60000.0/(T[i] * R))) * obp[i] / pow(re[i]/1000.0,2.0);
|
---|
2064 | c0 = 9.2e-9 * H;
|
---|
2065 | c1 = 3.7e-9 * H;
|
---|
2066 | break;
|
---|
2067 |
|
---|
2068 | case 4: // Li and Zwally (2004)
|
---|
2069 | c0 = (C/dIce) * (139.21 - 0.542*Tmean)*8.36*pow(CtoK - T[i],-2.061);
|
---|
2070 | c1 = c0;
|
---|
2071 | break;
|
---|
2072 |
|
---|
2073 | case 5: // Helsen et al. (2008)
|
---|
2074 | // common variable
|
---|
2075 | c0 = (C/dIce) * (76.138 - 0.28965*Tmean)*8.36*pow(CtoK - T[i],-2.061);
|
---|
2076 | c1 = c0;
|
---|
2077 | break;
|
---|
2078 |
|
---|
2079 | case 6: // Ligtenberg and others (2011) [semi-emperical], Antarctica
|
---|
2080 | // common variable
|
---|
2081 | // From literature: H = exp((-60000.0/(Tmean * R)) + (42400.0/(Tmean * R))) * (C * 9.81);
|
---|
2082 | H = exp((-60000.0/(T[i] * R)) + (42400.0/(Tmean * R))) * (C * 9.81);
|
---|
2083 | c0arth = 0.07 * H;
|
---|
2084 | c1arth = 0.03 * H;
|
---|
2085 | //ERA-5 old
|
---|
2086 | //M0 = max(2.3128 - (0.2480 * log(C)),0.25);
|
---|
2087 | //M1 = max(2.7950 - (0.3318 * log(C)),0.25);
|
---|
2088 | // ERA5 new aIdx=1, swIdx=0
|
---|
2089 | if (aIdx==1 && swIdx==0){
|
---|
2090 | if (fabs(adThresh - 820) < Dtol){
|
---|
2091 | // ERA5 new aIdx=1, swIdx=0, MODIS 820
|
---|
2092 | M0 = max(1.8230 - (0.1645 * log(C)),0.25);
|
---|
2093 | M1 = max(2.5134 - (0.3244 * log(C)),0.25);
|
---|
2094 | }
|
---|
2095 | else{
|
---|
2096 | // ERA5 new aIdx=1, swIdx=0
|
---|
2097 | //M0 = max(1.8785 - (0.1811 * log(C)),0.25);
|
---|
2098 | //M1 = max(2.0005 - (0.2346 * log(C)),0.25);
|
---|
2099 | // ERA5 new aIdx=1, swIdx=0, bare ice
|
---|
2100 | M0 = max(1.8422 - (0.1688 * log(C)),0.25);
|
---|
2101 | M1 = max(2.4979 - (0.3225 * log(C)),0.25);
|
---|
2102 | }
|
---|
2103 | }
|
---|
2104 | // ERA5 new aIdx=2, swIdx=1
|
---|
2105 | else if (aIdx<3 && swIdx>0){
|
---|
2106 | M0 = max(2.2191 - (0.2301 * log(C)),0.25);
|
---|
2107 | M1 = max(2.2917 - (0.2710 * log(C)),0.25);
|
---|
2108 | }
|
---|
2109 | // ERA5 new aIdx=2, swIdx=0
|
---|
2110 | //else if (aIdx==2){
|
---|
2111 | //}
|
---|
2112 | //From Ligtenberg
|
---|
2113 | //H = exp((-60000.0/(Tmean * R)) + (42400.0/(Tmean * R))) * (C * 9.81);
|
---|
2114 | //M0 = max(1.435 - (0.151 * log(C)),0.25);
|
---|
2115 | //M1 = max(2.366 - (0.293 * log(C)),0.25);
|
---|
2116 | //RACMO
|
---|
2117 | M0 = max(1.6599 - (0.1724 * log(C)),0.25);
|
---|
2118 | M1 = max(2.0102 - (0.2458 * log(C)),0.25);
|
---|
2119 | c0 = M0*c0arth;
|
---|
2120 | c1 = M1*c1arth;
|
---|
2121 | break;
|
---|
2122 |
|
---|
2123 | case 7: // Kuipers Munneke and others (2015) [semi-emperical], Greenland
|
---|
2124 | // common variable
|
---|
2125 | // From literature: H = exp((-60000.0/(T[i] * R)) + (42400.0/(T[i] * R))) * (C * 9.81);
|
---|
2126 | H = exp((-60000.0/(T[i] * R)) + (42400.0/(Tmean * R))) * (C * 9.81);
|
---|
2127 | c0arth = 0.07 * H;
|
---|
2128 | c1arth = 0.03 * H;
|
---|
2129 | // ERA5 old
|
---|
2130 | //M0 = max(1.8554 - (0.1316 * log(C)),0.25);
|
---|
2131 | //M1 = max(2.8901 - (0.3014 * log(C)),0.25);
|
---|
2132 | // ERA5 new aIdx=1, swIdx=0
|
---|
2133 | if (aIdx==1 && swIdx==0){
|
---|
2134 | if (fabs(adThresh - 820) < Dtol){
|
---|
2135 | // ERA5 new aIdx=1, swIdx=0, MODIS 820
|
---|
2136 | M0 = max(1.4174 - (0.1037 * log(C)),0.25);
|
---|
2137 | M1 = max(2.2010 - (0.2460 * log(C)),0.25);
|
---|
2138 | }
|
---|
2139 | else{
|
---|
2140 | // ERA5 new aIdx=1, swIdx=0
|
---|
2141 | //M0 = max(1.4574 - (0.1123 * log(C)),0.25);
|
---|
2142 | //M1 = max(2.0238 - (0.2070 * log(C)),0.25);
|
---|
2143 | // ERA5 new aIdx=1, swIdx=0, bare ice
|
---|
2144 | M0 = max(1.4318 - (0.1055 * log(C)),0.25);
|
---|
2145 | M1 = max(2.0453 - (0.2137 * log(C)),0.25);
|
---|
2146 | }
|
---|
2147 | }
|
---|
2148 | // ERA5 new aIdx=2, swIdx=1
|
---|
2149 | else if (aIdx<3 && swIdx>0){
|
---|
2150 | M0 = max(1.7834 - (0.1409 * log(C)),0.25);
|
---|
2151 | M1 = max(1.9260 - (0.1527 * log(C)),0.25);
|
---|
2152 | }
|
---|
2153 | // ERA5 new aIdx=2, swIdx=0
|
---|
2154 | //else if (aIdx==2){
|
---|
2155 | //}
|
---|
2156 | // From Kuipers Munneke
|
---|
2157 | //M0 = max(1.042 - (0.0916 * log(C)),0.25);
|
---|
2158 | //M1 = max(1.734 - (0.2039 * log(C)),0.25);
|
---|
2159 | // RACMO
|
---|
2160 | M0 = max(1.6201 - (0.1450 * log(C)),0.25);
|
---|
2161 | M1 = max(2.5577 - (0.2899 * log(C)),0.25);
|
---|
2162 | c0 = M0*c0arth;
|
---|
2163 | c1 = M1*c1arth;
|
---|
2164 | break;
|
---|
2165 | }
|
---|
2166 |
|
---|
2167 | // new snow density
|
---|
2168 | if(d[i] <= 550.0+Dtol) d[i] = d[i] + (c0 * (dIce - d[i]) / 365.0 * dt);
|
---|
2169 | else d[i] = d[i] + (c1 * (dIce - d[i]) / 365.0 * dt);
|
---|
2170 |
|
---|
2171 | //disp((num2str(nanmean(c0 .* (dIce - d(idx)) / 365 * dt))))
|
---|
2172 |
|
---|
2173 | // do not allow densities to exceed the density of ice
|
---|
2174 | if(d[i] > dIce-Ptol) d[i]=dIce;
|
---|
2175 |
|
---|
2176 | // calculate new grid cell length
|
---|
2177 | dz[i] = mass_init[i] / d[i];
|
---|
2178 | }
|
---|
2179 |
|
---|
2180 | /*Free resources:*/
|
---|
2181 | xDelete<IssmDouble>(mass_init);
|
---|
2182 | xDelete<IssmDouble>(cumdz);
|
---|
2183 | xDelete<IssmDouble>(obp);
|
---|
2184 |
|
---|
2185 | /*Assign output pointers:*/
|
---|
2186 | *pdz=dz;
|
---|
2187 | *pd=d;
|
---|
2188 |
|
---|
2189 | } /*}}}*/
|
---|
2190 | void turbulentFlux(IssmDouble* pshf, IssmDouble* plhf, IssmDouble* pEC, IssmDouble Ta, IssmDouble Ts, IssmDouble V, IssmDouble eAir, IssmDouble pAir, IssmDouble ds, IssmDouble Ws, IssmDouble Vz, IssmDouble Tz, IssmDouble dIce, int sid){ /*{{{*/
|
---|
2191 |
|
---|
2192 | //// TURBULENT HEAT FLUX
|
---|
2193 |
|
---|
2194 | // Description:
|
---|
2195 | // computed the surface sensible and latent heat fluxes [W m-2], this
|
---|
2196 | // function also calculated the mass loss/acreation due to
|
---|
2197 | // condensation/evaporation [kg]
|
---|
2198 |
|
---|
2199 | // Reference:
|
---|
2200 | // Dingman, 2002.
|
---|
2201 |
|
---|
2202 | //// INPUTS:
|
---|
2203 | // Ta: 2m air temperature [K]
|
---|
2204 | // Ts: snow/firn/ice surface temperature [K]
|
---|
2205 | // V: wind speed [m s^-^1]
|
---|
2206 | // eAir: screen level vapor pressure [Pa]
|
---|
2207 | // pAir: surface pressure [Pa]
|
---|
2208 | // ds: surface density [kg/m^3]
|
---|
2209 | // Ws: surface liquid water content [kg/m^2]
|
---|
2210 | // Vz: height above ground at which wind (V) eas sampled [m]
|
---|
2211 | // Tz: height above ground at which temperature (T) was sampled [m]
|
---|
2212 |
|
---|
2213 | /*intermediary:*/
|
---|
2214 | IssmDouble d_air=0.0;
|
---|
2215 | IssmDouble Ri=0.0;
|
---|
2216 | IssmDouble z0=0.0;
|
---|
2217 | IssmDouble coef_M=0.0;
|
---|
2218 | IssmDouble coef_H=0.0;
|
---|
2219 | IssmDouble An=0.0;
|
---|
2220 | IssmDouble C=0.0;
|
---|
2221 | IssmDouble L=0.0;
|
---|
2222 | IssmDouble eS=0.0;
|
---|
2223 |
|
---|
2224 | /*output: */
|
---|
2225 | IssmDouble shf=0.0;
|
---|
2226 | IssmDouble lhf=0.0;
|
---|
2227 | IssmDouble EC=0.0;
|
---|
2228 |
|
---|
2229 | if(VerboseSmb() && sid==0 && IssmComm::GetRank()==0)_printf0_(" turbulentFlux module\n");
|
---|
2230 |
|
---|
2231 | // calculated air density [kg/m3]
|
---|
2232 | d_air = 0.029 * pAir /(R * Ta);
|
---|
2233 |
|
---|
2234 | //// Determine Surface Roughness
|
---|
2235 | // Bougamont, 2006
|
---|
2236 | // wind/temperature surface roughness height [m]
|
---|
2237 | if (ds < dIce-Dtol && fabs(Ws) < Wtol) z0 = 0.00012; // 0.12 mm for dry snow
|
---|
2238 | else if (ds >= dIce-Dtol) z0 = 0.0032; // 3.2 mm for ice
|
---|
2239 | else z0 = 0.0013; // 1.3 mm for wet snow
|
---|
2240 |
|
---|
2241 | //// Monin-Obukhov Stability Correction
|
---|
2242 | // Reference:
|
---|
2243 | // Ohmura, A., 1982: Climate and Energy-Balance on the Arctic Tundra.
|
---|
2244 | // Journal of Climatology, 2, 65-84.
|
---|
2245 |
|
---|
2246 | // if V = 0 goes to infinity therfore if V = 0 change
|
---|
2247 | if(V< 0.01-Dtol)V=0.01;
|
---|
2248 |
|
---|
2249 | // calculate the Bulk Richardson Number (Ri)
|
---|
2250 | Ri = (2.0*9.81* (Vz - z0) * (Ta - Ts)) / ((Ta + Ts)* pow(V,2.0));
|
---|
2251 | //Ri = (2.0*9.81*(Ta - Ts)) / ((Tz - z0)*(Ta + Ts)* pow(V/(Vz - z0),2.0));
|
---|
2252 |
|
---|
2253 | // calculate Monin-Obukhov stability factors 'coefM' and 'coefH'
|
---|
2254 |
|
---|
2255 | // do not allow Ri to exceed 0.16
|
---|
2256 | // Ri = min(Ri, 0.19);
|
---|
2257 | Ri = min(Ri, 0.16); //Ohmura, 1982
|
---|
2258 |
|
---|
2259 | // calculate momentum 'coefM' stability factor
|
---|
2260 | if (Ri > 0.0+Ttol){
|
---|
2261 | // if stable
|
---|
2262 | coef_M = 1.0/(1.0-5.2*Ri);
|
---|
2263 | }
|
---|
2264 | else {
|
---|
2265 | coef_M =pow (1.0-18*Ri,-0.25);
|
---|
2266 | }
|
---|
2267 |
|
---|
2268 | // calculate heat/wind 'coef_H' stability factor
|
---|
2269 | if (Ri <= -0.03+Ttol) coef_H = coef_M/1.3;
|
---|
2270 | else coef_H = coef_M;
|
---|
2271 |
|
---|
2272 | //// Bulk-transfer coefficient
|
---|
2273 | //An = pow(0.4,2) / pow(log(Tz/z0),2); // Bulk-transfer coefficient
|
---|
2274 | An = pow(0.4,2) / (log(Tz/z0)*log(Vz/z0)); // Bulk-transfer coefficient
|
---|
2275 | C = An * d_air * V; // shf & lhf common coefficient
|
---|
2276 |
|
---|
2277 | //// Sensible Heat
|
---|
2278 | // calculate the sensible heat flux [W m-2](Patterson, 1998)
|
---|
2279 | shf = C * CA * (Ta - Ts);
|
---|
2280 |
|
---|
2281 | // adjust using Monin-Obukhov stability theory
|
---|
2282 | shf = shf / (coef_M * coef_H);
|
---|
2283 |
|
---|
2284 | // Latent Heat
|
---|
2285 | // determine if snow pack is melting & calcualte surface vapour pressure over ice or liquid water
|
---|
2286 | if (Ts >= CtoK-Ttol){
|
---|
2287 | L = LV; //for liquid water at 273.15 k to vapor
|
---|
2288 |
|
---|
2289 | //for liquid surface (assume liquid on surface when Ts == 0 deg C)
|
---|
2290 | // Wright (1997), US Meteorological Handbook from Murphy and Koop, 2005 Appendix A
|
---|
2291 | eS = 611.21 * exp(17.502 * (Ts - CtoK) / (240.97 + Ts - CtoK));
|
---|
2292 | }
|
---|
2293 | else{
|
---|
2294 | L = LS; // latent heat of sublimation
|
---|
2295 |
|
---|
2296 | // for an ice surface Murphy and Koop, 2005 [Equation 7]
|
---|
2297 | eS = exp(9.550426 - 5723.265/Ts + 3.53068 * log(Ts) - 0.00728332 * Ts);
|
---|
2298 | }
|
---|
2299 |
|
---|
2300 | // Latent heat flux [W m-2]
|
---|
2301 | lhf = C * L * (eAir - eS) * 0.622 / pAir;
|
---|
2302 |
|
---|
2303 | // adjust using Monin-Obukhov stability theory (if lhf '+' then there is
|
---|
2304 | // energy and mass gained at the surface, if '-' then there is mass and
|
---|
2305 | // energy loss at the surface.
|
---|
2306 | lhf = lhf / (coef_M * coef_H);
|
---|
2307 |
|
---|
2308 | // mass loss (-)/acreation(+) due to evaporation/condensation [kg]
|
---|
2309 | EC = lhf * dts / L;
|
---|
2310 |
|
---|
2311 | /*assign output poitners: */
|
---|
2312 | *pshf=shf;
|
---|
2313 | *plhf=lhf;
|
---|
2314 | *pEC=EC;
|
---|
2315 |
|
---|
2316 | } /*}}}*/
|
---|