| 1 | /*
 | 
|---|
| 2 |  * \file Observations.cpp
 | 
|---|
| 3 |  * \brief: Implementation of Observations class, derived from DataSet class.
 | 
|---|
| 4 |  */
 | 
|---|
| 5 | 
 | 
|---|
| 6 | /*Headers: {{{*/
 | 
|---|
| 7 | #ifdef HAVE_CONFIG_H
 | 
|---|
| 8 |         #include <config.h>
 | 
|---|
| 9 | #else
 | 
|---|
| 10 | #error "Cannot compile with HAVE_CONFIG_H symbol! run configure first!"
 | 
|---|
| 11 | #endif
 | 
|---|
| 12 | 
 | 
|---|
| 13 | #include <vector>
 | 
|---|
| 14 | #include <functional>
 | 
|---|
| 15 | #include <algorithm>
 | 
|---|
| 16 | #include <iostream>
 | 
|---|
| 17 | 
 | 
|---|
| 18 | #include "../Options/Options.h"
 | 
|---|
| 19 | #include "./Observations.h"
 | 
|---|
| 20 | #include "./Observation.h"
 | 
|---|
| 21 | #include "../../datastructures/datastructures.h"
 | 
|---|
| 22 | #include "../../shared/shared.h"
 | 
|---|
| 23 | 
 | 
|---|
| 24 | #include "./Quadtree.h"
 | 
|---|
| 25 | #include "./Variogram.h"
 | 
|---|
| 26 | #include "../../toolkits/toolkits.h"
 | 
|---|
| 27 | 
 | 
|---|
| 28 | using namespace std;
 | 
|---|
| 29 | /*}}}*/
 | 
|---|
| 30 | 
 | 
|---|
| 31 | /*Object constructors and destructor*/
 | 
|---|
| 32 | /*FUNCTION Observations::Observations(){{{*/
 | 
|---|
| 33 | Observations::Observations(){
 | 
|---|
| 34 |         this->quadtree = NULL;
 | 
|---|
| 35 |         return;
 | 
|---|
| 36 | }
 | 
|---|
| 37 | /*}}}*/
 | 
|---|
| 38 | /*FUNCTION Observations::Observations(IssmPDouble* observations_list,IssmPDouble* x,IssmPDouble* y,int n,Options* options){{{*/
 | 
|---|
| 39 | Observations::Observations(IssmPDouble* observations_list,IssmPDouble* x,IssmPDouble* y,int n,Options* options){
 | 
|---|
| 40 | 
 | 
|---|
| 41 |         /*Intermediaries*/
 | 
|---|
| 42 |         int          i,maxdepth,level,counter,index;
 | 
|---|
| 43 |         int          xi,yi;
 | 
|---|
| 44 |         IssmPDouble  xmin,xmax,ymin,ymax;
 | 
|---|
| 45 |         IssmPDouble  offset,minlength,minspacing,mintrimming,maxtrimming;
 | 
|---|
| 46 |         Observation *observation = NULL;
 | 
|---|
| 47 | 
 | 
|---|
| 48 |         /*Check that observations is not empty*/
 | 
|---|
| 49 |         if(n==0) _error_("No observation found");
 | 
|---|
| 50 | 
 | 
|---|
| 51 |         /*Get extrema*/
 | 
|---|
| 52 |         xmin=x[0]; ymin=y[0];
 | 
|---|
| 53 |         xmax=x[0]; ymax=y[0];
 | 
|---|
| 54 |         for(i=1;i<n;i++){
 | 
|---|
| 55 |                 xmin=min(xmin,x[i]); ymin=min(ymin,y[i]);
 | 
|---|
| 56 |                 xmax=max(xmax,x[i]); ymax=max(ymax,y[i]);
 | 
|---|
| 57 |         }
 | 
|---|
| 58 |         offset=0.05*(xmax-xmin); xmin-=offset; xmax+=offset;
 | 
|---|
| 59 |         offset=0.05*(ymax-ymin); ymin-=offset; ymax+=offset;
 | 
|---|
| 60 | 
 | 
|---|
| 61 |         /*Get trimming limits*/
 | 
|---|
| 62 |         options->Get(&mintrimming,"mintrimming",-1.e+21);
 | 
|---|
| 63 |         options->Get(&maxtrimming,"maxtrimming",+1.e+21);
 | 
|---|
| 64 |         options->Get(&minspacing,"minspacing",0.01);
 | 
|---|
| 65 |         if(minspacing<=0) _error_("minspacing must > 0");
 | 
|---|
| 66 | 
 | 
|---|
| 67 |         /*Get Minimum box size*/
 | 
|---|
| 68 |         if(options->GetOption("boxlength")){
 | 
|---|
| 69 |                 options->Get(&minlength,"boxlength");
 | 
|---|
| 70 |                 if(minlength<=0)_error_("boxlength should be a positive number");
 | 
|---|
| 71 |                 maxdepth=reCast<int,IssmPDouble>(log(max(xmax-xmin,ymax-ymin)/minlength +1)/log(2.0));
 | 
|---|
| 72 |         }
 | 
|---|
| 73 |         else{
 | 
|---|
| 74 |                 maxdepth = 30;
 | 
|---|
| 75 |                 minlength=max(xmax-xmin,ymax-ymin)/IssmPDouble((1L<<maxdepth)-1);
 | 
|---|
| 76 |         }
 | 
|---|
| 77 | 
 | 
|---|
| 78 |         /*Initialize Quadtree*/
 | 
|---|
| 79 |         _printf0_("Generating quadtree with a maximum box size " << minlength << " (depth=" << maxdepth << ")... ");
 | 
|---|
| 80 |         this->quadtree = new Quadtree(xmin,xmax,ymin,ymax,maxdepth);
 | 
|---|
| 81 | 
 | 
|---|
| 82 |         /*Add observations one by one*/
 | 
|---|
| 83 |         counter = 0;
 | 
|---|
| 84 |         for(i=0;i<n;i++){
 | 
|---|
| 85 | 
 | 
|---|
| 86 |                 /*First check limits*/
 | 
|---|
| 87 |                 if(observations_list[i]>maxtrimming) continue;
 | 
|---|
| 88 |                 if(observations_list[i]<mintrimming) continue;
 | 
|---|
| 89 | 
 | 
|---|
| 90 |                 /*First check that this observation is not too close from another one*/
 | 
|---|
| 91 |                 this->quadtree->ClosestObs(&index,x[i],y[i]);
 | 
|---|
| 92 |                 if(index>=0){
 | 
|---|
| 93 |                         observation=dynamic_cast<Observation*>(this->GetObjectByOffset(index));
 | 
|---|
| 94 |                         if(pow(observation->x-x[i],2)+pow(observation->y-y[i],2) < minspacing) continue;
 | 
|---|
| 95 |                 }
 | 
|---|
| 96 | 
 | 
|---|
| 97 |                 this->quadtree->IntergerCoordinates(&xi,&yi,x[i],y[i]);
 | 
|---|
| 98 |                 this->quadtree->QuadtreeDepth2(&level,xi,yi);
 | 
|---|
| 99 |                 if((int)level <= maxdepth){
 | 
|---|
| 100 |                         observation = new Observation(x[i],y[i],xi,yi,counter++,observations_list[i]);
 | 
|---|
| 101 |                         this->quadtree->Add(observation);
 | 
|---|
| 102 |                         this->AddObject(observation);
 | 
|---|
| 103 |                 }
 | 
|---|
| 104 |                 else{
 | 
|---|
| 105 |                         /*We need to average with the current observations*/
 | 
|---|
| 106 |                         this->quadtree->AddAndAverage(x[i],y[i],observations_list[i]);
 | 
|---|
| 107 |                 }
 | 
|---|
| 108 |         }
 | 
|---|
| 109 |         _printf0_("done\n");
 | 
|---|
| 110 |         _printf0_("Initial number of observations: " << n << "\n");
 | 
|---|
| 111 |         _printf0_("  Final number of observations: " << this->quadtree->NbObs << "\n");
 | 
|---|
| 112 | }
 | 
|---|
| 113 | /*}}}*/
 | 
|---|
| 114 | /*FUNCTION Observations::~Observations(){{{*/
 | 
|---|
| 115 | Observations::~Observations(){
 | 
|---|
| 116 |         delete quadtree;
 | 
|---|
| 117 |         return;
 | 
|---|
| 118 | }
 | 
|---|
| 119 | /*}}}*/
 | 
|---|
| 120 | 
 | 
|---|
| 121 | /*Methods*/
 | 
|---|
| 122 | /*FUNCTION Observations::ClosestObservation{{{*/
 | 
|---|
| 123 | void Observations::ClosestObservation(IssmPDouble *px,IssmPDouble *py,IssmPDouble *pobs,IssmPDouble x_interp,IssmPDouble y_interp,IssmPDouble radius){
 | 
|---|
| 124 | 
 | 
|---|
| 125 |         /*Output and Intermediaries*/
 | 
|---|
| 126 |         int          nobs,i,index;
 | 
|---|
| 127 |         IssmPDouble  hmin,h2,hmin2,radius2;
 | 
|---|
| 128 |         int         *indices      = NULL;
 | 
|---|
| 129 |         Observation *observation  = NULL;
 | 
|---|
| 130 | 
 | 
|---|
| 131 |         /*If radius is not provided or is 0, return all observations*/
 | 
|---|
| 132 |         if(radius==0) radius=this->quadtree->root->length;
 | 
|---|
| 133 | 
 | 
|---|
| 134 |         /*First, find closest point in Quadtree (fast but might not be the true closest obs)*/
 | 
|---|
| 135 |         this->quadtree->ClosestObs(&index,x_interp,y_interp);
 | 
|---|
| 136 |         if(index>=0){
 | 
|---|
| 137 |                 observation=dynamic_cast<Observation*>(this->GetObjectByOffset(index));
 | 
|---|
| 138 |                 hmin = sqrt((observation->x-x_interp)*(observation->x-x_interp) + (observation->y-y_interp)*(observation->y-y_interp));
 | 
|---|
| 139 |                 if(hmin<radius) radius=hmin;
 | 
|---|
| 140 |         }
 | 
|---|
| 141 | 
 | 
|---|
| 142 |         /*Compute radius square*/
 | 
|---|
| 143 |         radius2 = radius*radius;
 | 
|---|
| 144 | 
 | 
|---|
| 145 |         /*Find all observations that are in radius*/
 | 
|---|
| 146 |         this->quadtree->RangeSearch(&indices,&nobs,x_interp,y_interp,radius);
 | 
|---|
| 147 |         for (i=0;i<nobs;i++){
 | 
|---|
| 148 |                 observation=dynamic_cast<Observation*>(this->GetObjectByOffset(indices[i]));
 | 
|---|
| 149 |                 h2 = (observation->x-x_interp)*(observation->x-x_interp) + (observation->y-y_interp)*(observation->y-y_interp);
 | 
|---|
| 150 |                 if(i==0){
 | 
|---|
| 151 |                         hmin2 = h2;
 | 
|---|
| 152 |                         index = indices[i];
 | 
|---|
| 153 |                 }
 | 
|---|
| 154 |                 else{
 | 
|---|
| 155 |                         if(h2<hmin2){
 | 
|---|
| 156 |                                 hmin2 = h2;
 | 
|---|
| 157 |                                 index = indices[i];
 | 
|---|
| 158 |                         }
 | 
|---|
| 159 |                 }
 | 
|---|
| 160 |         }  
 | 
|---|
| 161 | 
 | 
|---|
| 162 |         /*Assign output pointer*/
 | 
|---|
| 163 |         if(index>=0){
 | 
|---|
| 164 |                 observation=dynamic_cast<Observation*>(this->GetObjectByOffset(index));
 | 
|---|
| 165 |                 *px=observation->x;
 | 
|---|
| 166 |                 *py=observation->y;
 | 
|---|
| 167 |                 *pobs=observation->value;
 | 
|---|
| 168 |         }
 | 
|---|
| 169 |         else{
 | 
|---|
| 170 | 
 | 
|---|
| 171 |                 *px=UNDEF;
 | 
|---|
| 172 |                 *py=UNDEF;
 | 
|---|
| 173 |                 *pobs=UNDEF;
 | 
|---|
| 174 |         }
 | 
|---|
| 175 |         xDelete<int>(indices);
 | 
|---|
| 176 | 
 | 
|---|
| 177 | }/*}}}*/
 | 
|---|
| 178 | /*FUNCTION Observations::Distances{{{*/
 | 
|---|
| 179 | void Observations::Distances(IssmPDouble* distances,IssmPDouble *x,IssmPDouble *y,int n,IssmPDouble radius){
 | 
|---|
| 180 | 
 | 
|---|
| 181 |         IssmPDouble xi,yi,obs;
 | 
|---|
| 182 | 
 | 
|---|
| 183 |         for(int i=0;i<n;i++){
 | 
|---|
| 184 |                 this->ClosestObservation(&xi,&yi,&obs,x[i],y[i],radius);
 | 
|---|
| 185 |                 if(xi==UNDEF && yi==UNDEF)
 | 
|---|
| 186 |                  distances[i]=UNDEF;
 | 
|---|
| 187 |                 else
 | 
|---|
| 188 |                  distances[i]=sqrt( (x[i]-xi)*(x[i]-xi) + (y[i]-yi)*(y[i]-yi) );
 | 
|---|
| 189 |         }
 | 
|---|
| 190 | }/*}}}*/
 | 
|---|
| 191 | /*FUNCTION Observations::ObservationList(IssmPDouble **px,IssmPDouble **py,IssmPDouble **pobs,int* pnobs,IssmPDouble x_interp,IssmPDouble y_interp,IssmPDouble radius,int maxdata){{{*/
 | 
|---|
| 192 | void Observations::ObservationList(IssmPDouble **px,IssmPDouble **py,IssmPDouble **pobs,int* pnobs,IssmPDouble x_interp,IssmPDouble y_interp,IssmPDouble radius,int maxdata){
 | 
|---|
| 193 | 
 | 
|---|
| 194 |         /*Output and Intermediaries*/
 | 
|---|
| 195 |         bool         stop;
 | 
|---|
| 196 |         int          nobs,tempnobs,i,j,k,n,counter;
 | 
|---|
| 197 |         IssmPDouble  h2,radius2;
 | 
|---|
| 198 |         int         *indices      = NULL;
 | 
|---|
| 199 |         int         *tempindices  = NULL;
 | 
|---|
| 200 |         IssmPDouble *dists        = NULL;
 | 
|---|
| 201 |         IssmPDouble *x            = NULL;
 | 
|---|
| 202 |         IssmPDouble *y            = NULL;
 | 
|---|
| 203 |         IssmPDouble *obs          = NULL;
 | 
|---|
| 204 |         Observation *observation  = NULL;
 | 
|---|
| 205 | 
 | 
|---|
| 206 |         /*If radius is not provided or is 0, return all observations*/
 | 
|---|
| 207 |         if(radius==0) radius=this->quadtree->root->length;
 | 
|---|
| 208 | 
 | 
|---|
| 209 |         /*Compute radius square*/
 | 
|---|
| 210 |         radius2 = radius*radius;
 | 
|---|
| 211 | 
 | 
|---|
| 212 |         /*Find all observations that are in radius*/
 | 
|---|
| 213 |         this->quadtree->RangeSearch(&tempindices,&tempnobs,x_interp,y_interp,radius);
 | 
|---|
| 214 |         if(tempnobs){
 | 
|---|
| 215 |                 indices = xNew<int>(tempnobs);
 | 
|---|
| 216 |                 dists   = xNew<IssmPDouble>(tempnobs);
 | 
|---|
| 217 |         }
 | 
|---|
| 218 |         nobs = 0;
 | 
|---|
| 219 |         for (i=0;i<tempnobs;i++){
 | 
|---|
| 220 |                 observation=dynamic_cast<Observation*>(this->GetObjectByOffset(tempindices[i]));
 | 
|---|
| 221 |                 h2 = (observation->x-x_interp)*(observation->x-x_interp) + (observation->y-y_interp)*(observation->y-y_interp);
 | 
|---|
| 222 | 
 | 
|---|
| 223 |                 if(nobs==maxdata && h2>radius2) continue;
 | 
|---|
| 224 |                 if(nobs<=maxdata){
 | 
|---|
| 225 |                         indices[nobs]   = tempindices[i];
 | 
|---|
| 226 |                         dists[nobs]     = h2;
 | 
|---|
| 227 |                         nobs++;
 | 
|---|
| 228 |                 }
 | 
|---|
| 229 |                 if(nobs==1) continue;
 | 
|---|
| 230 | 
 | 
|---|
| 231 |                 /*Sort all dists up to now*/
 | 
|---|
| 232 |                 n=nobs-1;
 | 
|---|
| 233 |                 stop = false;
 | 
|---|
| 234 |                 for(k=0;k<n-1;k++){
 | 
|---|
| 235 |                         if(h2<dists[k]){
 | 
|---|
| 236 |                                 counter=1;
 | 
|---|
| 237 |                                 for(int jj=k;jj<n;jj++){
 | 
|---|
| 238 |                                         j  = n-counter;
 | 
|---|
| 239 |                                         dists[j+1]   = dists[j];
 | 
|---|
| 240 |                                         indices[j+1] = indices[j];
 | 
|---|
| 241 |                                         counter++;
 | 
|---|
| 242 |                                 }
 | 
|---|
| 243 |                                 dists[k]   = h2;
 | 
|---|
| 244 |                                 indices[k] = tempindices[i];
 | 
|---|
| 245 |                                 stop = true;
 | 
|---|
| 246 |                                 break;
 | 
|---|
| 247 |                         }
 | 
|---|
| 248 |                         if(stop) break;
 | 
|---|
| 249 |                 }
 | 
|---|
| 250 |         }  
 | 
|---|
| 251 |         xDelete<IssmPDouble>(dists);
 | 
|---|
| 252 |         xDelete<int>(tempindices);
 | 
|---|
| 253 | 
 | 
|---|
| 254 |         if(nobs){
 | 
|---|
| 255 |                 /*Allocate vectors*/
 | 
|---|
| 256 |                 x   = xNew<IssmPDouble>(nobs);
 | 
|---|
| 257 |                 y   = xNew<IssmPDouble>(nobs);
 | 
|---|
| 258 |                 obs = xNew<IssmPDouble>(nobs);
 | 
|---|
| 259 | 
 | 
|---|
| 260 |                 /*Loop over all observations and fill in x, y and obs*/
 | 
|---|
| 261 |                 for (i=0;i<nobs;i++){
 | 
|---|
| 262 |                         observation=dynamic_cast<Observation*>(this->GetObjectByOffset(indices[i]));
 | 
|---|
| 263 |                         observation->WriteXYObs(&x[i],&y[i],&obs[i]);
 | 
|---|
| 264 |                 }
 | 
|---|
| 265 |         }
 | 
|---|
| 266 | 
 | 
|---|
| 267 |         /*Assign output pointer*/
 | 
|---|
| 268 |         xDelete<int>(indices);
 | 
|---|
| 269 |         *px=x;
 | 
|---|
| 270 |         *py=y;
 | 
|---|
| 271 |         *pobs=obs;
 | 
|---|
| 272 |         *pnobs=nobs;
 | 
|---|
| 273 | }/*}}}*/
 | 
|---|
| 274 | /*FUNCTION Observations::ObservationList(IssmPDouble **px,IssmPDouble **py,IssmPDouble **pobs,int* pnobs){{{*/
 | 
|---|
| 275 | void Observations::ObservationList(IssmPDouble **px,IssmPDouble **py,IssmPDouble **pobs,int* pnobs){
 | 
|---|
| 276 | 
 | 
|---|
| 277 |         /*Output and Intermediaries*/
 | 
|---|
| 278 |         int          nobs;
 | 
|---|
| 279 |         IssmPDouble *x            = NULL;
 | 
|---|
| 280 |         IssmPDouble *y            = NULL;
 | 
|---|
| 281 |         IssmPDouble *obs          = NULL;
 | 
|---|
| 282 |         Observation *observation  = NULL;
 | 
|---|
| 283 | 
 | 
|---|
| 284 |         nobs = this->Size();
 | 
|---|
| 285 | 
 | 
|---|
| 286 |         if(nobs){
 | 
|---|
| 287 |                 x   = xNew<IssmPDouble>(nobs);
 | 
|---|
| 288 |                 y   = xNew<IssmPDouble>(nobs);
 | 
|---|
| 289 |                 obs = xNew<IssmPDouble>(nobs);
 | 
|---|
| 290 |                 for(int i=0;i<this->Size();i++){
 | 
|---|
| 291 |                         observation=dynamic_cast<Observation*>(this->GetObjectByOffset(i));
 | 
|---|
| 292 |                         observation->WriteXYObs(&x[i],&y[i],&obs[i]);
 | 
|---|
| 293 |                 }
 | 
|---|
| 294 |         }
 | 
|---|
| 295 | 
 | 
|---|
| 296 |         /*Assign output pointer*/
 | 
|---|
| 297 |         *px=x;
 | 
|---|
| 298 |         *py=y;
 | 
|---|
| 299 |         *pobs=obs;
 | 
|---|
| 300 |         *pnobs=nobs;
 | 
|---|
| 301 | }/*}}}*/
 | 
|---|
| 302 | /*FUNCTION Observations::InterpolationIDW{{{*/
 | 
|---|
| 303 | void Observations::InterpolationIDW(IssmPDouble *pprediction,IssmPDouble x_interp,IssmPDouble y_interp,IssmPDouble radius,int mindata,int maxdata,IssmPDouble power){
 | 
|---|
| 304 | 
 | 
|---|
| 305 |         /*Intermediaries*/
 | 
|---|
| 306 |         int         i,n_obs;
 | 
|---|
| 307 |         IssmPDouble prediction;
 | 
|---|
| 308 |         IssmPDouble numerator,denominator,h,weight;
 | 
|---|
| 309 |         IssmPDouble *x   = NULL;
 | 
|---|
| 310 |         IssmPDouble *y   = NULL;
 | 
|---|
| 311 |         IssmPDouble *obs = NULL;
 | 
|---|
| 312 | 
 | 
|---|
| 313 |         /*Some checks*/
 | 
|---|
| 314 |         _assert_(maxdata>0);
 | 
|---|
| 315 |         _assert_(pprediction);
 | 
|---|
| 316 |         _assert_(power>0);
 | 
|---|
| 317 | 
 | 
|---|
| 318 |         /*If radius is not provided or is 0, return all observations*/
 | 
|---|
| 319 |         if(radius==0) radius=this->quadtree->root->length;
 | 
|---|
| 320 | 
 | 
|---|
| 321 |         /*Get list of observations for current point*/
 | 
|---|
| 322 |         this->ObservationList(&x,&y,&obs,&n_obs,x_interp,y_interp,radius,maxdata);
 | 
|---|
| 323 | 
 | 
|---|
| 324 |         /*If we have less observations than mindata, return UNDEF*/
 | 
|---|
| 325 |         if(n_obs<mindata){
 | 
|---|
| 326 |                 prediction = UNDEF; 
 | 
|---|
| 327 |         }
 | 
|---|
| 328 |         else{
 | 
|---|
| 329 |                 numerator   = 0.;
 | 
|---|
| 330 |                 denominator = 0.;
 | 
|---|
| 331 |                 for(i=0;i<n_obs;i++){
 | 
|---|
| 332 |                         h = sqrt( (x[i]-x_interp)*(x[i]-x_interp) + (y[i]-y_interp)*(y[i]-y_interp));
 | 
|---|
| 333 |                         if (h<0.0000001){
 | 
|---|
| 334 |                                 numerator   = obs[i];
 | 
|---|
| 335 |                                 denominator = 1.;
 | 
|---|
| 336 |                                 break;
 | 
|---|
| 337 |                         }
 | 
|---|
| 338 |                         weight = 1./pow(h,power);
 | 
|---|
| 339 |                         numerator   += weight*obs[i];
 | 
|---|
| 340 |                         denominator += weight;
 | 
|---|
| 341 |                 }
 | 
|---|
| 342 |                 prediction = numerator/denominator; 
 | 
|---|
| 343 |         }
 | 
|---|
| 344 | 
 | 
|---|
| 345 |         /*clean-up*/
 | 
|---|
| 346 |         *pprediction = prediction;
 | 
|---|
| 347 |         xDelete<IssmPDouble>(x);
 | 
|---|
| 348 |         xDelete<IssmPDouble>(y);
 | 
|---|
| 349 |         xDelete<IssmPDouble>(obs);
 | 
|---|
| 350 | }/*}}}*/
 | 
|---|
| 351 | /*FUNCTION Observations::InterpolationKriging{{{*/
 | 
|---|
| 352 | void Observations::InterpolationKriging(IssmPDouble *pprediction,IssmPDouble *perror,IssmPDouble x_interp,IssmPDouble y_interp,IssmPDouble radius,int mindata,int maxdata,Variogram* variogram){
 | 
|---|
| 353 | 
 | 
|---|
| 354 |         /*Intermediaries*/
 | 
|---|
| 355 |         int           i,j,n_obs;
 | 
|---|
| 356 |         IssmPDouble   prediction,error;
 | 
|---|
| 357 |         IssmPDouble   numerator,denominator,ratio;
 | 
|---|
| 358 |         IssmPDouble  *x            = NULL;
 | 
|---|
| 359 |         IssmPDouble  *y            = NULL;
 | 
|---|
| 360 |         IssmPDouble  *obs          = NULL;
 | 
|---|
| 361 |         IssmPDouble  *Gamma        = NULL;
 | 
|---|
| 362 |         IssmPDouble  *GinvG0       = NULL;
 | 
|---|
| 363 |         IssmPDouble  *Ginv1        = NULL;
 | 
|---|
| 364 |         IssmPDouble  *GinvZ        = NULL;
 | 
|---|
| 365 |         IssmPDouble  *gamma0       = NULL;
 | 
|---|
| 366 |         IssmPDouble  *ones         = NULL;
 | 
|---|
| 367 | 
 | 
|---|
| 368 |         /*Some checks*/
 | 
|---|
| 369 |         _assert_(mindata>0 && maxdata>0);
 | 
|---|
| 370 |         _assert_(pprediction && perror);
 | 
|---|
| 371 | 
 | 
|---|
| 372 |         /*If radius is not provided or is 0, return all observations*/
 | 
|---|
| 373 |         if(radius==0) radius=this->quadtree->root->length;
 | 
|---|
| 374 | 
 | 
|---|
| 375 |         /*Get list of observations for current point*/
 | 
|---|
| 376 |         this->ObservationList(&x,&y,&obs,&n_obs,x_interp,y_interp,radius,maxdata);
 | 
|---|
| 377 | 
 | 
|---|
| 378 |         /*If we have less observations than mindata, return UNDEF*/
 | 
|---|
| 379 |         if(n_obs<mindata){
 | 
|---|
| 380 |                 *pprediction = -999.0; 
 | 
|---|
| 381 |                 *perror      = -999.0; 
 | 
|---|
| 382 |                 return;
 | 
|---|
| 383 |         }
 | 
|---|
| 384 | 
 | 
|---|
| 385 |         /*Allocate intermediary matrix and vectors*/
 | 
|---|
| 386 |         Gamma  = xNew<IssmPDouble>(n_obs*n_obs);
 | 
|---|
| 387 |         gamma0 = xNew<IssmPDouble>(n_obs);
 | 
|---|
| 388 |         ones   = xNew<IssmPDouble>(n_obs);
 | 
|---|
| 389 | 
 | 
|---|
| 390 |         /*First: Create semivariogram matrix for observations*/
 | 
|---|
| 391 |         for(i=0;i<n_obs;i++){
 | 
|---|
| 392 |                 for(j=0;j<=i;j++){
 | 
|---|
| 393 |                         //Gamma[i*n_obs+j] = variogram->SemiVariogram(x[i]-x[j],y[i]-y[j]);
 | 
|---|
| 394 |                         Gamma[i*n_obs+j] = variogram->Covariance(x[i]-x[j],y[i]-y[j]);
 | 
|---|
| 395 |                         Gamma[j*n_obs+i] = Gamma[i*n_obs+j];
 | 
|---|
| 396 |                 }
 | 
|---|
| 397 |         }
 | 
|---|
| 398 |         for(i=0;i<n_obs;i++) ones[i]=1;
 | 
|---|
| 399 | 
 | 
|---|
| 400 |         /*Get semivariogram vector associated to this location*/
 | 
|---|
| 401 |         //for(i=0;i<n_obs;i++) gamma0[i] = variogram->SemiVariogram(x[i]-x_interp,y[i]-y_interp);
 | 
|---|
| 402 |         for(i=0;i<n_obs;i++) gamma0[i] = variogram->Covariance(x[i]-x_interp,y[i]-y_interp);
 | 
|---|
| 403 | 
 | 
|---|
| 404 |         /*Solve the three linear systems*/
 | 
|---|
| 405 | #if _HAVE_GSL_
 | 
|---|
| 406 |         DenseGslSolve(&GinvG0,Gamma,gamma0,n_obs); // Gamma^-1 gamma0
 | 
|---|
| 407 |         DenseGslSolve(&Ginv1, Gamma,ones,n_obs);   // Gamma^-1 ones
 | 
|---|
| 408 |         DenseGslSolve(&GinvZ, Gamma,obs,n_obs);    // Gamma^-1 Z
 | 
|---|
| 409 | #else
 | 
|---|
| 410 |         _error_("GSL is required");
 | 
|---|
| 411 | #endif
 | 
|---|
| 412 | 
 | 
|---|
| 413 |         /*Prepare predictor*/
 | 
|---|
| 414 |         numerator=-1.; denominator=0.;
 | 
|---|
| 415 |         for(i=0;i<n_obs;i++) numerator  +=GinvG0[i];
 | 
|---|
| 416 |         for(i=0;i<n_obs;i++) denominator+=Ginv1[i];
 | 
|---|
| 417 |         ratio=numerator/denominator;
 | 
|---|
| 418 | 
 | 
|---|
| 419 |         prediction = 0.;
 | 
|---|
| 420 |         error      = - numerator*numerator/denominator;
 | 
|---|
| 421 |         for(i=0;i<n_obs;i++) prediction += (gamma0[i]-ratio)*GinvZ[i];
 | 
|---|
| 422 |         for(i=0;i<n_obs;i++) error += gamma0[i]*GinvG0[i];
 | 
|---|
| 423 | 
 | 
|---|
| 424 |         /*clean-up*/
 | 
|---|
| 425 |         *pprediction = prediction;
 | 
|---|
| 426 |         *perror = error;
 | 
|---|
| 427 |         xDelete<IssmPDouble>(x);
 | 
|---|
| 428 |         xDelete<IssmPDouble>(y);
 | 
|---|
| 429 |         xDelete<IssmPDouble>(obs);
 | 
|---|
| 430 |         xDelete<IssmPDouble>(Gamma);
 | 
|---|
| 431 |         xDelete<IssmPDouble>(gamma0);
 | 
|---|
| 432 |         xDelete<IssmPDouble>(ones);
 | 
|---|
| 433 |         xDelete<IssmPDouble>(GinvG0);
 | 
|---|
| 434 |         xDelete<IssmPDouble>(Ginv1);
 | 
|---|
| 435 |         xDelete<IssmPDouble>(GinvZ);
 | 
|---|
| 436 | 
 | 
|---|
| 437 | }/*}}}*/
 | 
|---|
| 438 | /*FUNCTION Observations::InterpolationNearestNeighbor{{{*/
 | 
|---|
| 439 | void Observations::InterpolationNearestNeighbor(IssmPDouble *pprediction,IssmPDouble x_interp,IssmPDouble y_interp,IssmPDouble radius){
 | 
|---|
| 440 | 
 | 
|---|
| 441 |         /*Intermediaries*/
 | 
|---|
| 442 |         IssmPDouble x,y,obs;
 | 
|---|
| 443 | 
 | 
|---|
| 444 |         /*Get clostest observation*/
 | 
|---|
| 445 |         this->ClosestObservation(&x,&y,&obs,x_interp,y_interp,radius);
 | 
|---|
| 446 | 
 | 
|---|
| 447 |         /*Assign output pointer*/
 | 
|---|
| 448 |         *pprediction = obs;
 | 
|---|
| 449 | }/*}}}*/
 | 
|---|
| 450 | /*FUNCTION Observations::InterpolationV4{{{*/
 | 
|---|
| 451 | void Observations::InterpolationV4(IssmPDouble *pprediction,IssmPDouble x_interp,IssmPDouble y_interp,IssmPDouble radius,int mindata,int maxdata){
 | 
|---|
| 452 |         /* Reference:  David T. Sandwell, Biharmonic spline interpolation of GEOS-3
 | 
|---|
| 453 |          * and SEASAT altimeter data, Geophysical Research Letters, 2, 139-142,
 | 
|---|
| 454 |          * 1987.  Describes interpolation using value or gradient of value in any
 | 
|---|
| 455 |          * dimension.*/
 | 
|---|
| 456 | 
 | 
|---|
| 457 |         /*Intermediaries*/
 | 
|---|
| 458 |         int         i,j,n_obs;
 | 
|---|
| 459 |         IssmPDouble prediction,h;
 | 
|---|
| 460 |         IssmPDouble *x       = NULL;
 | 
|---|
| 461 |         IssmPDouble *y       = NULL;
 | 
|---|
| 462 |         IssmPDouble *obs     = NULL;
 | 
|---|
| 463 |         IssmPDouble *Green   = NULL;
 | 
|---|
| 464 |         IssmPDouble *weights = NULL;
 | 
|---|
| 465 |         IssmPDouble *g       = NULL;
 | 
|---|
| 466 | 
 | 
|---|
| 467 |         /*Some checks*/
 | 
|---|
| 468 |         _assert_(maxdata>0);
 | 
|---|
| 469 |         _assert_(pprediction);
 | 
|---|
| 470 | 
 | 
|---|
| 471 |         /*If radius is not provided or is 0, return all observations*/
 | 
|---|
| 472 |         if(radius==0) radius=this->quadtree->root->length;
 | 
|---|
| 473 | 
 | 
|---|
| 474 |         /*Get list of observations for current point*/
 | 
|---|
| 475 |         this->ObservationList(&x,&y,&obs,&n_obs,x_interp,y_interp,radius,maxdata);
 | 
|---|
| 476 | 
 | 
|---|
| 477 |         /*If we have less observations than mindata, return UNDEF*/
 | 
|---|
| 478 |         if(n_obs<mindata || n_obs<2){
 | 
|---|
| 479 |                 prediction = UNDEF; 
 | 
|---|
| 480 |         }
 | 
|---|
| 481 |         else{
 | 
|---|
| 482 | 
 | 
|---|
| 483 |                 /*Allocate intermediary matrix and vectors*/
 | 
|---|
| 484 |                 Green = xNew<IssmPDouble>(n_obs*n_obs);
 | 
|---|
| 485 |                 g     = xNew<IssmPDouble>(n_obs);
 | 
|---|
| 486 | 
 | 
|---|
| 487 |                 /*First: distance vector*/
 | 
|---|
| 488 |                 for(i=0;i<n_obs;i++){
 | 
|---|
| 489 |                         h = sqrt( (x[i]-x_interp)*(x[i]-x_interp) + (y[i]-y_interp)*(y[i]-y_interp) );
 | 
|---|
| 490 |                         if(h>0){
 | 
|---|
| 491 |                                 g[i] = h*h*(log(h)-1.);
 | 
|---|
| 492 |                         }
 | 
|---|
| 493 |                         else{
 | 
|---|
| 494 |                                 g[i] = 0.;
 | 
|---|
| 495 |                         }
 | 
|---|
| 496 |                 }
 | 
|---|
| 497 | 
 | 
|---|
| 498 |                 /*Build Green function matrix*/
 | 
|---|
| 499 |                 for(i=0;i<n_obs;i++){
 | 
|---|
| 500 |                         for(j=0;j<=i;j++){
 | 
|---|
| 501 |                                 h = sqrt( (x[i]-x[j])*(x[i]-x[j]) + (y[i]-y[j])*(y[i]-y[j]) );
 | 
|---|
| 502 |                                 if(h>0){
 | 
|---|
| 503 |                                         Green[j*n_obs+i] = h*h*(log(h)-1.);
 | 
|---|
| 504 |                                 }
 | 
|---|
| 505 |                                 else{
 | 
|---|
| 506 |                                         Green[j*n_obs+i] = 0.;
 | 
|---|
| 507 |                                 }
 | 
|---|
| 508 |                                 Green[i*n_obs+j] = Green[j*n_obs+i];
 | 
|---|
| 509 |                         }
 | 
|---|
| 510 |                 }
 | 
|---|
| 511 | 
 | 
|---|
| 512 |                 /*Compute weights*/
 | 
|---|
| 513 | #if _HAVE_GSL_
 | 
|---|
| 514 |                 DenseGslSolve(&weights,Green,obs,n_obs); // Green^-1 obs
 | 
|---|
| 515 | #else
 | 
|---|
| 516 |                 _error_("GSL is required");
 | 
|---|
| 517 | #endif
 | 
|---|
| 518 | 
 | 
|---|
| 519 |                 /*Interpolate*/
 | 
|---|
| 520 |                 prediction = 0;
 | 
|---|
| 521 |                 for(i=0;i<n_obs;i++) prediction += weights[i]*g[i];
 | 
|---|
| 522 | 
 | 
|---|
| 523 |         }
 | 
|---|
| 524 | 
 | 
|---|
| 525 |         /*clean-up*/
 | 
|---|
| 526 |         *pprediction = prediction;
 | 
|---|
| 527 |         xDelete<IssmPDouble>(x);
 | 
|---|
| 528 |         xDelete<IssmPDouble>(y);
 | 
|---|
| 529 |         xDelete<IssmPDouble>(obs);
 | 
|---|
| 530 |         xDelete<IssmPDouble>(Green);
 | 
|---|
| 531 |         xDelete<IssmPDouble>(g);
 | 
|---|
| 532 |         xDelete<IssmPDouble>(weights);
 | 
|---|
| 533 | }/*}}}*/
 | 
|---|
| 534 | /*FUNCTION Observations::QuadtreeColoring{{{*/
 | 
|---|
| 535 | void Observations::QuadtreeColoring(IssmPDouble* A,IssmPDouble *x,IssmPDouble *y,int n){
 | 
|---|
| 536 | 
 | 
|---|
| 537 |         int xi,yi,level;
 | 
|---|
| 538 | 
 | 
|---|
| 539 |         for(int i=0;i<n;i++){
 | 
|---|
| 540 |                 this->quadtree->IntergerCoordinates(&xi,&yi,x[i],y[i]);
 | 
|---|
| 541 |                 this->quadtree->QuadtreeDepth(&level,xi,yi);
 | 
|---|
| 542 |                 A[i]=(IssmPDouble)level;
 | 
|---|
| 543 |         }
 | 
|---|
| 544 | 
 | 
|---|
| 545 | }/*}}}*/
 | 
|---|
| 546 | /*FUNCTION Observations::Variomap{{{*/
 | 
|---|
| 547 | void Observations::Variomap(IssmPDouble* gamma,IssmPDouble *x,int n){
 | 
|---|
| 548 | 
 | 
|---|
| 549 |         /*Output and Intermediaries*/
 | 
|---|
| 550 |         int          i,j,k;
 | 
|---|
| 551 |         IssmPDouble  distance;
 | 
|---|
| 552 |         Observation *observation1 = NULL;
 | 
|---|
| 553 |         Observation *observation2 = NULL;
 | 
|---|
| 554 | 
 | 
|---|
| 555 |         IssmPDouble *counter = xNew<IssmPDouble>(n);
 | 
|---|
| 556 |         for(j=0;j<n;j++) counter[j] = 0.0;
 | 
|---|
| 557 |         for(j=0;j<n;j++) gamma[j]   = 0.0;
 | 
|---|
| 558 | 
 | 
|---|
| 559 |         for(i=0;i<this->Size();i++){
 | 
|---|
| 560 |                 observation1=dynamic_cast<Observation*>(this->GetObjectByOffset(i));
 | 
|---|
| 561 | 
 | 
|---|
| 562 |                 for(j=i+1;j<this->Size();j++){
 | 
|---|
| 563 |                         observation2=dynamic_cast<Observation*>(this->GetObjectByOffset(j));
 | 
|---|
| 564 | 
 | 
|---|
| 565 |                         distance=sqrt(pow(observation1->x - observation2->x,2) + pow(observation1->y - observation2->y,2));
 | 
|---|
| 566 |                         if(distance>x[n-1]) continue;
 | 
|---|
| 567 | 
 | 
|---|
| 568 |                         int index = int(distance/(x[1]-x[0]));
 | 
|---|
| 569 |                         if(index>n-1) index = n-1;
 | 
|---|
| 570 |                         if(index<0)   index = 0;
 | 
|---|
| 571 | 
 | 
|---|
| 572 |                         gamma[index]   += 1./2.*pow(observation1->value - observation2->value,2);
 | 
|---|
| 573 |                         counter[index] += 1.;
 | 
|---|
| 574 |                 }
 | 
|---|
| 575 |         }
 | 
|---|
| 576 | 
 | 
|---|
| 577 |         /*Normalize semivariogram*/
 | 
|---|
| 578 |         gamma[0]=0.;
 | 
|---|
| 579 |         for(k=0;k<n;k++){
 | 
|---|
| 580 |                 if(counter[k]) gamma[k] = gamma[k]/counter[k];
 | 
|---|
| 581 |         }
 | 
|---|
| 582 | 
 | 
|---|
| 583 |         /*Assign output pointer*/
 | 
|---|
| 584 |         xDelete<IssmPDouble>(counter);
 | 
|---|
| 585 | }/*}}}*/
 | 
|---|