[14996] | 1 | /*
|
---|
| 2 | * \file Observations.cpp
|
---|
| 3 | * \brief: Implementation of Observations class, derived from DataSet class.
|
---|
| 4 | */
|
---|
| 5 |
|
---|
| 6 | /*Headers: {{{*/
|
---|
| 7 | #ifdef HAVE_CONFIG_H
|
---|
| 8 | #include <config.h>
|
---|
| 9 | #else
|
---|
| 10 | #error "Cannot compile with HAVE_CONFIG_H symbol! run configure first!"
|
---|
| 11 | #endif
|
---|
| 12 |
|
---|
| 13 | #include <vector>
|
---|
| 14 | #include <functional>
|
---|
| 15 | #include <algorithm>
|
---|
| 16 | #include <iostream>
|
---|
| 17 |
|
---|
[15012] | 18 | #include "../Options/Options.h"
|
---|
[14996] | 19 | #include "./Observations.h"
|
---|
| 20 | #include "./Observation.h"
|
---|
[15067] | 21 | #include "../../datastructures/datastructures.h"
|
---|
[14996] | 22 | #include "../../shared/shared.h"
|
---|
| 23 |
|
---|
| 24 | #include "./Quadtree.h"
|
---|
[19105] | 25 | #include "./Covertree.h"
|
---|
[14996] | 26 | #include "./Variogram.h"
|
---|
[14997] | 27 | #include "../../toolkits/toolkits.h"
|
---|
[14996] | 28 |
|
---|
| 29 | using namespace std;
|
---|
| 30 | /*}}}*/
|
---|
| 31 |
|
---|
| 32 | /*Object constructors and destructor*/
|
---|
[18301] | 33 | Observations::Observations(){/*{{{*/
|
---|
[19105] | 34 | this->treetype = 0;
|
---|
| 35 | this->quadtree = NULL;
|
---|
| 36 | this->covertree = NULL;
|
---|
[14996] | 37 | return;
|
---|
| 38 | }
|
---|
| 39 | /*}}}*/
|
---|
[18301] | 40 | Observations::Observations(IssmPDouble* observations_list,IssmPDouble* x,IssmPDouble* y,int n,Options* options){/*{{{*/
|
---|
[14996] | 41 |
|
---|
[19105] | 42 | /*Check that there are observations*/
|
---|
| 43 | if(n<=0) _error_("No observation found");
|
---|
| 44 |
|
---|
| 45 | /*Get tree type (FIXME)*/
|
---|
| 46 | IssmDouble dtree = 0.;
|
---|
| 47 | options->Get(&dtree,"treetype",1.);
|
---|
| 48 | this->treetype = reCast<int>(dtree);
|
---|
| 49 | switch(this->treetype){
|
---|
| 50 | case 1:
|
---|
| 51 | this->covertree = NULL;
|
---|
| 52 | this->InitQuadtree(observations_list,x,y,n,options);
|
---|
| 53 | break;
|
---|
| 54 | case 2:
|
---|
| 55 | this->quadtree = NULL;
|
---|
| 56 | this->InitCovertree(observations_list,x,y,n,options);
|
---|
| 57 | break;
|
---|
| 58 | default:
|
---|
| 59 | _error_("Tree type "<<this->treetype<<" not supported yet (1: quadtree, 2: covertree)");
|
---|
| 60 | }
|
---|
| 61 | }
|
---|
| 62 | /*}}}*/
|
---|
| 63 | Observations::~Observations(){/*{{{*/
|
---|
| 64 | switch(this->treetype){
|
---|
| 65 | case 1:
|
---|
| 66 | delete this->quadtree;
|
---|
| 67 | break;
|
---|
| 68 | case 2:
|
---|
| 69 | delete this->covertree;
|
---|
| 70 | break;
|
---|
| 71 | default:
|
---|
| 72 | _error_("Tree type "<<this->treetype<<" not supported yet (1: quadtree, 2: covertree)");
|
---|
| 73 | }
|
---|
| 74 | return;
|
---|
| 75 | }
|
---|
| 76 | /*}}}*/
|
---|
| 77 |
|
---|
| 78 | /*Initialize data structures*/
|
---|
| 79 | void Observations::InitQuadtree(IssmPDouble* observations_list,IssmPDouble* x,IssmPDouble* y,int n,Options* options){/*{{{*/
|
---|
| 80 |
|
---|
[14996] | 81 | /*Intermediaries*/
|
---|
| 82 | int i,maxdepth,level,counter,index;
|
---|
| 83 | int xi,yi;
|
---|
| 84 | IssmPDouble xmin,xmax,ymin,ymax;
|
---|
| 85 | IssmPDouble offset,minlength,minspacing,mintrimming,maxtrimming;
|
---|
| 86 | Observation *observation = NULL;
|
---|
| 87 |
|
---|
[19105] | 88 | /*Checks*/
|
---|
| 89 | _assert_(n);
|
---|
[14996] | 90 |
|
---|
| 91 | /*Get extrema*/
|
---|
| 92 | xmin=x[0]; ymin=y[0];
|
---|
| 93 | xmax=x[0]; ymax=y[0];
|
---|
| 94 | for(i=1;i<n;i++){
|
---|
| 95 | xmin=min(xmin,x[i]); ymin=min(ymin,y[i]);
|
---|
| 96 | xmax=max(xmax,x[i]); ymax=max(ymax,y[i]);
|
---|
| 97 | }
|
---|
| 98 | offset=0.05*(xmax-xmin); xmin-=offset; xmax+=offset;
|
---|
| 99 | offset=0.05*(ymax-ymin); ymin-=offset; ymax+=offset;
|
---|
| 100 |
|
---|
| 101 | /*Get trimming limits*/
|
---|
| 102 | options->Get(&mintrimming,"mintrimming",-1.e+21);
|
---|
| 103 | options->Get(&maxtrimming,"maxtrimming",+1.e+21);
|
---|
| 104 | options->Get(&minspacing,"minspacing",0.01);
|
---|
| 105 | if(minspacing<=0) _error_("minspacing must > 0");
|
---|
| 106 |
|
---|
| 107 | /*Get Minimum box size*/
|
---|
| 108 | if(options->GetOption("boxlength")){
|
---|
| 109 | options->Get(&minlength,"boxlength");
|
---|
| 110 | if(minlength<=0)_error_("boxlength should be a positive number");
|
---|
| 111 | maxdepth=reCast<int,IssmPDouble>(log(max(xmax-xmin,ymax-ymin)/minlength +1)/log(2.0));
|
---|
| 112 | }
|
---|
| 113 | else{
|
---|
| 114 | maxdepth = 30;
|
---|
| 115 | minlength=max(xmax-xmin,ymax-ymin)/IssmPDouble((1L<<maxdepth)-1);
|
---|
| 116 | }
|
---|
| 117 |
|
---|
| 118 | /*Initialize Quadtree*/
|
---|
[15100] | 119 | _printf0_("Generating quadtree with a maximum box size " << minlength << " (depth=" << maxdepth << ")... ");
|
---|
[14996] | 120 | this->quadtree = new Quadtree(xmin,xmax,ymin,ymax,maxdepth);
|
---|
| 121 |
|
---|
| 122 | /*Add observations one by one*/
|
---|
| 123 | counter = 0;
|
---|
| 124 | for(i=0;i<n;i++){
|
---|
| 125 |
|
---|
| 126 | /*First check limits*/
|
---|
| 127 | if(observations_list[i]>maxtrimming) continue;
|
---|
| 128 | if(observations_list[i]<mintrimming) continue;
|
---|
| 129 |
|
---|
[20500] | 130 | /*Second, check that this observation is not too close from another one*/
|
---|
[14996] | 131 | this->quadtree->ClosestObs(&index,x[i],y[i]);
|
---|
| 132 | if(index>=0){
|
---|
[19105] | 133 | observation=xDynamicCast<Observation*>(this->GetObjectByOffset(index));
|
---|
[14996] | 134 | if(pow(observation->x-x[i],2)+pow(observation->y-y[i],2) < minspacing) continue;
|
---|
| 135 | }
|
---|
| 136 |
|
---|
| 137 | this->quadtree->IntergerCoordinates(&xi,&yi,x[i],y[i]);
|
---|
| 138 | this->quadtree->QuadtreeDepth2(&level,xi,yi);
|
---|
| 139 | if((int)level <= maxdepth){
|
---|
| 140 | observation = new Observation(x[i],y[i],xi,yi,counter++,observations_list[i]);
|
---|
| 141 | this->quadtree->Add(observation);
|
---|
| 142 | this->AddObject(observation);
|
---|
| 143 | }
|
---|
| 144 | else{
|
---|
| 145 | /*We need to average with the current observations*/
|
---|
| 146 | this->quadtree->AddAndAverage(x[i],y[i],observations_list[i]);
|
---|
| 147 | }
|
---|
| 148 | }
|
---|
[15104] | 149 | _printf0_("done\n");
|
---|
[15100] | 150 | _printf0_("Initial number of observations: " << n << "\n");
|
---|
| 151 | _printf0_(" Final number of observations: " << this->quadtree->NbObs << "\n");
|
---|
[14996] | 152 | }
|
---|
| 153 | /*}}}*/
|
---|
[19105] | 154 | void Observations::InitCovertree(IssmPDouble* observations_list,IssmPDouble* x,IssmPDouble* y,int n,Options* options){/*{{{*/
|
---|
| 155 |
|
---|
[20500] | 156 | /*Intermediaries*/
|
---|
| 157 | IssmPDouble minspacing,mintrimming,maxtrimming;
|
---|
| 158 |
|
---|
| 159 | /*Checks*/
|
---|
| 160 | _assert_(n);
|
---|
| 161 |
|
---|
| 162 | /*Get trimming limits*/
|
---|
| 163 | options->Get(&mintrimming,"mintrimming",-1.e+21);
|
---|
| 164 | options->Get(&maxtrimming,"maxtrimming",+1.e+21);
|
---|
| 165 | options->Get(&minspacing,"minspacing",0.01);
|
---|
| 166 | if(minspacing<=0) _error_("minspacing must > 0");
|
---|
| 167 |
|
---|
| 168 | /*Get maximum distance between 2 points
|
---|
| 169 | * maxDist should be the maximum distance that any two points
|
---|
| 170 | * can have between each other. IE p.distance(q) < maxDist for all
|
---|
| 171 | * p,q that you will ever try to insert. The cover tree may be invalid
|
---|
| 172 | * if an inaccurate maxDist is given.*/
|
---|
| 173 | IssmPDouble xmin = x[0];
|
---|
| 174 | IssmPDouble xmax = x[0];
|
---|
| 175 | IssmPDouble ymin = y[0];
|
---|
| 176 | IssmPDouble ymax = y[0];
|
---|
| 177 | for(int i=1;i<n;i++){
|
---|
| 178 | if(x[i]<xmin) xmin=x[i];
|
---|
| 179 | if(x[i]>xmax) xmax=x[i];
|
---|
| 180 | if(y[i]<ymin) ymin=y[i];
|
---|
| 181 | if(y[i]>ymax) ymax=y[i];
|
---|
| 182 | }
|
---|
| 183 | IssmPDouble maxDist = sqrt(pow(xmax-xmin,2)+pow(ymax-ymin,2));
|
---|
| 184 | IssmPDouble base = 2.;
|
---|
| 185 | int maxdepth = ceilf(log(maxDist)/log(base));
|
---|
| 186 |
|
---|
[19105] | 187 | _printf0_("Generating covertree with a maximum depth " << maxdepth <<"... ");
|
---|
| 188 | this->covertree=new Covertree(maxdepth);
|
---|
| 189 |
|
---|
| 190 | for(int i=0;i<n;i++){
|
---|
[20500] | 191 |
|
---|
| 192 | /*First check limits*/
|
---|
| 193 | if(observations_list[i]>maxtrimming) continue;
|
---|
| 194 | if(observations_list[i]<mintrimming) continue;
|
---|
| 195 |
|
---|
| 196 | /*Second, check that this observation is not too close from another one*/
|
---|
| 197 | Observation newobs = Observation(x[i],y[i],observations_list[i]);
|
---|
| 198 | if(i>0 && this->covertree->getRoot()){
|
---|
| 199 | /*Get closest obs and see if it is too close*/
|
---|
| 200 | std::vector<Observation> kNN=(this->covertree->kNearestNeighbors(newobs,1));
|
---|
| 201 | Observation oldobs = (*kNN.begin());
|
---|
| 202 | if(oldobs.distance(newobs)<minspacing) continue;
|
---|
| 203 | }
|
---|
| 204 |
|
---|
| 205 | this->covertree->insert(newobs);
|
---|
[19105] | 206 | }
|
---|
| 207 | _printf0_("done\n");
|
---|
[14996] | 208 | }
|
---|
| 209 | /*}}}*/
|
---|
| 210 |
|
---|
| 211 | /*Methods*/
|
---|
[18301] | 212 | void Observations::ClosestObservation(IssmPDouble *px,IssmPDouble *py,IssmPDouble *pobs,IssmPDouble x_interp,IssmPDouble y_interp,IssmPDouble radius){/*{{{*/
|
---|
[14996] | 213 |
|
---|
[20500] | 214 | switch(this->treetype){
|
---|
| 215 | case 1:
|
---|
| 216 | this->ClosestObservationQuadtree(px,py,pobs,x_interp,y_interp,radius);
|
---|
| 217 | break;
|
---|
| 218 | case 2:
|
---|
| 219 | this->ClosestObservationCovertree(px,py,pobs,x_interp,y_interp,radius);
|
---|
| 220 | break;
|
---|
| 221 | default:
|
---|
| 222 | _error_("Tree type "<<this->treetype<<" not supported yet (1: quadtree, 2: covertree)");
|
---|
| 223 | }
|
---|
| 224 |
|
---|
| 225 | }/*}}}*/
|
---|
| 226 | void Observations::ClosestObservationQuadtree(IssmPDouble *px,IssmPDouble *py,IssmPDouble *pobs,IssmPDouble x_interp,IssmPDouble y_interp,IssmPDouble radius){/*{{{*/
|
---|
| 227 |
|
---|
[14996] | 228 | /*Output and Intermediaries*/
|
---|
| 229 | int nobs,i,index;
|
---|
[16560] | 230 | IssmPDouble hmin,h2,hmin2;
|
---|
[14996] | 231 | int *indices = NULL;
|
---|
| 232 | Observation *observation = NULL;
|
---|
| 233 |
|
---|
| 234 | /*If radius is not provided or is 0, return all observations*/
|
---|
| 235 | if(radius==0) radius=this->quadtree->root->length;
|
---|
| 236 |
|
---|
| 237 | /*First, find closest point in Quadtree (fast but might not be the true closest obs)*/
|
---|
| 238 | this->quadtree->ClosestObs(&index,x_interp,y_interp);
|
---|
| 239 | if(index>=0){
|
---|
[19105] | 240 | observation=xDynamicCast<Observation*>(this->GetObjectByOffset(index));
|
---|
[14996] | 241 | hmin = sqrt((observation->x-x_interp)*(observation->x-x_interp) + (observation->y-y_interp)*(observation->y-y_interp));
|
---|
| 242 | if(hmin<radius) radius=hmin;
|
---|
| 243 | }
|
---|
| 244 |
|
---|
| 245 | /*Find all observations that are in radius*/
|
---|
| 246 | this->quadtree->RangeSearch(&indices,&nobs,x_interp,y_interp,radius);
|
---|
| 247 | for (i=0;i<nobs;i++){
|
---|
[19105] | 248 | observation=xDynamicCast<Observation*>(this->GetObjectByOffset(indices[i]));
|
---|
[14996] | 249 | h2 = (observation->x-x_interp)*(observation->x-x_interp) + (observation->y-y_interp)*(observation->y-y_interp);
|
---|
| 250 | if(i==0){
|
---|
| 251 | hmin2 = h2;
|
---|
| 252 | index = indices[i];
|
---|
| 253 | }
|
---|
| 254 | else{
|
---|
| 255 | if(h2<hmin2){
|
---|
| 256 | hmin2 = h2;
|
---|
| 257 | index = indices[i];
|
---|
| 258 | }
|
---|
| 259 | }
|
---|
| 260 | }
|
---|
| 261 |
|
---|
| 262 | /*Assign output pointer*/
|
---|
[17806] | 263 | if(nobs || hmin==radius){
|
---|
[19105] | 264 | observation=xDynamicCast<Observation*>(this->GetObjectByOffset(index));
|
---|
[17806] | 265 | *px = observation->x;
|
---|
| 266 | *py = observation->y;
|
---|
| 267 | *pobs = observation->value;
|
---|
[14996] | 268 | }
|
---|
| 269 | else{
|
---|
[17806] | 270 | *px = UNDEF;
|
---|
| 271 | *py = UNDEF;
|
---|
| 272 | *pobs = UNDEF;
|
---|
[14996] | 273 | }
|
---|
| 274 | xDelete<int>(indices);
|
---|
| 275 |
|
---|
| 276 | }/*}}}*/
|
---|
[20500] | 277 | void Observations::ClosestObservationCovertree(IssmPDouble *px,IssmPDouble *py,IssmPDouble *pobs,IssmPDouble x_interp,IssmPDouble y_interp,IssmPDouble radius){/*{{{*/
|
---|
| 278 |
|
---|
| 279 | IssmPDouble hmin = UNDEF;
|
---|
| 280 |
|
---|
| 281 | if(this->covertree->getRoot()){
|
---|
| 282 | /*Get closest obs and see if it is too close*/
|
---|
| 283 | Observation newobs = Observation(x_interp,y_interp,0.);
|
---|
| 284 | std::vector<Observation> kNN=(this->covertree->kNearestNeighbors(newobs,1));
|
---|
| 285 | Observation observation = (*kNN.begin());
|
---|
| 286 | hmin = observation.distance(newobs);
|
---|
| 287 | if(hmin<=radius){
|
---|
| 288 | *px = observation.x;
|
---|
| 289 | *py = observation.y;
|
---|
| 290 | *pobs = observation.value;
|
---|
| 291 | return;
|
---|
| 292 | }
|
---|
| 293 | }
|
---|
| 294 |
|
---|
| 295 | *px = UNDEF;
|
---|
| 296 | *py = UNDEF;
|
---|
| 297 | *pobs = UNDEF;
|
---|
| 298 | }/*}}}*/
|
---|
[18301] | 299 | void Observations::Distances(IssmPDouble* distances,IssmPDouble *x,IssmPDouble *y,int n,IssmPDouble radius){/*{{{*/
|
---|
[14996] | 300 |
|
---|
| 301 | IssmPDouble xi,yi,obs;
|
---|
| 302 |
|
---|
| 303 | for(int i=0;i<n;i++){
|
---|
| 304 | this->ClosestObservation(&xi,&yi,&obs,x[i],y[i],radius);
|
---|
[17806] | 305 | if(xi==UNDEF && yi==UNDEF){
|
---|
[14996] | 306 | distances[i]=UNDEF;
|
---|
[17806] | 307 | }
|
---|
| 308 | else{
|
---|
[14996] | 309 | distances[i]=sqrt( (x[i]-xi)*(x[i]-xi) + (y[i]-yi)*(y[i]-yi) );
|
---|
[17806] | 310 | }
|
---|
[14996] | 311 | }
|
---|
| 312 | }/*}}}*/
|
---|
[20500] | 313 | void Observations::ObservationList(IssmPDouble **px,IssmPDouble **py,IssmPDouble **pobs,int* pnobs){/*{{{*/
|
---|
| 314 |
|
---|
| 315 | /*Output and Intermediaries*/
|
---|
| 316 | int nobs;
|
---|
| 317 | IssmPDouble *x = NULL;
|
---|
| 318 | IssmPDouble *y = NULL;
|
---|
| 319 | IssmPDouble *obs = NULL;
|
---|
| 320 | Observation *observation = NULL;
|
---|
| 321 |
|
---|
| 322 | nobs = this->Size();
|
---|
| 323 |
|
---|
| 324 | if(nobs){
|
---|
| 325 | x = xNew<IssmPDouble>(nobs);
|
---|
| 326 | y = xNew<IssmPDouble>(nobs);
|
---|
| 327 | obs = xNew<IssmPDouble>(nobs);
|
---|
| 328 | for(int i=0;i<this->Size();i++){
|
---|
| 329 | observation=xDynamicCast<Observation*>(this->GetObjectByOffset(i));
|
---|
| 330 | observation->WriteXYObs(&x[i],&y[i],&obs[i]);
|
---|
| 331 | }
|
---|
| 332 | }
|
---|
| 333 |
|
---|
| 334 | /*Assign output pointer*/
|
---|
| 335 | *px=x;
|
---|
| 336 | *py=y;
|
---|
| 337 | *pobs=obs;
|
---|
| 338 | *pnobs=nobs;
|
---|
| 339 | }/*}}}*/
|
---|
[18301] | 340 | void Observations::ObservationList(IssmPDouble **px,IssmPDouble **py,IssmPDouble **pobs,int* pnobs,IssmPDouble x_interp,IssmPDouble y_interp,IssmPDouble radius,int maxdata){/*{{{*/
|
---|
[14996] | 341 |
|
---|
[20500] | 342 | switch(this->treetype){
|
---|
| 343 | case 1:
|
---|
| 344 | this->ObservationListQuadtree(px,py,pobs,pnobs,x_interp,y_interp,radius,maxdata);
|
---|
| 345 | break;
|
---|
| 346 | case 2:
|
---|
| 347 | this->ObservationListCovertree(px,py,pobs,pnobs,x_interp,y_interp,radius,maxdata);
|
---|
| 348 | break;
|
---|
| 349 | default:
|
---|
| 350 | _error_("Tree type "<<this->treetype<<" not supported yet (1: quadtree, 2: covertree)");
|
---|
[19105] | 351 | }
|
---|
[20500] | 352 | }/*}}}*/
|
---|
| 353 | void Observations::ObservationListQuadtree(IssmPDouble **px,IssmPDouble **py,IssmPDouble **pobs,int* pnobs,IssmPDouble x_interp,IssmPDouble y_interp,IssmPDouble radius,int maxdata){/*{{{*/
|
---|
[19105] | 354 |
|
---|
[14996] | 355 | /*Output and Intermediaries*/
|
---|
| 356 | bool stop;
|
---|
| 357 | int nobs,tempnobs,i,j,k,n,counter;
|
---|
| 358 | IssmPDouble h2,radius2;
|
---|
| 359 | int *indices = NULL;
|
---|
| 360 | int *tempindices = NULL;
|
---|
| 361 | IssmPDouble *dists = NULL;
|
---|
| 362 | IssmPDouble *x = NULL;
|
---|
| 363 | IssmPDouble *y = NULL;
|
---|
| 364 | IssmPDouble *obs = NULL;
|
---|
| 365 | Observation *observation = NULL;
|
---|
| 366 |
|
---|
| 367 | /*If radius is not provided or is 0, return all observations*/
|
---|
[17806] | 368 | if(radius==0.) radius=this->quadtree->root->length*2.;
|
---|
[14996] | 369 |
|
---|
| 370 | /*Compute radius square*/
|
---|
| 371 | radius2 = radius*radius;
|
---|
| 372 |
|
---|
| 373 | /*Find all observations that are in radius*/
|
---|
| 374 | this->quadtree->RangeSearch(&tempindices,&tempnobs,x_interp,y_interp,radius);
|
---|
| 375 | if(tempnobs){
|
---|
| 376 | indices = xNew<int>(tempnobs);
|
---|
| 377 | dists = xNew<IssmPDouble>(tempnobs);
|
---|
| 378 | }
|
---|
| 379 | nobs = 0;
|
---|
[17806] | 380 | for(i=0;i<tempnobs;i++){
|
---|
[19105] | 381 | observation=xDynamicCast<Observation*>(this->GetObjectByOffset(tempindices[i]));
|
---|
[14996] | 382 | h2 = (observation->x-x_interp)*(observation->x-x_interp) + (observation->y-y_interp)*(observation->y-y_interp);
|
---|
| 383 |
|
---|
| 384 | if(nobs==maxdata && h2>radius2) continue;
|
---|
[17806] | 385 | if(nobs<maxdata){
|
---|
[14996] | 386 | indices[nobs] = tempindices[i];
|
---|
| 387 | dists[nobs] = h2;
|
---|
| 388 | nobs++;
|
---|
| 389 | }
|
---|
| 390 | if(nobs==1) continue;
|
---|
| 391 |
|
---|
| 392 | /*Sort all dists up to now*/
|
---|
| 393 | n=nobs-1;
|
---|
| 394 | stop = false;
|
---|
| 395 | for(k=0;k<n-1;k++){
|
---|
| 396 | if(h2<dists[k]){
|
---|
| 397 | counter=1;
|
---|
| 398 | for(int jj=k;jj<n;jj++){
|
---|
| 399 | j = n-counter;
|
---|
| 400 | dists[j+1] = dists[j];
|
---|
| 401 | indices[j+1] = indices[j];
|
---|
| 402 | counter++;
|
---|
| 403 | }
|
---|
| 404 | dists[k] = h2;
|
---|
| 405 | indices[k] = tempindices[i];
|
---|
| 406 | stop = true;
|
---|
| 407 | break;
|
---|
| 408 | }
|
---|
| 409 | if(stop) break;
|
---|
| 410 | }
|
---|
| 411 | }
|
---|
| 412 | xDelete<IssmPDouble>(dists);
|
---|
| 413 | xDelete<int>(tempindices);
|
---|
| 414 |
|
---|
| 415 | if(nobs){
|
---|
| 416 | /*Allocate vectors*/
|
---|
| 417 | x = xNew<IssmPDouble>(nobs);
|
---|
| 418 | y = xNew<IssmPDouble>(nobs);
|
---|
| 419 | obs = xNew<IssmPDouble>(nobs);
|
---|
| 420 |
|
---|
| 421 | /*Loop over all observations and fill in x, y and obs*/
|
---|
[17806] | 422 | for(i=0;i<nobs;i++){
|
---|
[19105] | 423 | observation=xDynamicCast<Observation*>(this->GetObjectByOffset(indices[i]));
|
---|
[14996] | 424 | observation->WriteXYObs(&x[i],&y[i],&obs[i]);
|
---|
| 425 | }
|
---|
| 426 | }
|
---|
| 427 |
|
---|
| 428 | /*Assign output pointer*/
|
---|
| 429 | xDelete<int>(indices);
|
---|
| 430 | *px=x;
|
---|
| 431 | *py=y;
|
---|
| 432 | *pobs=obs;
|
---|
| 433 | *pnobs=nobs;
|
---|
| 434 | }/*}}}*/
|
---|
[20500] | 435 | void Observations::ObservationListCovertree(double **px,double **py,double **pobs,int* pnobs,double x_interp,double y_interp,double radius,int maxdata){/*{{{*/
|
---|
[14996] | 436 |
|
---|
[20500] | 437 | double *x = NULL;
|
---|
| 438 | double *y = NULL;
|
---|
| 439 | double *obs = NULL;
|
---|
| 440 | Observation observation=Observation(x_interp,y_interp,0.);
|
---|
| 441 | std::vector<Observation> kNN;
|
---|
[14996] | 442 |
|
---|
[20500] | 443 | kNN=(this->covertree->kNearestNeighbors(observation, maxdata));
|
---|
| 444 | //cout << "kNN's size: " << kNN.size() << " (maxdata = " <<maxdata<<")"<<endl;
|
---|
[14996] | 445 |
|
---|
[20500] | 446 | //kNN is sort from closest to farthest neighbor
|
---|
| 447 | //searches for the first neighbor that is out of radius
|
---|
| 448 | //deletes and resizes the kNN vector
|
---|
| 449 | vector<Observation>::iterator it;
|
---|
| 450 | if(radius>0.){
|
---|
| 451 | for (it = kNN.begin(); it != kNN.end(); ++it) {
|
---|
| 452 | //(*it).print();
|
---|
| 453 | //cout << "\n" << (*it).distance(observation) << endl;
|
---|
| 454 | if ((*it).distance(observation) > radius) {
|
---|
| 455 | break;
|
---|
| 456 | }
|
---|
[14996] | 457 | }
|
---|
[20500] | 458 | kNN.erase(it, kNN.end());
|
---|
[14996] | 459 | }
|
---|
| 460 |
|
---|
[20500] | 461 | /*Allocate vectors*/
|
---|
| 462 | x = new double[kNN.size()];
|
---|
| 463 | y = new double[kNN.size()];
|
---|
| 464 | obs = new double[kNN.size()];
|
---|
| 465 |
|
---|
| 466 | /*Loop over all observations and fill in x, y and obs*/
|
---|
| 467 | int i = 0;
|
---|
| 468 | for(it = kNN.begin(); it != kNN.end(); ++it) {
|
---|
| 469 | (*it).WriteXYObs((*it), &x[i], &y[i], &obs[i]);
|
---|
| 470 | i++;
|
---|
| 471 | }
|
---|
| 472 |
|
---|
[14996] | 473 | *px=x;
|
---|
| 474 | *py=y;
|
---|
| 475 | *pobs=obs;
|
---|
[20500] | 476 | *pnobs = kNN.size();
|
---|
[14996] | 477 | }/*}}}*/
|
---|
[18301] | 478 | void Observations::InterpolationIDW(IssmPDouble *pprediction,IssmPDouble x_interp,IssmPDouble y_interp,IssmPDouble radius,int mindata,int maxdata,IssmPDouble power){/*{{{*/
|
---|
[14996] | 479 |
|
---|
| 480 | /*Intermediaries*/
|
---|
| 481 | int i,n_obs;
|
---|
| 482 | IssmPDouble prediction;
|
---|
| 483 | IssmPDouble numerator,denominator,h,weight;
|
---|
| 484 | IssmPDouble *x = NULL;
|
---|
| 485 | IssmPDouble *y = NULL;
|
---|
| 486 | IssmPDouble *obs = NULL;
|
---|
| 487 |
|
---|
| 488 | /*Some checks*/
|
---|
| 489 | _assert_(maxdata>0);
|
---|
| 490 | _assert_(pprediction);
|
---|
| 491 | _assert_(power>0);
|
---|
| 492 |
|
---|
| 493 | /*Get list of observations for current point*/
|
---|
| 494 | this->ObservationList(&x,&y,&obs,&n_obs,x_interp,y_interp,radius,maxdata);
|
---|
| 495 |
|
---|
| 496 | /*If we have less observations than mindata, return UNDEF*/
|
---|
| 497 | if(n_obs<mindata){
|
---|
| 498 | prediction = UNDEF;
|
---|
| 499 | }
|
---|
| 500 | else{
|
---|
| 501 | numerator = 0.;
|
---|
| 502 | denominator = 0.;
|
---|
| 503 | for(i=0;i<n_obs;i++){
|
---|
| 504 | h = sqrt( (x[i]-x_interp)*(x[i]-x_interp) + (y[i]-y_interp)*(y[i]-y_interp));
|
---|
| 505 | if (h<0.0000001){
|
---|
| 506 | numerator = obs[i];
|
---|
| 507 | denominator = 1.;
|
---|
| 508 | break;
|
---|
| 509 | }
|
---|
| 510 | weight = 1./pow(h,power);
|
---|
| 511 | numerator += weight*obs[i];
|
---|
| 512 | denominator += weight;
|
---|
| 513 | }
|
---|
| 514 | prediction = numerator/denominator;
|
---|
| 515 | }
|
---|
| 516 |
|
---|
| 517 | /*clean-up*/
|
---|
| 518 | *pprediction = prediction;
|
---|
| 519 | xDelete<IssmPDouble>(x);
|
---|
| 520 | xDelete<IssmPDouble>(y);
|
---|
| 521 | xDelete<IssmPDouble>(obs);
|
---|
| 522 | }/*}}}*/
|
---|
[18301] | 523 | void Observations::InterpolationKriging(IssmPDouble *pprediction,IssmPDouble *perror,IssmPDouble x_interp,IssmPDouble y_interp,IssmPDouble radius,int mindata,int maxdata,Variogram* variogram){/*{{{*/
|
---|
[14996] | 524 |
|
---|
| 525 | /*Intermediaries*/
|
---|
| 526 | int i,j,n_obs;
|
---|
| 527 | IssmPDouble prediction,error;
|
---|
[17806] | 528 | IssmPDouble *x = NULL;
|
---|
| 529 | IssmPDouble *y = NULL;
|
---|
| 530 | IssmPDouble *obs = NULL;
|
---|
| 531 | IssmPDouble *Lambda = NULL;
|
---|
[14996] | 532 |
|
---|
| 533 | /*Some checks*/
|
---|
| 534 | _assert_(mindata>0 && maxdata>0);
|
---|
| 535 | _assert_(pprediction && perror);
|
---|
| 536 |
|
---|
| 537 | /*Get list of observations for current point*/
|
---|
| 538 | this->ObservationList(&x,&y,&obs,&n_obs,x_interp,y_interp,radius,maxdata);
|
---|
| 539 |
|
---|
| 540 | /*If we have less observations than mindata, return UNDEF*/
|
---|
| 541 | if(n_obs<mindata){
|
---|
| 542 | *pprediction = -999.0;
|
---|
| 543 | *perror = -999.0;
|
---|
| 544 | return;
|
---|
| 545 | }
|
---|
| 546 |
|
---|
| 547 | /*Allocate intermediary matrix and vectors*/
|
---|
[17806] | 548 | IssmPDouble* A = xNew<IssmPDouble>((n_obs+1)*(n_obs+1));
|
---|
| 549 | IssmPDouble* B = xNew<IssmPDouble>(n_obs+1);
|
---|
[14996] | 550 |
|
---|
[17806] | 551 | IssmDouble unbias = variogram->Covariance(0.,0.);
|
---|
[14996] | 552 | /*First: Create semivariogram matrix for observations*/
|
---|
| 553 | for(i=0;i<n_obs;i++){
|
---|
[20500] | 554 | //printf("%g %g ==> %g\n",x[i],y[i],sqrt(pow(x[i]-x_interp,2)+pow(y[i]-y_interp,2)));
|
---|
[14996] | 555 | for(j=0;j<=i;j++){
|
---|
[17806] | 556 | A[i*(n_obs+1)+j] = variogram->Covariance(x[i]-x[j],y[i]-y[j]);
|
---|
| 557 | A[j*(n_obs+1)+i] = A[i*(n_obs+1)+j];
|
---|
[14996] | 558 | }
|
---|
[17806] | 559 | A[i*(n_obs+1)+n_obs] = unbias;
|
---|
| 560 | //A[i*(n_obs+1)+n_obs] = 1.;
|
---|
[14996] | 561 | }
|
---|
[17806] | 562 | for(i=0;i<n_obs;i++) A[n_obs*(n_obs+1)+i]=unbias;
|
---|
| 563 | //for(i=0;i<n_obs;i++) A[n_obs*(n_obs+1)+i]=1.;
|
---|
| 564 | A[n_obs*(n_obs+1)+n_obs] = 0.;
|
---|
[14996] | 565 |
|
---|
| 566 | /*Get semivariogram vector associated to this location*/
|
---|
[17806] | 567 | for(i=0;i<n_obs;i++) B[i] = variogram->Covariance(x[i]-x_interp,y[i]-y_interp);
|
---|
| 568 | B[n_obs] = unbias;
|
---|
| 569 | //B[n_obs] = 1.;
|
---|
[14996] | 570 |
|
---|
| 571 | /*Solve the three linear systems*/
|
---|
| 572 | #if _HAVE_GSL_
|
---|
[17806] | 573 | DenseGslSolve(&Lambda,A,B,n_obs+1); // Gamma^-1 Z
|
---|
[14996] | 574 | #else
|
---|
| 575 | _error_("GSL is required");
|
---|
| 576 | #endif
|
---|
| 577 |
|
---|
[17806] | 578 | /*Compute predictor*/
|
---|
[14996] | 579 | prediction = 0.;
|
---|
[17806] | 580 | for(i=0;i<n_obs;i++) prediction += Lambda[i]*obs[i];
|
---|
[14996] | 581 |
|
---|
[17806] | 582 | /*Compute error (GSLIB p15 eq II.14)*/
|
---|
| 583 | error = variogram->Covariance(0.,0.)*(1. - Lambda[n_obs]);;
|
---|
| 584 | for(i=0;i<n_obs;i++) error += -Lambda[i]*B[i];
|
---|
| 585 |
|
---|
[14996] | 586 | /*clean-up*/
|
---|
| 587 | *pprediction = prediction;
|
---|
| 588 | *perror = error;
|
---|
| 589 | xDelete<IssmPDouble>(x);
|
---|
| 590 | xDelete<IssmPDouble>(y);
|
---|
| 591 | xDelete<IssmPDouble>(obs);
|
---|
[17806] | 592 | xDelete<IssmPDouble>(A);
|
---|
| 593 | xDelete<IssmPDouble>(B);
|
---|
| 594 | xDelete<IssmPDouble>(Lambda);
|
---|
[14996] | 595 | }/*}}}*/
|
---|
[18301] | 596 | void Observations::InterpolationNearestNeighbor(IssmPDouble *pprediction,IssmPDouble x_interp,IssmPDouble y_interp,IssmPDouble radius){/*{{{*/
|
---|
[14996] | 597 |
|
---|
| 598 | /*Intermediaries*/
|
---|
| 599 | IssmPDouble x,y,obs;
|
---|
| 600 |
|
---|
| 601 | /*Get clostest observation*/
|
---|
| 602 | this->ClosestObservation(&x,&y,&obs,x_interp,y_interp,radius);
|
---|
| 603 |
|
---|
| 604 | /*Assign output pointer*/
|
---|
| 605 | *pprediction = obs;
|
---|
| 606 | }/*}}}*/
|
---|
[18301] | 607 | void Observations::InterpolationV4(IssmPDouble *pprediction,IssmPDouble x_interp,IssmPDouble y_interp,IssmPDouble radius,int mindata,int maxdata){/*{{{*/
|
---|
[14996] | 608 | /* Reference: David T. Sandwell, Biharmonic spline interpolation of GEOS-3
|
---|
| 609 | * and SEASAT altimeter data, Geophysical Research Letters, 2, 139-142,
|
---|
| 610 | * 1987. Describes interpolation using value or gradient of value in any
|
---|
| 611 | * dimension.*/
|
---|
| 612 |
|
---|
| 613 | /*Intermediaries*/
|
---|
| 614 | int i,j,n_obs;
|
---|
| 615 | IssmPDouble prediction,h;
|
---|
| 616 | IssmPDouble *x = NULL;
|
---|
| 617 | IssmPDouble *y = NULL;
|
---|
| 618 | IssmPDouble *obs = NULL;
|
---|
| 619 | IssmPDouble *Green = NULL;
|
---|
| 620 | IssmPDouble *weights = NULL;
|
---|
| 621 | IssmPDouble *g = NULL;
|
---|
| 622 |
|
---|
| 623 | /*Some checks*/
|
---|
| 624 | _assert_(maxdata>0);
|
---|
| 625 | _assert_(pprediction);
|
---|
| 626 |
|
---|
| 627 | /*Get list of observations for current point*/
|
---|
| 628 | this->ObservationList(&x,&y,&obs,&n_obs,x_interp,y_interp,radius,maxdata);
|
---|
| 629 |
|
---|
| 630 | /*If we have less observations than mindata, return UNDEF*/
|
---|
| 631 | if(n_obs<mindata || n_obs<2){
|
---|
| 632 | prediction = UNDEF;
|
---|
| 633 | }
|
---|
| 634 | else{
|
---|
| 635 |
|
---|
| 636 | /*Allocate intermediary matrix and vectors*/
|
---|
| 637 | Green = xNew<IssmPDouble>(n_obs*n_obs);
|
---|
| 638 | g = xNew<IssmPDouble>(n_obs);
|
---|
| 639 |
|
---|
| 640 | /*First: distance vector*/
|
---|
| 641 | for(i=0;i<n_obs;i++){
|
---|
| 642 | h = sqrt( (x[i]-x_interp)*(x[i]-x_interp) + (y[i]-y_interp)*(y[i]-y_interp) );
|
---|
| 643 | if(h>0){
|
---|
| 644 | g[i] = h*h*(log(h)-1.);
|
---|
| 645 | }
|
---|
| 646 | else{
|
---|
| 647 | g[i] = 0.;
|
---|
| 648 | }
|
---|
| 649 | }
|
---|
| 650 |
|
---|
| 651 | /*Build Green function matrix*/
|
---|
| 652 | for(i=0;i<n_obs;i++){
|
---|
| 653 | for(j=0;j<=i;j++){
|
---|
| 654 | h = sqrt( (x[i]-x[j])*(x[i]-x[j]) + (y[i]-y[j])*(y[i]-y[j]) );
|
---|
| 655 | if(h>0){
|
---|
| 656 | Green[j*n_obs+i] = h*h*(log(h)-1.);
|
---|
| 657 | }
|
---|
| 658 | else{
|
---|
| 659 | Green[j*n_obs+i] = 0.;
|
---|
| 660 | }
|
---|
| 661 | Green[i*n_obs+j] = Green[j*n_obs+i];
|
---|
| 662 | }
|
---|
[17806] | 663 | /*Zero diagonal (should be done already, but just in case)*/
|
---|
| 664 | Green[i*n_obs+i] = 0.;
|
---|
[14996] | 665 | }
|
---|
| 666 |
|
---|
| 667 | /*Compute weights*/
|
---|
| 668 | #if _HAVE_GSL_
|
---|
| 669 | DenseGslSolve(&weights,Green,obs,n_obs); // Green^-1 obs
|
---|
| 670 | #else
|
---|
| 671 | _error_("GSL is required");
|
---|
| 672 | #endif
|
---|
| 673 |
|
---|
| 674 | /*Interpolate*/
|
---|
| 675 | prediction = 0;
|
---|
| 676 | for(i=0;i<n_obs;i++) prediction += weights[i]*g[i];
|
---|
| 677 |
|
---|
| 678 | }
|
---|
| 679 |
|
---|
| 680 | /*clean-up*/
|
---|
| 681 | *pprediction = prediction;
|
---|
| 682 | xDelete<IssmPDouble>(x);
|
---|
| 683 | xDelete<IssmPDouble>(y);
|
---|
| 684 | xDelete<IssmPDouble>(obs);
|
---|
| 685 | xDelete<IssmPDouble>(Green);
|
---|
| 686 | xDelete<IssmPDouble>(g);
|
---|
| 687 | xDelete<IssmPDouble>(weights);
|
---|
| 688 | }/*}}}*/
|
---|
[18301] | 689 | void Observations::QuadtreeColoring(IssmPDouble* A,IssmPDouble *x,IssmPDouble *y,int n){/*{{{*/
|
---|
[14996] | 690 |
|
---|
[19105] | 691 | if(this->treetype!=1) _error_("Tree type is not quadtree");
|
---|
[14996] | 692 | int xi,yi,level;
|
---|
| 693 |
|
---|
| 694 | for(int i=0;i<n;i++){
|
---|
| 695 | this->quadtree->IntergerCoordinates(&xi,&yi,x[i],y[i]);
|
---|
| 696 | this->quadtree->QuadtreeDepth(&level,xi,yi);
|
---|
| 697 | A[i]=(IssmPDouble)level;
|
---|
| 698 | }
|
---|
| 699 |
|
---|
| 700 | }/*}}}*/
|
---|
[18301] | 701 | void Observations::Variomap(IssmPDouble* gamma,IssmPDouble *x,int n){/*{{{*/
|
---|
[14996] | 702 |
|
---|
| 703 | /*Output and Intermediaries*/
|
---|
| 704 | int i,j,k;
|
---|
| 705 | IssmPDouble distance;
|
---|
| 706 | Observation *observation1 = NULL;
|
---|
| 707 | Observation *observation2 = NULL;
|
---|
| 708 |
|
---|
| 709 | IssmPDouble *counter = xNew<IssmPDouble>(n);
|
---|
| 710 | for(j=0;j<n;j++) counter[j] = 0.0;
|
---|
| 711 | for(j=0;j<n;j++) gamma[j] = 0.0;
|
---|
| 712 |
|
---|
| 713 | for(i=0;i<this->Size();i++){
|
---|
[19105] | 714 | observation1=xDynamicCast<Observation*>(this->GetObjectByOffset(i));
|
---|
[14996] | 715 |
|
---|
| 716 | for(j=i+1;j<this->Size();j++){
|
---|
[19105] | 717 | observation2=xDynamicCast<Observation*>(this->GetObjectByOffset(j));
|
---|
[14996] | 718 |
|
---|
[16137] | 719 | distance=sqrt(pow(observation1->x - observation2->x,2) + pow(observation1->y - observation2->y,2));
|
---|
[14996] | 720 | if(distance>x[n-1]) continue;
|
---|
| 721 |
|
---|
| 722 | int index = int(distance/(x[1]-x[0]));
|
---|
| 723 | if(index>n-1) index = n-1;
|
---|
| 724 | if(index<0) index = 0;
|
---|
| 725 |
|
---|
[16137] | 726 | gamma[index] += 1./2.*pow(observation1->value - observation2->value,2);
|
---|
[14996] | 727 | counter[index] += 1.;
|
---|
| 728 | }
|
---|
| 729 | }
|
---|
| 730 |
|
---|
| 731 | /*Normalize semivariogram*/
|
---|
| 732 | gamma[0]=0.;
|
---|
| 733 | for(k=0;k<n;k++){
|
---|
| 734 | if(counter[k]) gamma[k] = gamma[k]/counter[k];
|
---|
| 735 | }
|
---|
| 736 |
|
---|
| 737 | /*Assign output pointer*/
|
---|
| 738 | xDelete<IssmPDouble>(counter);
|
---|
| 739 | }/*}}}*/
|
---|
[19105] | 740 |
|
---|