1 | import numpy as np
|
---|
2 | from triangle import triangle
|
---|
3 | from model import *
|
---|
4 | from netCDF4 import Dataset
|
---|
5 | from InterpFromGridToMesh import InterpFromGridToMesh
|
---|
6 | from bamg import bamg
|
---|
7 | from xy2ll import xy2ll
|
---|
8 | from plotmodel import plotmodel
|
---|
9 | from export_netCDF import export_netCDF
|
---|
10 | from loadmodel import loadmodel
|
---|
11 | from setmask import setmask
|
---|
12 | from parameterize import parameterize
|
---|
13 | from setflowequation import setflowequation
|
---|
14 | from socket import gethostname
|
---|
15 | from solve import solve
|
---|
16 | from ll2xy import ll2xy
|
---|
17 | from BamgTriangulate import BamgTriangulate
|
---|
18 | from InterpFromMeshToMesh2d import InterpFromMeshToMesh2d
|
---|
19 | from scipy.interpolate import griddata
|
---|
20 |
|
---|
21 | steps = [1]
|
---|
22 |
|
---|
23 | if 1 in steps:
|
---|
24 | # Step 1: Mesh creation {{{
|
---|
25 | print(' Step 1: Mesh creation')
|
---|
26 |
|
---|
27 | #Generate initial uniform mesh (resolution = 20000 m)
|
---|
28 | md = triangle(model(), './DomainOutline.exp', 20000)
|
---|
29 |
|
---|
30 | ncdata = Dataset('../Data/Greenland_5km_dev1.2.nc', mode='r')
|
---|
31 |
|
---|
32 | # Get velocities (Note: You can use ncprint('file') to see an ncdump)
|
---|
33 | x1 = np.squeeze(ncdata.variables['x1'][:].data)
|
---|
34 | y1 = np.squeeze(ncdata.variables['y1'][:].data)
|
---|
35 | velx = np.squeeze(ncdata.variables['surfvelx'][:].data)
|
---|
36 | vely = np.squeeze(ncdata.variables['surfvely'][:].data)
|
---|
37 | ncdata.close()
|
---|
38 |
|
---|
39 | vx = InterpFromGridToMesh(x1, y1, velx, md.mesh.x, md.mesh.y, 0)
|
---|
40 | vy = InterpFromGridToMesh(x1, y1, vely, md.mesh.x, md.mesh.y, 0)
|
---|
41 | vel = np.sqrt(vx**2 + vy**2)
|
---|
42 |
|
---|
43 | #Mesh Greenland
|
---|
44 | md = bamg(md, 'hmax', 400000, 'hmin', 5000, 'gradation', 1.4, 'field', vel, 'err', 8)
|
---|
45 |
|
---|
46 | #convert x, y coordinates (Polar stereo) to lat / lon
|
---|
47 | [md.mesh.lat, md.mesh.long] = xy2ll(md.mesh.x, md.mesh.y, + 1, 39, 71)
|
---|
48 |
|
---|
49 | export_netCDF(md, './Models/Greenland.Mesh_generation.nc')
|
---|
50 | plotmodel(md, 'data', 'mesh')
|
---|
51 | # }}}
|
---|
52 |
|
---|
53 | if 2 in steps:
|
---|
54 | # Step 2: Parameterization{{{
|
---|
55 | print(' Step 2: Parameterization')
|
---|
56 | md = loadmodel('./Models/Greenland.Mesh_generation.nc')
|
---|
57 |
|
---|
58 | md = setmask(md, '', '')
|
---|
59 | md = parameterize(md, './Greenland.py')
|
---|
60 | md = setflowequation(md, 'SSA', 'all')
|
---|
61 |
|
---|
62 | export_netCDF(md, "./Models/Greenland.Parameterization.nc")
|
---|
63 | # }}}
|
---|
64 |
|
---|
65 | if 3 in steps:
|
---|
66 | # Step 3: Control method friction {{{
|
---|
67 | print(' Step 3: Control method friction')
|
---|
68 | md = loadmodel('./Models/Greenland.Parameterization.nc')
|
---|
69 | #Control general
|
---|
70 | md.inversion.iscontrol = 1
|
---|
71 | md.inversion.nsteps = 30
|
---|
72 | md.inversion.step_threshold = 0.99 * np.ones((md.inversion.nsteps))
|
---|
73 | md.inversion.maxiter_per_step = 5 * np.ones((md.inversion.nsteps))
|
---|
74 |
|
---|
75 | #Cost functions
|
---|
76 | md.inversion.cost_functions = [101, 103, 501]
|
---|
77 | md.inversion.cost_functions_coefficients = np.ones((md.mesh.numberofvertices, 3))
|
---|
78 | md.inversion.cost_functions_coefficients[:, 0] = 350
|
---|
79 | md.inversion.cost_functions_coefficients[:, 1] = 0.2
|
---|
80 | md.inversion.cost_functions_coefficients[:, 2] = 2e-6
|
---|
81 |
|
---|
82 | #Controls
|
---|
83 | md.inversion.control_parameters = ['FrictionCoefficient']
|
---|
84 | md.inversion.gradient_scaling = 50 * np.ones((md.inversion.nsteps, 1))
|
---|
85 | md.inversion.min_parameters = 1 * np.ones((md.mesh.numberofvertices, 1))
|
---|
86 | md.inversion.max_parameters = 200 * np.ones((md.mesh.numberofvertices, 1))
|
---|
87 |
|
---|
88 | #Additional parameters
|
---|
89 | md.stressbalance.restol = 0.01
|
---|
90 | md.stressbalance.reltol = 0.1
|
---|
91 | md.stressbalance.abstol = np.nan
|
---|
92 | md.stressbalance.loadingforce = np.zeros((md.mesh.numberofvertices, 3))
|
---|
93 |
|
---|
94 | #Go solve
|
---|
95 | md.cluster = generic('name', gethostname(), 'np', 2)
|
---|
96 | md.toolkits = toolkits()
|
---|
97 | md.verbose = verbose('solution', True, 'control', True)
|
---|
98 | md = solve(md, 'Stressbalance')
|
---|
99 |
|
---|
100 | #Update model friction fields accordingly
|
---|
101 | md.friction.coefficient = md.results.StressbalanceSolution.FrictionCoefficient
|
---|
102 |
|
---|
103 | export_netCDF(md, "./Models/Greenland.Control_drag.nc")
|
---|
104 | # }}}
|
---|
105 |
|
---|
106 | if 4 in steps:
|
---|
107 | # Step 4: Transient run {{{
|
---|
108 | print(' Step 4: Transient run')
|
---|
109 | md = loadmodel('./Models/Greenland.Control_drag.nc')
|
---|
110 |
|
---|
111 | #Set surface mass balance
|
---|
112 | ncdata = Dataset('../Data/Greenland_5km_dev1.2.nc', mode='r')
|
---|
113 | x1 = np.squeeze(ncdata.variables['x1'][:].data)
|
---|
114 | y1 = np.squeeze(ncdata.variables['y1'][:].data)
|
---|
115 | smb = np.squeeze(ncdata.variables['smb'][:].data)
|
---|
116 | ncdata.close()
|
---|
117 |
|
---|
118 | smb = InterpFromGridToMesh(x1, y1, smb, md.mesh.x, md.mesh.y, 0)
|
---|
119 | smb = smb * md.materials.rho_freshwater / md.materials.rho_ice
|
---|
120 | smb = np.vstack((smb, smb, smb - 1.0)).T
|
---|
121 | md.smb.mass_balance = np.vstack((smb, np.asarray([[1, 10, 20]])))
|
---|
122 | #Set transient options, run for 20 years, saving every timestep
|
---|
123 | md.timestepping.time_step = 0.2
|
---|
124 | md.timestepping.final_time = 20
|
---|
125 | md.settings.output_frequency = 1
|
---|
126 |
|
---|
127 | #Additional options
|
---|
128 | md.inversion.iscontrol = 0
|
---|
129 | md.transient.requested_outputs = ['IceVolume', 'TotalSmb', 'SmbMassBalance']
|
---|
130 | md.verbose = verbose('solution', True, 'module', True, 'convergence', True)
|
---|
131 |
|
---|
132 | #Go solve
|
---|
133 | md.cluster = generic('name', gethostname(), 'np', 2)
|
---|
134 | md = solve(md, 'Transient')
|
---|
135 |
|
---|
136 | export_netCDF(md, './Models/Greenland.Transient.nc')
|
---|
137 | # }}}
|
---|
138 |
|
---|
139 | if 5 in steps:
|
---|
140 | # Step 5: Plotting {{{
|
---|
141 | print(' Step 5: Plotting')
|
---|
142 | md = loadmodel('./Models/Greenland.Transient.nc')
|
---|
143 |
|
---|
144 | #Planview plots
|
---|
145 | plotmodel(md, 'data', md.results.TransientSolution[-1].Vel, 'log#1', 1e-1,
|
---|
146 | 'caxis#1', [1e-1, 1e4], 'title#1', 'Velocity (m / y)',
|
---|
147 | 'data', md.results.TransientSolution[1].SmbMassBalance,
|
---|
148 | 'title#2', 'Surface Mass Balance (m / y)',
|
---|
149 | 'data', md.results.TransientSolution[-1].Thickness,
|
---|
150 | 'title', 'Thickness (m)',
|
---|
151 | 'data', md.results.TransientSolution[-1].Surface,
|
---|
152 | 'title', 'Surface (m)')
|
---|
153 |
|
---|
154 | #Line Plots
|
---|
155 | figure
|
---|
156 |
|
---|
157 | #Plot surface mass balance, velocity and volume
|
---|
158 | surfmb = []
|
---|
159 | vel = []
|
---|
160 | volume = []
|
---|
161 | for i in range(0, 100):
|
---|
162 | surfmb.append(md.results.TransientSolution[i].SmbMassBalance)
|
---|
163 | vel.append(md.results.TransientSolution[i].Vel)
|
---|
164 | volume.append(md.results.TransientSolution[i].IceVolume)
|
---|
165 |
|
---|
166 | layout, ax = plt.subplots(3, 1, sharex=True, sharey=False, figsize=(5, 5))
|
---|
167 | ax[0].plot(np.arange(0.2, 20.2, 0.2), np.nanmean(surfmb, axis=1))
|
---|
168 | ax[0].set_title('Mean Surface mass balance')
|
---|
169 | ax[1].plot(np.arange(0.2, 20.2, 0.2), np.nanmean(vel, axis=1))
|
---|
170 | ax[1].set_title('Mean Velocity')
|
---|
171 | ax[2].plot(np.arange(0.2, 20.2, 0.2), volume)
|
---|
172 | ax[2].set_title('Ice Volume')
|
---|
173 | ax[2].set_xlabel('years')
|
---|
174 | # }}}
|
---|
175 |
|
---|
176 | if 6 in steps:
|
---|
177 | # Step 6: Extract Box SMB{{{
|
---|
178 | print(' Step 6: Extract Box SMB')
|
---|
179 | md = loadmodel('./Models/Greenland.Transient.nc')
|
---|
180 |
|
---|
181 | #Set surface mass balance
|
---|
182 | ncbox = Dataset('../Data/Box_Greenland_SMB_monthly_1840-2012_5km_cal_ver20141007.nc', mode='r')
|
---|
183 | lat = np.squeeze(ncbox.variables['lat'][:].data)
|
---|
184 | lon = np.squeeze(ncbox.variables['lon'][:].data)
|
---|
185 | smbbox = np.squeeze(ncbox.variables['MassFlux'][:].data)
|
---|
186 | ncbox.close()
|
---|
187 | [x1, y1] = ll2xy(lat, lon, + 1, 45, 70)
|
---|
188 |
|
---|
189 | years_of_simulation = np.arange(1840, 2012 + 1)
|
---|
190 | t = np.arange(years_of_simulation[0], years_of_simulation[-1] + 11 / 12, 1 / 12)
|
---|
191 | #Area of grid for 5km box
|
---|
192 | area_of_grid = 5000 * 5000
|
---|
193 | totalsmb = reshape(np.nansum(smbbox / 1000, axis=(-2, -1)), (len(t), 1)) * area_of_grid
|
---|
194 |
|
---|
195 | #save surface mass balance mat dataset
|
---|
196 | smbmean = np.nanmean(smbbox, axis=(0, 1))
|
---|
197 | SMB = {}
|
---|
198 | SMB['smbmean'] = smbmean
|
---|
199 | SMB['totalsmb '] = totalsmb
|
---|
200 | SMB['smbbox'] = smbbox
|
---|
201 | SMB['x1'] = x1
|
---|
202 | SMB['y1'] = y1
|
---|
203 | SMB['t'] = t
|
---|
204 |
|
---|
205 | np.savez('./smbbox.npz', **SMB)
|
---|
206 |
|
---|
207 | #plot a time series of total SMB
|
---|
208 | fig = plt.figure(tight_layout=True)
|
---|
209 | ax = fig.add_subplot(111)
|
---|
210 | ax.plot(t, totalsmb / 1e9)
|
---|
211 | ax.set_title('Total Surface mass balance, Gt')
|
---|
212 | ax.set_xlabel('year')
|
---|
213 | ax.set_ylabel('Gt/yr')
|
---|
214 |
|
---|
215 | del smbbox
|
---|
216 | # }}}
|
---|
217 |
|
---|
218 | if 7 in steps:
|
---|
219 | # Step 7: Historical Relaxation run {{{
|
---|
220 | print(' Step 7: Historical Relaxation run')
|
---|
221 | md = loadmodel('./Models/Greenland.Control_drag.nc')
|
---|
222 |
|
---|
223 | with open('./smbbox.npz', "rb") as smbFile:
|
---|
224 | SMB = np.load(smbFile)
|
---|
225 | x1 = np.squeeze(SMB['x1'])
|
---|
226 | y1 = np.squeeze(SMB['y1'])
|
---|
227 | smbmean = np.squeeze(SMB['smbmean'])
|
---|
228 |
|
---|
229 | #convert mesh x, y into the Box projection
|
---|
230 | [md.mesh.lat, md.mesh.long] = xy2ll(md.mesh.x, md.mesh.y, + 1, 39, 71)
|
---|
231 | [xi, yi] = ll2xy(md.mesh.lat, md.mesh.long, + 1, 45, 70)
|
---|
232 |
|
---|
233 | #Interpolate and set surface mass balance
|
---|
234 | x1 = x1.flatten()
|
---|
235 | y1 = y1.flatten()
|
---|
236 | smbmean = smbmean.flatten()
|
---|
237 | index = BamgTriangulate(x1, y1)
|
---|
238 | smb_mo = InterpFromMeshToMesh2d(index, x1, y1, smbmean, xi, yi)
|
---|
239 | smb = smb_mo * 12 / 1000 * md.materials.rho_freshwater / md.materials.rho_ice
|
---|
240 | md.smb.mass_balance = np.append(smb, 1)
|
---|
241 |
|
---|
242 | #Set transient options, run for 20 years, saving every timestep
|
---|
243 | md.timestepping.time_step = 0.2
|
---|
244 | md.timestepping.final_time = 20
|
---|
245 | md.settings.output_frequency = 1
|
---|
246 |
|
---|
247 | #Additional options
|
---|
248 | md.inversion.iscontrol = 0
|
---|
249 | md.transient.requested_outputs = ['IceVolume', 'TotalSmb', 'SmbMassBalance']
|
---|
250 | md.verbose = verbose('solution', True, 'module', True)
|
---|
251 |
|
---|
252 | #Go solve
|
---|
253 | md.cluster = generic('name', gethostname(), 'np', 2)
|
---|
254 | md = solve(md, 'Transient')
|
---|
255 |
|
---|
256 | export_netCDF(md, './Models/Greenland.HistoricTransient.nc')
|
---|
257 | # }}}
|
---|
258 |
|
---|
259 | if 8 in steps:
|
---|
260 | # Step 8: Plotting exercise {{{
|
---|
261 | print(' Step 8: Plotting exercise')
|
---|
262 | #Load historic transient model
|
---|
263 |
|
---|
264 | #Create Line Plots of relaxation run. Create a figure.
|
---|
265 |
|
---|
266 | #Save surface mass balance, by looping through 200 years (1000 steps)
|
---|
267 | #Note, the first output will always contain output from time step 1
|
---|
268 |
|
---|
269 | #Plot surface mass balance time series in first subplot
|
---|
270 |
|
---|
271 | #Title this plot Mean surface mass balance
|
---|
272 |
|
---|
273 | #Save velocity by looping through 200 years
|
---|
274 |
|
---|
275 | #Plot velocity time series in second subplot
|
---|
276 |
|
---|
277 | #Title this plot Mean Velocity
|
---|
278 |
|
---|
279 | #Save Ice Volume by looping through 200 years
|
---|
280 |
|
---|
281 | #Plot volume time series in third subplot
|
---|
282 |
|
---|
283 | #Title this plot Mean Velocity and add an x label of years
|
---|
284 | # }}}
|
---|
285 |
|
---|
286 | if 9 in steps:
|
---|
287 | # Step 9: Box Transient run{{{
|
---|
288 | print(' Step 9: Box Transient run')
|
---|
289 | md = loadmodel('./Models/Greenland.HistoricTransient.nc')
|
---|
290 |
|
---|
291 | #load past transient results
|
---|
292 | md.geometry.base = md.results.TransientSolution[-1].Base
|
---|
293 | md.geometry.thickness = md.results.TransientSolution[-1].Thickness
|
---|
294 | md.geometry.surface = md.geometry.base + md.geometry.thickness
|
---|
295 | md.initialization.vx = md.results.TransientSolution[-1].Vx
|
---|
296 | md.initialization.vy = md.results.TransientSolution[-1].Vy
|
---|
297 | md.results = []
|
---|
298 |
|
---|
299 | #convert mesh x, y into the Box projection
|
---|
300 | [md.mesh.lat, md.mesh.long] = xy2ll(md.mesh.x, md.mesh.y, + 1, 39, 71)
|
---|
301 | [xi, yi] = ll2xy(md.mesh.lat, md.mesh.long, + 1, 45, 70)
|
---|
302 |
|
---|
303 | #Set surface mass balance
|
---|
304 | with open('./smbbox.npz', "rb") as smbFile:
|
---|
305 | SMB = np.load(smbFile)
|
---|
306 | x1 = np.squeeze(SMB['x1'])
|
---|
307 | y1 = np.squeeze(SMB['y1'])
|
---|
308 | smbbox = np.squeeze(SMB['smbbox'])
|
---|
309 |
|
---|
310 | x1 = x1.flatten()
|
---|
311 | y1 = y1.flatten()
|
---|
312 | index = BamgTriangulate(x1, y1)
|
---|
313 | #Set years to run
|
---|
314 | years_of_simulation = np.arange(2003, 2012 + 1)
|
---|
315 |
|
---|
316 | #initialize surface mass balance matrix
|
---|
317 | smb = np.nan * np.ones((md.mesh.numberofvertices, len(years_of_simulation) * 12))
|
---|
318 |
|
---|
319 | #Interpolate and set surface mass balance
|
---|
320 | for year in years_of_simulation:
|
---|
321 | for month in range(0, 12):
|
---|
322 | smb_mo = griddata((np.double(x1), np.double(y1)), np.double(smbbox[year - 1840, month, :, :].flatten()), (xi, yi), method='nearest')
|
---|
323 | smb[:, (year - years_of_simulation[0]) * 12 + month] = smb_mo
|
---|
324 | smb = smb * 12 / 1000 * md.materials.rho_freshwater / md.materials.rho_ice
|
---|
325 | timer = np.arange(1 / 24, len(years_of_simulation), 1 / 12)
|
---|
326 | md.smb.mass_balance = np.vstack((smb, timer))
|
---|
327 |
|
---|
328 | #Set transient options, monthly timestep, saving every month
|
---|
329 | md.timestepping.time_step = 1 / 12
|
---|
330 | md.timestepping.final_time = len(years_of_simulation)
|
---|
331 | md.settings.output_frequency = 1
|
---|
332 |
|
---|
333 | #Additional options
|
---|
334 | md.inversion.iscontrol = 0
|
---|
335 | md.transient.requested_outputs = ['IceVolume', 'TotalSmb', 'SmbMassBalance']
|
---|
336 | md.verbose = verbose('solution', True, 'module', True)
|
---|
337 |
|
---|
338 | #Go solve
|
---|
339 | md.cluster = generic('name', gethostname(), 'np', 2)
|
---|
340 | md = solve(md, 'Transient')
|
---|
341 |
|
---|
342 | export_netCDF(md, './Models/Greenland.BoxTransient.nc')
|
---|
343 | # }}}
|
---|
344 |
|
---|
345 | if 10 in steps:
|
---|
346 | print(' Step 10: Plot Box Transient')
|
---|
347 | md = loadmodel('./Models/Greenland.BoxTransient.nc')
|
---|
348 |
|
---|
349 | #Set years run
|
---|
350 | years_of_simulation = np.arange(2003, 2012 + 1)
|
---|
351 | t = np.arange(years_of_simulation[0], years_of_simulation[-1] + 11 / 12, 1 / 12)
|
---|
352 |
|
---|
353 | #Line Plots
|
---|
354 | layout, ax = plt.subplots(3, 1, sharex=True, sharey=False, figsize=(5, 5))
|
---|
355 | #Plot surface mass balance
|
---|
356 | surfmb = []
|
---|
357 | vel = []
|
---|
358 | volume = []
|
---|
359 | for i in range(0, len(t)):
|
---|
360 | surfmb.append(md.results.TransientSolution[i].TotalSmb)
|
---|
361 | vel.append(md.results.TransientSolution[i].Vel)
|
---|
362 | volume.append(md.results.TransientSolution[i].IceVolume)
|
---|
363 | ax[0].plot(t, surfmb)
|
---|
364 | ax[0].set_title('Total Surface mass balance')
|
---|
365 | ax[1].plot(t, np.nanmax(vel, axis=1))
|
---|
366 | ax[1].set_title('Max Velocity')
|
---|
367 | ax[2].plot(t, volume)
|
---|
368 | ax[2].set_title('Ice Volume')
|
---|
369 | ax[2].set_xlabel('years')
|
---|