[23670] | 1 | import numpy as np
|
---|
| 2 | from MatlabFuncs import *
|
---|
| 3 | from IssmConfig import *
|
---|
[19895] | 4 | from project3d import project3d
|
---|
| 5 | from collections import OrderedDict
|
---|
| 6 | from fielddisplay import fielddisplay
|
---|
| 7 | from checkfield import checkfield
|
---|
| 8 | from WriteData import WriteData
|
---|
[23670] | 9 | from helpers import *
|
---|
| 10 | from dakota_method import *
|
---|
[19895] | 11 |
|
---|
| 12 | class qmu(object):
|
---|
| 13 | """
|
---|
| 14 | QMU class definition
|
---|
| 15 |
|
---|
| 16 | Usage:
|
---|
| 17 | qmu=qmu();
|
---|
| 18 | """
|
---|
| 19 |
|
---|
| 20 | def __init__(self): # {{{
|
---|
| 21 | self.isdakota = 0
|
---|
[23670] | 22 | self.variables = OrderedStruct()
|
---|
| 23 | self.responses = OrderedStruct()
|
---|
[19895] | 24 | self.method = OrderedDict()
|
---|
[23670] | 25 | self.params = OrderedStruct()
|
---|
[19895] | 26 | self.results = OrderedDict()
|
---|
| 27 | self.partition = float('NaN')
|
---|
| 28 | self.numberofpartitions = 0
|
---|
| 29 | self.numberofresponses = 0
|
---|
| 30 | self.variabledescriptors = []
|
---|
| 31 | self.responsedescriptors = []
|
---|
| 32 | self.mass_flux_profile_directory = float('NaN')
|
---|
| 33 | self.mass_flux_profiles = float('NaN')
|
---|
| 34 | self.mass_flux_segments = []
|
---|
| 35 | self.adjacency = float('NaN')
|
---|
| 36 | self.vertex_weight = float('NaN')
|
---|
| 37 |
|
---|
| 38 | #set defaults
|
---|
| 39 | self.setdefaultparameters()
|
---|
| 40 |
|
---|
| 41 | #}}}
|
---|
| 42 | def __repr__(self): # {{{
|
---|
| 43 | s =' qmu parameters:\n'
|
---|
| 44 |
|
---|
| 45 | s+="%s\n" % fielddisplay(self,'isdakota','is qmu analysis activated?')
|
---|
[23670] | 46 | maxlen = 0
|
---|
| 47 | s+=" variables: (arrays of each variable class)\n"
|
---|
[19895] | 48 |
|
---|
[23670] | 49 | # OrderedStruct's iterator returns individual name/array-of-functions pairs
|
---|
| 50 | for variable in self.variables:
|
---|
| 51 | fname=variable[0]
|
---|
| 52 | maxlen=max(maxlen,len(fname))
|
---|
| 53 | size = np.shape(variable[1])
|
---|
| 54 | a = size[0]
|
---|
| 55 | b = 1 if len(size) < 2 else size[1]
|
---|
| 56 | s+=" %-*s: [%ix%i] '%s'\n" % (maxlen+1,fname,a,b,type(variable[1][0]))
|
---|
[19895] | 57 |
|
---|
[23670] | 58 | s+=" responses: (arrays of each response class)\n"
|
---|
| 59 | for response in self.responses:
|
---|
| 60 | fname=response[0]
|
---|
| 61 | maxlen=max(maxlen,len(fname))
|
---|
| 62 | size = np.shape(response[1])
|
---|
| 63 | a = size[0]
|
---|
| 64 | b = 1 if len(size) < 2 else size[1]
|
---|
| 65 | s+=" %-*s: [%ix%i] '%s'\n" % (maxlen+1,fname,a,b,type(response[1][0]))
|
---|
[19895] | 66 |
|
---|
[23670] | 67 | s+="%s\n" % fielddisplay(self,'numberofresponses','number of responses')
|
---|
[19895] | 68 |
|
---|
[23670] | 69 | if type(self.method) != OrderedDict:
|
---|
| 70 | self.method = [self.method]
|
---|
| 71 | # self.method must be iterable
|
---|
| 72 | for method in self.method:
|
---|
| 73 | if isinstance(method,dakota_method):
|
---|
| 74 | s+=" method : '%s'\n" % (method.method)
|
---|
[19895] | 75 |
|
---|
[23670] | 76 | # params could be have a number of forms (mainly 1 struct or many)
|
---|
| 77 | if type(self.params) == OrderedStruct:
|
---|
| 78 | params = [self.params]
|
---|
| 79 | else:
|
---|
| 80 | params = np.hstack(np.atleast_1d(np.array(self.params)))
|
---|
| 81 | for param in params:
|
---|
| 82 | print(type(param))
|
---|
| 83 | print(param)
|
---|
| 84 | s+=" params: (array of method-independent parameters)\n"
|
---|
[19895] | 85 | fnames=vars(param)
|
---|
| 86 | maxlen=0
|
---|
| 87 | for fname in fnames:
|
---|
| 88 | maxlen=max(maxlen,len(fname))
|
---|
| 89 |
|
---|
| 90 | for fname in fnames:
|
---|
[23670] | 91 | s+=" %-*s: %s\n" % (maxlen+1,fname,str(getattr(param,fname)))
|
---|
[19895] | 92 |
|
---|
[23670] | 93 | # results could be have a number of forms (mainly 1 struct or many)
|
---|
| 94 | results = np.hstack(np.atleast_1d(np.array(self.results)))
|
---|
| 95 | for result in results:
|
---|
| 96 | s+=" results: (information from dakota files)\n"
|
---|
[19895] | 97 | fnames=vars(result)
|
---|
| 98 | maxlen=0
|
---|
| 99 | for fname in fnames:
|
---|
| 100 | maxlen=max(maxlen,len(fname))
|
---|
| 101 |
|
---|
| 102 | for fname in fnames:
|
---|
[23670] | 103 | size = np.shape(response[1])
|
---|
| 104 | a = size[0]
|
---|
| 105 | b = 0 if len(size) < 2 else size[1]
|
---|
| 106 | size = np.shape(getattr(result,fname))
|
---|
| 107 | s+=" %-*s: [%ix%i] '%s'\n" % (maxlen+1,fname,a,b,type(getattr(result,fname)))
|
---|
[19895] | 108 |
|
---|
| 109 | s+="%s\n" % fielddisplay(self,'partition','user provided mesh partitioning, defaults to metis if not specified')
|
---|
| 110 | s+="%s\n" % fielddisplay(self,'numberofpartitions','number of partitions for semi-discrete qmu')
|
---|
| 111 | s+="%s\n" % fielddisplay(self,'variabledescriptors','')
|
---|
| 112 | s+="%s\n" % fielddisplay(self,'responsedescriptors','')
|
---|
| 113 | s+="%s\n" % fielddisplay(self,'method','array of dakota_method class')
|
---|
| 114 | s+="%s\n" % fielddisplay(self,'mass_flux_profile_directory','directory for mass flux profiles')
|
---|
| 115 | s+="%s\n" % fielddisplay(self,'mass_flux_profiles','list of mass_flux profiles')
|
---|
| 116 | s+="%s\n" % fielddisplay(self,'mass_flux_segments','')
|
---|
| 117 | s+="%s\n" % fielddisplay(self,'adjacency','')
|
---|
| 118 | s+="%s\n" % fielddisplay(self,'vertex_weight','weight applied to each mesh vertex')
|
---|
| 119 |
|
---|
| 120 | return s
|
---|
| 121 | # }}}
|
---|
| 122 | def extrude(self,md): # {{{
|
---|
[23670] | 123 | self.partition=project3d(md,'vector',np.transpose(self.partition),'type','node')
|
---|
[19895] | 124 | return self
|
---|
| 125 | #}}}
|
---|
| 126 | def setdefaultparameters(self): # {{{
|
---|
| 127 | return self
|
---|
| 128 | #}}}
|
---|
| 129 | def checkconsistency(self,md,solution,analyses): # {{{
|
---|
| 130 |
|
---|
| 131 | #Early return
|
---|
| 132 | if not md.qmu.isdakota:
|
---|
| 133 | return
|
---|
| 134 |
|
---|
[23670] | 135 | version=IssmConfig('_DAKOTA_VERSION_')
|
---|
| 136 | version=float(version[0])
|
---|
| 137 |
|
---|
| 138 | if version < 6:
|
---|
| 139 | if not md.qmu.params.evaluation_concurrency==1:
|
---|
| 140 | md.checkmessage("concurrency should be set to 1 when running dakota in library mode")
|
---|
| 141 | else:
|
---|
| 142 | if not strcmpi(self.params.evaluation_scheduling,'master'):
|
---|
| 143 | md.checkmessage('evaluation_scheduling in qmu.params should be set to "master"')
|
---|
| 144 |
|
---|
| 145 | if md.cluster.np <= 1:
|
---|
| 146 | md.checkmessage('in parallel library mode, Dakota needs to run on at least 2 cpus, 1 cpu for the master, 1 cpu for the slave. Modify md.cluser.np accordingly.')
|
---|
| 147 |
|
---|
| 148 | if self.params.processors_per_evaluation < 1:
|
---|
| 149 | md.checkmessage('in parallel library mode, Dakota needs to run at least one slave on one cpu (md.qmu.params.processors_per_evaluation >=1)!')
|
---|
| 150 |
|
---|
| 151 | if np.mod(md.cluster.np-1,self.params.processors_per_evaluation):
|
---|
| 152 | md.checkmessage('in parallel library mode, the requirement is for md.cluster.np = md.qmu.params.processors_per_evaluation * number_of_slaves, where number_of_slaves will automatically be determined by Dakota. Modify md.cluster.np accordingly')
|
---|
| 153 |
|
---|
| 154 | if np.size(md.qmu.partition) > 0:
|
---|
| 155 | if np.size(md.qmu.partition)!=md.mesh.numberofvertices and np.size(md.qmu.partition) != md.mesh.numberofelements:
|
---|
| 156 | md.checkmessage("user supplied partition for qmu analysis should have size (md.mesh.numberofvertices x 1) or (md.mesh.numberofelements x 1)")
|
---|
| 157 | if not min(md.qmu.partition.flatten())==0:
|
---|
[19895] | 158 | md.checkmessage("partition vector not indexed from 0 on")
|
---|
[23670] | 159 | if max(md.qmu.partition.flatten())>=md.qmu.numberofpartitions:
|
---|
[19895] | 160 | md.checkmessage("for qmu analysis, partitioning vector cannot go over npart, number of partition areas")
|
---|
| 161 |
|
---|
| 162 | return md
|
---|
| 163 | # }}}
|
---|
[23670] | 164 | def marshall(self,prefix,md,fid): # {{{
|
---|
| 165 | WriteData(fid,prefix,'object',self,'fieldname','isdakota','format','Boolean')
|
---|
[19895] | 166 | if not self.isdakota:
|
---|
[23670] | 167 | WriteData(fid,prefix,'data',False,'name','md.qmu.mass_flux_segments_present','format','Boolean');
|
---|
[19895] | 168 | return
|
---|
[23670] | 169 | WriteData(fid,prefix,'object',self,'fieldname','partition','format','DoubleMat','mattype',2)
|
---|
| 170 | WriteData(fid,prefix,'object',self,'fieldname','numberofpartitions','format','Integer')
|
---|
| 171 | WriteData(fid,prefix,'object',self,'fieldname','numberofresponses','format','Integer')
|
---|
| 172 | WriteData(fid,prefix,'object',self,'fieldname','variabledescriptors','format','StringArray')
|
---|
| 173 | WriteData(fid,prefix,'object',self,'fieldname','responsedescriptors','format','StringArray')
|
---|
| 174 | if not isempty(self.mass_flux_segments):
|
---|
| 175 | WriteData(fid,prefix,'data',self.mass_flux_segments,'name','md.qmu.mass_flux_segments','format','MatArray');
|
---|
[19895] | 176 | flag=True;
|
---|
| 177 | else:
|
---|
| 178 | flag=False;
|
---|
[23670] | 179 | WriteData(fid,prefix,'data',flag,'name','md.qmu.mass_flux_segments_present','format','Boolean');
|
---|
[19895] | 180 | # }}}
|
---|