1 | /*
|
---|
2 | * \file Observations.cpp
|
---|
3 | * \brief: Implementation of Observations class, derived from DataSet class.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*Headers: {{{*/
|
---|
7 | #ifdef HAVE_CONFIG_H
|
---|
8 | #include <config.h>
|
---|
9 | #else
|
---|
10 | #error "Cannot compile with HAVE_CONFIG_H symbol! run configure first!"
|
---|
11 | #endif
|
---|
12 |
|
---|
13 | #include <vector>
|
---|
14 | #include <functional>
|
---|
15 | #include <algorithm>
|
---|
16 | #include <iostream>
|
---|
17 |
|
---|
18 | #include "../Options/Options.h"
|
---|
19 | #include "./Observations.h"
|
---|
20 | #include "./Observation.h"
|
---|
21 | #include "../../datastructures/datastructures.h"
|
---|
22 | #include "../../shared/shared.h"
|
---|
23 |
|
---|
24 | #include "./Quadtree.h"
|
---|
25 | #include "./Variogram.h"
|
---|
26 | #include "../../toolkits/toolkits.h"
|
---|
27 |
|
---|
28 | using namespace std;
|
---|
29 | /*}}}*/
|
---|
30 |
|
---|
31 | /*Object constructors and destructor*/
|
---|
32 | /*FUNCTION Observations::Observations(){{{*/
|
---|
33 | Observations::Observations(){
|
---|
34 | this->quadtree = NULL;
|
---|
35 | return;
|
---|
36 | }
|
---|
37 | /*}}}*/
|
---|
38 | /*FUNCTION Observations::Observations(IssmPDouble* observations_list,IssmPDouble* x,IssmPDouble* y,int n,Options* options){{{*/
|
---|
39 | Observations::Observations(IssmPDouble* observations_list,IssmPDouble* x,IssmPDouble* y,int n,Options* options){
|
---|
40 |
|
---|
41 | /*Intermediaries*/
|
---|
42 | int i,maxdepth,level,counter,index;
|
---|
43 | int xi,yi;
|
---|
44 | IssmPDouble xmin,xmax,ymin,ymax;
|
---|
45 | IssmPDouble offset,minlength,minspacing,mintrimming,maxtrimming;
|
---|
46 | Observation *observation = NULL;
|
---|
47 |
|
---|
48 | /*Check that observations is not empty*/
|
---|
49 | if(n==0) _error_("No observation found");
|
---|
50 |
|
---|
51 | /*Get extrema*/
|
---|
52 | xmin=x[0]; ymin=y[0];
|
---|
53 | xmax=x[0]; ymax=y[0];
|
---|
54 | for(i=1;i<n;i++){
|
---|
55 | xmin=min(xmin,x[i]); ymin=min(ymin,y[i]);
|
---|
56 | xmax=max(xmax,x[i]); ymax=max(ymax,y[i]);
|
---|
57 | }
|
---|
58 | offset=0.05*(xmax-xmin); xmin-=offset; xmax+=offset;
|
---|
59 | offset=0.05*(ymax-ymin); ymin-=offset; ymax+=offset;
|
---|
60 |
|
---|
61 | /*Get trimming limits*/
|
---|
62 | options->Get(&mintrimming,"mintrimming",-1.e+21);
|
---|
63 | options->Get(&maxtrimming,"maxtrimming",+1.e+21);
|
---|
64 | options->Get(&minspacing,"minspacing",0.01);
|
---|
65 | if(minspacing<=0) _error_("minspacing must > 0");
|
---|
66 |
|
---|
67 | /*Get Minimum box size*/
|
---|
68 | if(options->GetOption("boxlength")){
|
---|
69 | options->Get(&minlength,"boxlength");
|
---|
70 | if(minlength<=0)_error_("boxlength should be a positive number");
|
---|
71 | maxdepth=reCast<int,IssmPDouble>(log(max(xmax-xmin,ymax-ymin)/minlength +1)/log(2.0));
|
---|
72 | }
|
---|
73 | else{
|
---|
74 | maxdepth = 30;
|
---|
75 | minlength=max(xmax-xmin,ymax-ymin)/IssmPDouble((1L<<maxdepth)-1);
|
---|
76 | }
|
---|
77 |
|
---|
78 | /*Initialize Quadtree*/
|
---|
79 | _printf0_("Generating quadtree with a maximum box size " << minlength << " (depth=" << maxdepth << ")... ");
|
---|
80 | this->quadtree = new Quadtree(xmin,xmax,ymin,ymax,maxdepth);
|
---|
81 |
|
---|
82 | /*Add observations one by one*/
|
---|
83 | counter = 0;
|
---|
84 | for(i=0;i<n;i++){
|
---|
85 |
|
---|
86 | /*First check limits*/
|
---|
87 | if(observations_list[i]>maxtrimming) continue;
|
---|
88 | if(observations_list[i]<mintrimming) continue;
|
---|
89 |
|
---|
90 | /*First check that this observation is not too close from another one*/
|
---|
91 | this->quadtree->ClosestObs(&index,x[i],y[i]);
|
---|
92 | if(index>=0){
|
---|
93 | observation=dynamic_cast<Observation*>(this->GetObjectByOffset(index));
|
---|
94 | if(pow(observation->x-x[i],2)+pow(observation->y-y[i],2) < minspacing) continue;
|
---|
95 | }
|
---|
96 |
|
---|
97 | this->quadtree->IntergerCoordinates(&xi,&yi,x[i],y[i]);
|
---|
98 | this->quadtree->QuadtreeDepth2(&level,xi,yi);
|
---|
99 | if((int)level <= maxdepth){
|
---|
100 | observation = new Observation(x[i],y[i],xi,yi,counter++,observations_list[i]);
|
---|
101 | this->quadtree->Add(observation);
|
---|
102 | this->AddObject(observation);
|
---|
103 | }
|
---|
104 | else{
|
---|
105 | /*We need to average with the current observations*/
|
---|
106 | this->quadtree->AddAndAverage(x[i],y[i],observations_list[i]);
|
---|
107 | }
|
---|
108 | }
|
---|
109 | _printf0_("done\n");
|
---|
110 | _printf0_("Initial number of observations: " << n << "\n");
|
---|
111 | _printf0_(" Final number of observations: " << this->quadtree->NbObs << "\n");
|
---|
112 | }
|
---|
113 | /*}}}*/
|
---|
114 | /*FUNCTION Observations::~Observations(){{{*/
|
---|
115 | Observations::~Observations(){
|
---|
116 | delete quadtree;
|
---|
117 | return;
|
---|
118 | }
|
---|
119 | /*}}}*/
|
---|
120 |
|
---|
121 | /*Methods*/
|
---|
122 | /*FUNCTION Observations::ClosestObservation{{{*/
|
---|
123 | void Observations::ClosestObservation(IssmPDouble *px,IssmPDouble *py,IssmPDouble *pobs,IssmPDouble x_interp,IssmPDouble y_interp,IssmPDouble radius){
|
---|
124 |
|
---|
125 | /*Output and Intermediaries*/
|
---|
126 | int nobs,i,index;
|
---|
127 | IssmPDouble hmin,h2,hmin2,radius2;
|
---|
128 | int *indices = NULL;
|
---|
129 | Observation *observation = NULL;
|
---|
130 |
|
---|
131 | /*If radius is not provided or is 0, return all observations*/
|
---|
132 | if(radius==0) radius=this->quadtree->root->length;
|
---|
133 |
|
---|
134 | /*First, find closest point in Quadtree (fast but might not be the true closest obs)*/
|
---|
135 | this->quadtree->ClosestObs(&index,x_interp,y_interp);
|
---|
136 | if(index>=0){
|
---|
137 | observation=dynamic_cast<Observation*>(this->GetObjectByOffset(index));
|
---|
138 | hmin = sqrt((observation->x-x_interp)*(observation->x-x_interp) + (observation->y-y_interp)*(observation->y-y_interp));
|
---|
139 | if(hmin<radius) radius=hmin;
|
---|
140 | }
|
---|
141 |
|
---|
142 | /*Compute radius square*/
|
---|
143 | radius2 = radius*radius;
|
---|
144 |
|
---|
145 | /*Find all observations that are in radius*/
|
---|
146 | this->quadtree->RangeSearch(&indices,&nobs,x_interp,y_interp,radius);
|
---|
147 | for (i=0;i<nobs;i++){
|
---|
148 | observation=dynamic_cast<Observation*>(this->GetObjectByOffset(indices[i]));
|
---|
149 | h2 = (observation->x-x_interp)*(observation->x-x_interp) + (observation->y-y_interp)*(observation->y-y_interp);
|
---|
150 | if(i==0){
|
---|
151 | hmin2 = h2;
|
---|
152 | index = indices[i];
|
---|
153 | }
|
---|
154 | else{
|
---|
155 | if(h2<hmin2){
|
---|
156 | hmin2 = h2;
|
---|
157 | index = indices[i];
|
---|
158 | }
|
---|
159 | }
|
---|
160 | }
|
---|
161 |
|
---|
162 | /*Assign output pointer*/
|
---|
163 | if(index>=0){
|
---|
164 | observation=dynamic_cast<Observation*>(this->GetObjectByOffset(index));
|
---|
165 | *px=observation->x;
|
---|
166 | *py=observation->y;
|
---|
167 | *pobs=observation->value;
|
---|
168 | }
|
---|
169 | else{
|
---|
170 |
|
---|
171 | *px=UNDEF;
|
---|
172 | *py=UNDEF;
|
---|
173 | *pobs=UNDEF;
|
---|
174 | }
|
---|
175 | xDelete<int>(indices);
|
---|
176 |
|
---|
177 | }/*}}}*/
|
---|
178 | /*FUNCTION Observations::Distances{{{*/
|
---|
179 | void Observations::Distances(IssmPDouble* distances,IssmPDouble *x,IssmPDouble *y,int n,IssmPDouble radius){
|
---|
180 |
|
---|
181 | IssmPDouble xi,yi,obs;
|
---|
182 |
|
---|
183 | for(int i=0;i<n;i++){
|
---|
184 | this->ClosestObservation(&xi,&yi,&obs,x[i],y[i],radius);
|
---|
185 | if(xi==UNDEF && yi==UNDEF)
|
---|
186 | distances[i]=UNDEF;
|
---|
187 | else
|
---|
188 | distances[i]=sqrt( (x[i]-xi)*(x[i]-xi) + (y[i]-yi)*(y[i]-yi) );
|
---|
189 | }
|
---|
190 | }/*}}}*/
|
---|
191 | /*FUNCTION Observations::ObservationList(IssmPDouble **px,IssmPDouble **py,IssmPDouble **pobs,int* pnobs,IssmPDouble x_interp,IssmPDouble y_interp,IssmPDouble radius,int maxdata){{{*/
|
---|
192 | void Observations::ObservationList(IssmPDouble **px,IssmPDouble **py,IssmPDouble **pobs,int* pnobs,IssmPDouble x_interp,IssmPDouble y_interp,IssmPDouble radius,int maxdata){
|
---|
193 |
|
---|
194 | /*Output and Intermediaries*/
|
---|
195 | bool stop;
|
---|
196 | int nobs,tempnobs,i,j,k,n,counter;
|
---|
197 | IssmPDouble h2,radius2;
|
---|
198 | int *indices = NULL;
|
---|
199 | int *tempindices = NULL;
|
---|
200 | IssmPDouble *dists = NULL;
|
---|
201 | IssmPDouble *x = NULL;
|
---|
202 | IssmPDouble *y = NULL;
|
---|
203 | IssmPDouble *obs = NULL;
|
---|
204 | Observation *observation = NULL;
|
---|
205 |
|
---|
206 | /*If radius is not provided or is 0, return all observations*/
|
---|
207 | if(radius==0) radius=this->quadtree->root->length;
|
---|
208 |
|
---|
209 | /*Compute radius square*/
|
---|
210 | radius2 = radius*radius;
|
---|
211 |
|
---|
212 | /*Find all observations that are in radius*/
|
---|
213 | this->quadtree->RangeSearch(&tempindices,&tempnobs,x_interp,y_interp,radius);
|
---|
214 | if(tempnobs){
|
---|
215 | indices = xNew<int>(tempnobs);
|
---|
216 | dists = xNew<IssmPDouble>(tempnobs);
|
---|
217 | }
|
---|
218 | nobs = 0;
|
---|
219 | for (i=0;i<tempnobs;i++){
|
---|
220 | observation=dynamic_cast<Observation*>(this->GetObjectByOffset(tempindices[i]));
|
---|
221 | h2 = (observation->x-x_interp)*(observation->x-x_interp) + (observation->y-y_interp)*(observation->y-y_interp);
|
---|
222 |
|
---|
223 | if(nobs==maxdata && h2>radius2) continue;
|
---|
224 | if(nobs<=maxdata){
|
---|
225 | indices[nobs] = tempindices[i];
|
---|
226 | dists[nobs] = h2;
|
---|
227 | nobs++;
|
---|
228 | }
|
---|
229 | if(nobs==1) continue;
|
---|
230 |
|
---|
231 | /*Sort all dists up to now*/
|
---|
232 | n=nobs-1;
|
---|
233 | stop = false;
|
---|
234 | for(k=0;k<n-1;k++){
|
---|
235 | if(h2<dists[k]){
|
---|
236 | counter=1;
|
---|
237 | for(int jj=k;jj<n;jj++){
|
---|
238 | j = n-counter;
|
---|
239 | dists[j+1] = dists[j];
|
---|
240 | indices[j+1] = indices[j];
|
---|
241 | counter++;
|
---|
242 | }
|
---|
243 | dists[k] = h2;
|
---|
244 | indices[k] = tempindices[i];
|
---|
245 | stop = true;
|
---|
246 | break;
|
---|
247 | }
|
---|
248 | if(stop) break;
|
---|
249 | }
|
---|
250 | }
|
---|
251 | xDelete<IssmPDouble>(dists);
|
---|
252 | xDelete<int>(tempindices);
|
---|
253 |
|
---|
254 | if(nobs){
|
---|
255 | /*Allocate vectors*/
|
---|
256 | x = xNew<IssmPDouble>(nobs);
|
---|
257 | y = xNew<IssmPDouble>(nobs);
|
---|
258 | obs = xNew<IssmPDouble>(nobs);
|
---|
259 |
|
---|
260 | /*Loop over all observations and fill in x, y and obs*/
|
---|
261 | for (i=0;i<nobs;i++){
|
---|
262 | observation=dynamic_cast<Observation*>(this->GetObjectByOffset(indices[i]));
|
---|
263 | observation->WriteXYObs(&x[i],&y[i],&obs[i]);
|
---|
264 | }
|
---|
265 | }
|
---|
266 |
|
---|
267 | /*Assign output pointer*/
|
---|
268 | xDelete<int>(indices);
|
---|
269 | *px=x;
|
---|
270 | *py=y;
|
---|
271 | *pobs=obs;
|
---|
272 | *pnobs=nobs;
|
---|
273 | }/*}}}*/
|
---|
274 | /*FUNCTION Observations::ObservationList(IssmPDouble **px,IssmPDouble **py,IssmPDouble **pobs,int* pnobs){{{*/
|
---|
275 | void Observations::ObservationList(IssmPDouble **px,IssmPDouble **py,IssmPDouble **pobs,int* pnobs){
|
---|
276 |
|
---|
277 | /*Output and Intermediaries*/
|
---|
278 | int nobs;
|
---|
279 | IssmPDouble *x = NULL;
|
---|
280 | IssmPDouble *y = NULL;
|
---|
281 | IssmPDouble *obs = NULL;
|
---|
282 | Observation *observation = NULL;
|
---|
283 |
|
---|
284 | nobs = this->Size();
|
---|
285 |
|
---|
286 | if(nobs){
|
---|
287 | x = xNew<IssmPDouble>(nobs);
|
---|
288 | y = xNew<IssmPDouble>(nobs);
|
---|
289 | obs = xNew<IssmPDouble>(nobs);
|
---|
290 | for(int i=0;i<this->Size();i++){
|
---|
291 | observation=dynamic_cast<Observation*>(this->GetObjectByOffset(i));
|
---|
292 | observation->WriteXYObs(&x[i],&y[i],&obs[i]);
|
---|
293 | }
|
---|
294 | }
|
---|
295 |
|
---|
296 | /*Assign output pointer*/
|
---|
297 | *px=x;
|
---|
298 | *py=y;
|
---|
299 | *pobs=obs;
|
---|
300 | *pnobs=nobs;
|
---|
301 | }/*}}}*/
|
---|
302 | /*FUNCTION Observations::InterpolationIDW{{{*/
|
---|
303 | void Observations::InterpolationIDW(IssmPDouble *pprediction,IssmPDouble x_interp,IssmPDouble y_interp,IssmPDouble radius,int mindata,int maxdata,IssmPDouble power){
|
---|
304 |
|
---|
305 | /*Intermediaries*/
|
---|
306 | int i,n_obs;
|
---|
307 | IssmPDouble prediction;
|
---|
308 | IssmPDouble numerator,denominator,h,weight;
|
---|
309 | IssmPDouble *x = NULL;
|
---|
310 | IssmPDouble *y = NULL;
|
---|
311 | IssmPDouble *obs = NULL;
|
---|
312 |
|
---|
313 | /*Some checks*/
|
---|
314 | _assert_(maxdata>0);
|
---|
315 | _assert_(pprediction);
|
---|
316 | _assert_(power>0);
|
---|
317 |
|
---|
318 | /*If radius is not provided or is 0, return all observations*/
|
---|
319 | if(radius==0) radius=this->quadtree->root->length;
|
---|
320 |
|
---|
321 | /*Get list of observations for current point*/
|
---|
322 | this->ObservationList(&x,&y,&obs,&n_obs,x_interp,y_interp,radius,maxdata);
|
---|
323 |
|
---|
324 | /*If we have less observations than mindata, return UNDEF*/
|
---|
325 | if(n_obs<mindata){
|
---|
326 | prediction = UNDEF;
|
---|
327 | }
|
---|
328 | else{
|
---|
329 | numerator = 0.;
|
---|
330 | denominator = 0.;
|
---|
331 | for(i=0;i<n_obs;i++){
|
---|
332 | h = sqrt( (x[i]-x_interp)*(x[i]-x_interp) + (y[i]-y_interp)*(y[i]-y_interp));
|
---|
333 | if (h<0.0000001){
|
---|
334 | numerator = obs[i];
|
---|
335 | denominator = 1.;
|
---|
336 | break;
|
---|
337 | }
|
---|
338 | weight = 1./pow(h,power);
|
---|
339 | numerator += weight*obs[i];
|
---|
340 | denominator += weight;
|
---|
341 | }
|
---|
342 | prediction = numerator/denominator;
|
---|
343 | }
|
---|
344 |
|
---|
345 | /*clean-up*/
|
---|
346 | *pprediction = prediction;
|
---|
347 | xDelete<IssmPDouble>(x);
|
---|
348 | xDelete<IssmPDouble>(y);
|
---|
349 | xDelete<IssmPDouble>(obs);
|
---|
350 | }/*}}}*/
|
---|
351 | /*FUNCTION Observations::InterpolationKriging{{{*/
|
---|
352 | void Observations::InterpolationKriging(IssmPDouble *pprediction,IssmPDouble *perror,IssmPDouble x_interp,IssmPDouble y_interp,IssmPDouble radius,int mindata,int maxdata,Variogram* variogram){
|
---|
353 |
|
---|
354 | /*Intermediaries*/
|
---|
355 | int i,j,n_obs;
|
---|
356 | IssmPDouble prediction,error;
|
---|
357 | IssmPDouble numerator,denominator,ratio;
|
---|
358 | IssmPDouble *x = NULL;
|
---|
359 | IssmPDouble *y = NULL;
|
---|
360 | IssmPDouble *obs = NULL;
|
---|
361 | IssmPDouble *Gamma = NULL;
|
---|
362 | IssmPDouble *GinvG0 = NULL;
|
---|
363 | IssmPDouble *Ginv1 = NULL;
|
---|
364 | IssmPDouble *GinvZ = NULL;
|
---|
365 | IssmPDouble *gamma0 = NULL;
|
---|
366 | IssmPDouble *ones = NULL;
|
---|
367 |
|
---|
368 | /*Some checks*/
|
---|
369 | _assert_(mindata>0 && maxdata>0);
|
---|
370 | _assert_(pprediction && perror);
|
---|
371 |
|
---|
372 | /*If radius is not provided or is 0, return all observations*/
|
---|
373 | if(radius==0) radius=this->quadtree->root->length;
|
---|
374 |
|
---|
375 | /*Get list of observations for current point*/
|
---|
376 | this->ObservationList(&x,&y,&obs,&n_obs,x_interp,y_interp,radius,maxdata);
|
---|
377 |
|
---|
378 | /*If we have less observations than mindata, return UNDEF*/
|
---|
379 | if(n_obs<mindata){
|
---|
380 | *pprediction = -999.0;
|
---|
381 | *perror = -999.0;
|
---|
382 | return;
|
---|
383 | }
|
---|
384 |
|
---|
385 | /*Allocate intermediary matrix and vectors*/
|
---|
386 | Gamma = xNew<IssmPDouble>(n_obs*n_obs);
|
---|
387 | gamma0 = xNew<IssmPDouble>(n_obs);
|
---|
388 | ones = xNew<IssmPDouble>(n_obs);
|
---|
389 |
|
---|
390 | /*First: Create semivariogram matrix for observations*/
|
---|
391 | for(i=0;i<n_obs;i++){
|
---|
392 | for(j=0;j<=i;j++){
|
---|
393 | //Gamma[i*n_obs+j] = variogram->SemiVariogram(x[i]-x[j],y[i]-y[j]);
|
---|
394 | Gamma[i*n_obs+j] = variogram->Covariance(x[i]-x[j],y[i]-y[j]);
|
---|
395 | Gamma[j*n_obs+i] = Gamma[i*n_obs+j];
|
---|
396 | }
|
---|
397 | }
|
---|
398 | for(i=0;i<n_obs;i++) ones[i]=1;
|
---|
399 |
|
---|
400 | /*Get semivariogram vector associated to this location*/
|
---|
401 | //for(i=0;i<n_obs;i++) gamma0[i] = variogram->SemiVariogram(x[i]-x_interp,y[i]-y_interp);
|
---|
402 | for(i=0;i<n_obs;i++) gamma0[i] = variogram->Covariance(x[i]-x_interp,y[i]-y_interp);
|
---|
403 |
|
---|
404 | /*Solve the three linear systems*/
|
---|
405 | #if _HAVE_GSL_
|
---|
406 | DenseGslSolve(&GinvG0,Gamma,gamma0,n_obs); // Gamma^-1 gamma0
|
---|
407 | DenseGslSolve(&Ginv1, Gamma,ones,n_obs); // Gamma^-1 ones
|
---|
408 | DenseGslSolve(&GinvZ, Gamma,obs,n_obs); // Gamma^-1 Z
|
---|
409 | #else
|
---|
410 | _error_("GSL is required");
|
---|
411 | #endif
|
---|
412 |
|
---|
413 | /*Prepare predictor*/
|
---|
414 | numerator=-1.; denominator=0.;
|
---|
415 | for(i=0;i<n_obs;i++) numerator +=GinvG0[i];
|
---|
416 | for(i=0;i<n_obs;i++) denominator+=Ginv1[i];
|
---|
417 | ratio=numerator/denominator;
|
---|
418 |
|
---|
419 | prediction = 0.;
|
---|
420 | error = - numerator*numerator/denominator;
|
---|
421 | for(i=0;i<n_obs;i++) prediction += (gamma0[i]-ratio)*GinvZ[i];
|
---|
422 | for(i=0;i<n_obs;i++) error += gamma0[i]*GinvG0[i];
|
---|
423 |
|
---|
424 | /*clean-up*/
|
---|
425 | *pprediction = prediction;
|
---|
426 | *perror = error;
|
---|
427 | xDelete<IssmPDouble>(x);
|
---|
428 | xDelete<IssmPDouble>(y);
|
---|
429 | xDelete<IssmPDouble>(obs);
|
---|
430 | xDelete<IssmPDouble>(Gamma);
|
---|
431 | xDelete<IssmPDouble>(gamma0);
|
---|
432 | xDelete<IssmPDouble>(ones);
|
---|
433 | xDelete<IssmPDouble>(GinvG0);
|
---|
434 | xDelete<IssmPDouble>(Ginv1);
|
---|
435 | xDelete<IssmPDouble>(GinvZ);
|
---|
436 |
|
---|
437 | }/*}}}*/
|
---|
438 | /*FUNCTION Observations::InterpolationNearestNeighbor{{{*/
|
---|
439 | void Observations::InterpolationNearestNeighbor(IssmPDouble *pprediction,IssmPDouble x_interp,IssmPDouble y_interp,IssmPDouble radius){
|
---|
440 |
|
---|
441 | /*Intermediaries*/
|
---|
442 | IssmPDouble x,y,obs;
|
---|
443 |
|
---|
444 | /*Get clostest observation*/
|
---|
445 | this->ClosestObservation(&x,&y,&obs,x_interp,y_interp,radius);
|
---|
446 |
|
---|
447 | /*Assign output pointer*/
|
---|
448 | *pprediction = obs;
|
---|
449 | }/*}}}*/
|
---|
450 | /*FUNCTION Observations::InterpolationV4{{{*/
|
---|
451 | void Observations::InterpolationV4(IssmPDouble *pprediction,IssmPDouble x_interp,IssmPDouble y_interp,IssmPDouble radius,int mindata,int maxdata){
|
---|
452 | /* Reference: David T. Sandwell, Biharmonic spline interpolation of GEOS-3
|
---|
453 | * and SEASAT altimeter data, Geophysical Research Letters, 2, 139-142,
|
---|
454 | * 1987. Describes interpolation using value or gradient of value in any
|
---|
455 | * dimension.*/
|
---|
456 |
|
---|
457 | /*Intermediaries*/
|
---|
458 | int i,j,n_obs;
|
---|
459 | IssmPDouble prediction,h;
|
---|
460 | IssmPDouble *x = NULL;
|
---|
461 | IssmPDouble *y = NULL;
|
---|
462 | IssmPDouble *obs = NULL;
|
---|
463 | IssmPDouble *Green = NULL;
|
---|
464 | IssmPDouble *weights = NULL;
|
---|
465 | IssmPDouble *g = NULL;
|
---|
466 |
|
---|
467 | /*Some checks*/
|
---|
468 | _assert_(maxdata>0);
|
---|
469 | _assert_(pprediction);
|
---|
470 |
|
---|
471 | /*If radius is not provided or is 0, return all observations*/
|
---|
472 | if(radius==0) radius=this->quadtree->root->length;
|
---|
473 |
|
---|
474 | /*Get list of observations for current point*/
|
---|
475 | this->ObservationList(&x,&y,&obs,&n_obs,x_interp,y_interp,radius,maxdata);
|
---|
476 |
|
---|
477 | /*If we have less observations than mindata, return UNDEF*/
|
---|
478 | if(n_obs<mindata || n_obs<2){
|
---|
479 | prediction = UNDEF;
|
---|
480 | }
|
---|
481 | else{
|
---|
482 |
|
---|
483 | /*Allocate intermediary matrix and vectors*/
|
---|
484 | Green = xNew<IssmPDouble>(n_obs*n_obs);
|
---|
485 | g = xNew<IssmPDouble>(n_obs);
|
---|
486 |
|
---|
487 | /*First: distance vector*/
|
---|
488 | for(i=0;i<n_obs;i++){
|
---|
489 | h = sqrt( (x[i]-x_interp)*(x[i]-x_interp) + (y[i]-y_interp)*(y[i]-y_interp) );
|
---|
490 | if(h>0){
|
---|
491 | g[i] = h*h*(log(h)-1.);
|
---|
492 | }
|
---|
493 | else{
|
---|
494 | g[i] = 0.;
|
---|
495 | }
|
---|
496 | }
|
---|
497 |
|
---|
498 | /*Build Green function matrix*/
|
---|
499 | for(i=0;i<n_obs;i++){
|
---|
500 | for(j=0;j<=i;j++){
|
---|
501 | h = sqrt( (x[i]-x[j])*(x[i]-x[j]) + (y[i]-y[j])*(y[i]-y[j]) );
|
---|
502 | if(h>0){
|
---|
503 | Green[j*n_obs+i] = h*h*(log(h)-1.);
|
---|
504 | }
|
---|
505 | else{
|
---|
506 | Green[j*n_obs+i] = 0.;
|
---|
507 | }
|
---|
508 | Green[i*n_obs+j] = Green[j*n_obs+i];
|
---|
509 | }
|
---|
510 | }
|
---|
511 |
|
---|
512 | /*Compute weights*/
|
---|
513 | #if _HAVE_GSL_
|
---|
514 | DenseGslSolve(&weights,Green,obs,n_obs); // Green^-1 obs
|
---|
515 | #else
|
---|
516 | _error_("GSL is required");
|
---|
517 | #endif
|
---|
518 |
|
---|
519 | /*Interpolate*/
|
---|
520 | prediction = 0;
|
---|
521 | for(i=0;i<n_obs;i++) prediction += weights[i]*g[i];
|
---|
522 |
|
---|
523 | }
|
---|
524 |
|
---|
525 | /*clean-up*/
|
---|
526 | *pprediction = prediction;
|
---|
527 | xDelete<IssmPDouble>(x);
|
---|
528 | xDelete<IssmPDouble>(y);
|
---|
529 | xDelete<IssmPDouble>(obs);
|
---|
530 | xDelete<IssmPDouble>(Green);
|
---|
531 | xDelete<IssmPDouble>(g);
|
---|
532 | xDelete<IssmPDouble>(weights);
|
---|
533 | }/*}}}*/
|
---|
534 | /*FUNCTION Observations::QuadtreeColoring{{{*/
|
---|
535 | void Observations::QuadtreeColoring(IssmPDouble* A,IssmPDouble *x,IssmPDouble *y,int n){
|
---|
536 |
|
---|
537 | int xi,yi,level;
|
---|
538 |
|
---|
539 | for(int i=0;i<n;i++){
|
---|
540 | this->quadtree->IntergerCoordinates(&xi,&yi,x[i],y[i]);
|
---|
541 | this->quadtree->QuadtreeDepth(&level,xi,yi);
|
---|
542 | A[i]=(IssmPDouble)level;
|
---|
543 | }
|
---|
544 |
|
---|
545 | }/*}}}*/
|
---|
546 | /*FUNCTION Observations::Variomap{{{*/
|
---|
547 | void Observations::Variomap(IssmPDouble* gamma,IssmPDouble *x,int n){
|
---|
548 |
|
---|
549 | /*Output and Intermediaries*/
|
---|
550 | int i,j,k;
|
---|
551 | IssmPDouble distance;
|
---|
552 | Observation *observation1 = NULL;
|
---|
553 | Observation *observation2 = NULL;
|
---|
554 |
|
---|
555 | IssmPDouble *counter = xNew<IssmPDouble>(n);
|
---|
556 | for(j=0;j<n;j++) counter[j] = 0.0;
|
---|
557 | for(j=0;j<n;j++) gamma[j] = 0.0;
|
---|
558 |
|
---|
559 | for(i=0;i<this->Size();i++){
|
---|
560 | observation1=dynamic_cast<Observation*>(this->GetObjectByOffset(i));
|
---|
561 |
|
---|
562 | for(j=i+1;j<this->Size();j++){
|
---|
563 | observation2=dynamic_cast<Observation*>(this->GetObjectByOffset(j));
|
---|
564 |
|
---|
565 | distance=sqrt(pow(observation1->x - observation2->x,2) + pow(observation1->y - observation2->y,2));
|
---|
566 | if(distance>x[n-1]) continue;
|
---|
567 |
|
---|
568 | int index = int(distance/(x[1]-x[0]));
|
---|
569 | if(index>n-1) index = n-1;
|
---|
570 | if(index<0) index = 0;
|
---|
571 |
|
---|
572 | gamma[index] += 1./2.*pow(observation1->value - observation2->value,2);
|
---|
573 | counter[index] += 1.;
|
---|
574 | }
|
---|
575 | }
|
---|
576 |
|
---|
577 | /*Normalize semivariogram*/
|
---|
578 | gamma[0]=0.;
|
---|
579 | for(k=0;k<n;k++){
|
---|
580 | if(counter[k]) gamma[k] = gamma[k]/counter[k];
|
---|
581 | }
|
---|
582 |
|
---|
583 | /*Assign output pointer*/
|
---|
584 | xDelete<IssmPDouble>(counter);
|
---|
585 | }/*}}}*/
|
---|