import numpy as np from scipy.interpolate import interp1d # # wrapper for prctile to avoid using the matlab statistics toolbox. # def prctile_issm(x,p,dim): try: raise RuntimeError('hello world') #numpy has no interpolation method that matches matlab's percentile function #y = np.percentile(x,p,dim,interpolation='higher') except: if len(np.shape(x)) > 2: raise RuntimeError('Number of dimensions #d not implemented.'+str(len(np.shape(x)))) # presumably at least 1 input value has been given # np.shape(integer) -> (), must be at least (1,) psize=np.shape(p) or (1,) if len(psize) > 1 and np.size(p,1)>1: p=p.T xsize=np.shape(x) or (1,) if dim==2: x=x.T # check for any NaN in any columns if not np.isnan(x).any(): x=np.sort(x,axis=0) n=np.size(x,0) # branch based on number of elements if n>1: # set up percent values and interpolate xi=[((i+0.5)*100/n) for i in range(n)] # scipy's interp1d returns a function y=interp1d(xi,x,axis=dim,bounds_error=False) y=y(p) # fill in high and low values outside of interp range if p>xi[n-1]: y=np.tile(x[n-1,:],1) if p 1 and xsize[dim]>1 and len(p) > 1 and psize[1]>1) or (np.min(xsize)> 1 and dim==2): y=y.T return y