from fielddisplay import fielddisplay from MatlabFuncs import * from model import * import numpy as np from checkfield import checkfield from WriteData import WriteData class slr(object): """ SLR class definition Usage: slr=slr() """ def __init__(self): # {{{ self.deltathickness = float('NaN') self.sealevel = float('NaN') self.spcthickness = float('NaN') self.maxiter = 0 self.reltol = 0 self.abstol = 0 self.love_h = 0 #provided by PREM model() self.love_k = 0 #ideam self.love_l = 0 #ideam self.tide_love_k = 0 #ideam self.tide_love_h = 0 #ideam self.fluid_love = 0 self.equatorial_moi = 0 self.polar_moi = 0 self.angular_velocity = 0 self.rigid = 0 self.elastic = 0 self.rotation = 0 self.ocean_area_scaling = 0 self.steric_rate = 0 #rate of ocean expansion from steric effects. self.geodetic_run_frequency = 1 #how many time steps we skip before we run the geodetic part of the solver during transient self.geodetic = 0 #compute geodetic SLR? (in addition to steric?) self.degacc = 0 self.loop_increment = 0 self.horiz = 0 self.Ngia = float('NaN') self.Ugia = float('NaN') self.requested_outputs = [] self.transitions = [] #set defaults self.setdefaultparameters() #}}} def __repr__(self): # {{{ string=' slr parameters:' string="%s\n%s"%(string,fielddisplay(self,'deltathickness','thickness change: ice height equivalent [m]')) string="%s\n%s"%(string,fielddisplay(self,'sealevel','current sea level (prior to computation) [m]')) string="%s\n%s"%(string,fielddisplay(self,'spcthickness','thickness constraints (NaN means no constraint) [m]')) string="%s\n%s"%(string,fielddisplay(self,'reltol','sea level rise relative convergence criterion, (NaN: not applied)')) string="%s\n%s"%(string,fielddisplay(self,'abstol','sea level rise absolute convergence criterion, (default, NaN: not applied)')) string="%s\n%s"%(string,fielddisplay(self,'maxiter','maximum number of nonlinear iterations')) string="%s\n%s"%(string,fielddisplay(self,'love_h','load Love number for radial displacement')) string="%s\n%s"%(string,fielddisplay(self,'love_k','load Love number for gravitational potential perturbation')) string="%s\n%s"%(string,fielddisplay(self,'love_l','load Love number for horizontal displaements')) string="%s\n%s"%(string,fielddisplay(self,'tide_love_k','tidal load Love number (degree 2)')) string="%s\n%s"%(string,fielddisplay(self,'tide_love_h','tidal load Love number (degree 2)')) string="%s\n%s"%(string,fielddisplay(self,'fluid_love','secular fluid Love number')) string="%s\n%s"%(string,fielddisplay(self,'equatorial_moi','mean equatorial moment of inertia [kg m^2]')) string="%s\n%s"%(string,fielddisplay(self,'polar_moi','polar moment of inertia [kg m^2]')) string="%s\n%s"%(string,fielddisplay(self,'angular_velocity','mean rotational velocity of earth [per second]')) string="%s\n%s"%(string,fielddisplay(self,'ocean_area_scaling','correction for model representation of ocean area [default: No correction]')) string="%s\n%s"%(string,fielddisplay(self,'steric_rate','rate of steric ocean expansion [mm/yr]')) string="%s\n%s"%(string,fielddisplay(self,'Ngia','rate of viscous (GIA) geoid expansion (in mm/yr)')) string="%s\n%s"%(string,fielddisplay(self,'Ugia','rate of viscous (GIA) bedrock uplift (in mm/yr)')) string="%s\n%s"%(string,fielddisplay(self,'loop_increment','vector assembly (in the convolution) framentation')) string="%s\n%s"%(string,fielddisplay(self,'geodetic','compute geodetic SLR? ( in addition to steric?) default 0')) string="%s\n%s"%(string,fielddisplay(self,'geodetic_run_frequency','how many time steps we skip before we run SLR solver during transient (default: 1)')) string="%s\n%s"%(string,fielddisplay(self,'rigid','rigid earth graviational potential perturbation')) string="%s\n%s"%(string,fielddisplay(self,'elastic','elastic earth graviational potential perturbation')) string="%s\n%s"%(string,fielddisplay(self,'rotation','earth rotational potential perturbation')) string="%s\n%s"%(string,fielddisplay(self,'degacc','accuracy (default .01 deg) for numerical discretization of the Green''s functions')) string="%s\n%s"%(string,fielddisplay(self,'transitions','indices into parts of the mesh that will be icecaps')) string="%s\n%s"%(string,fielddisplay(self,'requested_outputs','additional outputs requested')) return string # }}} def setdefaultparameters(self): # {{{ #Convergence criterion: absolute, relative and residual self.reltol = 0.01 #default self.abstol = float('NaN') #1 mm of sea level rise #maximum of non-linear iterations. self.maxiter = 5 self.loop_increment = 200 #computational flags: self.geodetic = 0 self.rigid = 1 self.elastic = 1 self.ocean_area_scaling = 0 self.rotation = 1 #tidal love numbers: self.tide_love_h = 0.6149 #degree 2 self.tide_love_k = 0.3055 #degree 2 #secular fluid love number: self.fluid_love = 0.942 #moment of inertia: self.equatorial_moi = 8.0077*10**37 # [kg m^2] self.polar_moi = 8.0345*10**37 # [kg m^2] #mean rotational velocity of earth self.angular_velocity = 7.2921*10**-5 # [s^-1] #numerical discretization accuracy self.degacc = .01 #steric: self.steric_rate = 0 #how many time steps we skip before we run SLR solver during transient self.geodetic_run_frequency = 1 #output default: self.requested_outputs = ['default'] #transitions should be a cell array of vectors: self.transitions = [] #horizontal displacement? (not by default) self.horiz = 0 return self #}}} def checkconsistency(self,md,solution,analyses): # {{{ #Early return if (solution!='SealevelriseAnalysis'): return md md = checkfield(md,'fieldname','slr.deltathickness','NaN',1,'Inf',1,'size',[md.mesh.numberofelements]) md = checkfield(md,'fieldname','slr.sealevel','NaN',1,'Inf',1,'size',[md.mesh.numberofvertices]) md = checkfield(md,'fieldname','slr.spcthickness','Inf',1,'timeseries',1) md = checkfield(md,'fieldname','slr.love_h','NaN',1,'Inf',1) md = checkfield(md,'fieldname','slr.love_k','NaN',1,'Inf',1) md = checkfield(md,'fieldname','slr.love_l','NaN',1,'Inf',1) md = checkfield(md,'fieldname','slr.tide_love_h','NaN',1,'Inf',1) md = checkfield(md,'fieldname','slr.tide_love_k','NaN',1,'Inf',1) md = checkfield(md,'fieldname','slr.fluid_love','NaN',1,'Inf',1) md = checkfield(md,'fieldname','slr.equatorial_moi','NaN',1,'Inf',1) md = checkfield(md,'fieldname','slr.polar_moi','NaN',1,'Inf',1) md = checkfield(md,'fieldname','slr.angular_velocity','NaN',1,'Inf',1) md = checkfield(md,'fieldname','slr.reltol','size',[1,1]) md = checkfield(md,'fieldname','slr.abstol','size',[1,1]) md = checkfield(md,'fieldname','slr.maxiter','size',[1,1],'>=',1) md = checkfield(md,'fieldname','slr.geodetic_run_frequency','size',[1,1],'>=',1) md = checkfield(md,'fieldname','slr.steric_rate','NaN',1,'Inf',1,'size',[md.mesh.numberofvertices]) md = checkfield(md,'fieldname','slr.degacc','size',[1,1],'>=',1e-10) md = checkfield(md,'fieldname','slr.requested_outputs','stringrow',1) md = checkfield(md,'fieldname','slr.loop_increment','NaN',1,'Inf',1,'>=',1) md = checkfield(md,'fieldname','slr.horiz','NaN',1,'Inf',1,'values',[0,1]) md = checkfield(md,'fieldname','slr.Ngia','NaN',1,'Inf',1,'size',[md.mesh.numberofvertices]) md = checkfield(md,'fieldname','slr.Ugia','NaN',1,'Inf',1,'size',[md.mesh.numberofvertices]) #check that love numbers are provided at the same level of accuracy: if (size(self.love_h,0) != size(self.love_k,0) | size(self.love_h,0) != size(self.love_l,0)): error('slr error message: love numbers should be provided at the same level of accuracy') #cross check that whereever we have an ice load, the mask is <0 on each vertex: pos=np.where(self.deltathickness) maskpos=md.mask.ice_levelset[md.mesh.elements[pos,:]] els=np.where(maskpos>0) if len(els[0])>0: warnings.warn('slr checkconsistency fail: there are elements with ice loads where some vertices are not on the ice!') #check that if geodetic is requested, we are a mesh3dsurface model (planet), or if we are not, #a coupler to a planet model is provided. if self.geodetic and not md.transient.iscoupler and domaintype(md.mesh)!='mesh3dsurface': error('model is requesting geodetic computations without being a mesh3dsurface, or being coupled to one!') return md # }}} def defaultoutputs(self,md): # {{{ return ['Sealevel'] # }}} def marshall(self,prefix,md,fid): # {{{ WriteData(fid,prefix,'object',self,'fieldname','deltathickness','format','DoubleMat','mattype',2) WriteData(fid,prefix,'object',self,'fieldname','sealevel','mattype',1,'format','DoubleMat','timeserieslength',md.mesh.numberofvertices+1,'yts',md.constants.yts) WriteData(fid,prefix,'object',self,'fieldname','spcthickness','format','DoubleMat','mattype',1,'timeserieslength',md.mesh.numberofvertices+1,'yts',md.constants.yts) WriteData(fid,prefix,'object',self,'fieldname','reltol','format','Double') WriteData(fid,prefix,'object',self,'fieldname','abstol','format','Double') WriteData(fid,prefix,'object',self,'fieldname','maxiter','format','Integer') WriteData(fid,prefix,'object',self,'fieldname','love_h','format','DoubleMat','mattype',1) WriteData(fid,prefix,'object',self,'fieldname','love_k','format','DoubleMat','mattype',1) WriteData(fid,prefix,'object',self,'fieldname','love_l','format','DoubleMat','mattype',1) WriteData(fid,prefix,'object',self,'fieldname','tide_love_h','format','Double') WriteData(fid,prefix,'object',self,'fieldname','tide_love_k','format','Double') WriteData(fid,prefix,'object',self,'fieldname','fluid_love','format','Double') WriteData(fid,prefix,'object',self,'fieldname','equatorial_moi','format','Double') WriteData(fid,prefix,'object',self,'fieldname','polar_moi','format','Double') WriteData(fid,prefix,'object',self,'fieldname','angular_velocity','format','Double') WriteData(fid,prefix,'object',self,'fieldname','rigid','format','Boolean') WriteData(fid,prefix,'object',self,'fieldname','elastic','format','Boolean') WriteData(fid,prefix,'object',self,'fieldname','rotation','format','Boolean') WriteData(fid,prefix,'object',self,'fieldname','ocean_area_scaling','format','Boolean') WriteData(fid,prefix,'object',self,'fieldname','geodetic_run_frequency','format','Integer') WriteData(fid,prefix,'object',self,'fieldname','steric_rate','format','DoubleMat','mattype',1,'scale',1e-3/md.constants.yts) WriteData(fid,prefix,'object',self,'fieldname','Ngia','format','DoubleMat','mattype',1,'scale',1e-3/md.constants.yts) WriteData(fid,prefix,'object',self,'fieldname','Ugia','format','DoubleMat','mattype',1,'scale',1e-3/md.constants.yts) WriteData(fid,prefix,'object',self,'fieldname','degacc','format','Double') WriteData(fid,prefix,'object',self,'fieldname','transitions','format','MatArray') WriteData(fid,prefix,'object',self,'fieldname','loop_increment','format','Integer') WriteData(fid,prefix,'object',self,'fieldname','horiz','format','Integer') WriteData(fid,prefix,'object',self,'fieldname','geodetic','format','Integer') #process requested outputs outputs = self.requested_outputs indices = [i for i, x in enumerate(outputs) if x == 'default'] if len(indices) > 0: outputscopy=outputs[0:max(0,indices[0]-1)]+self.defaultoutputs(md)+outputs[indices[0]+1:] outputs =outputscopy WriteData(fid,prefix,'data',outputs,'name','md.slr.requested_outputs','format','StringArray') # }}}