1 | %SLR class definition
|
---|
2 | %
|
---|
3 | % Usage:
|
---|
4 | % slr=slr();
|
---|
5 |
|
---|
6 | classdef slr
|
---|
7 | properties (SetAccess=public)
|
---|
8 | deltathickness = NaN;
|
---|
9 | sealevel = NaN;
|
---|
10 | spcthickness = NaN;
|
---|
11 | maxiter = 0;
|
---|
12 | reltol = 0;
|
---|
13 | abstol = 0;
|
---|
14 | love_h = 0; %provided by PREM model
|
---|
15 | love_k = 0; %ideam
|
---|
16 | love_l = 0; %ideam
|
---|
17 | tide_love_k = 0; %ideam
|
---|
18 | tide_love_h = 0; %ideam
|
---|
19 | fluid_love = 0;
|
---|
20 | equatorial_moi = 0;
|
---|
21 | polar_moi = 0;
|
---|
22 | angular_velocity = 0;
|
---|
23 | rigid = 0;
|
---|
24 | elastic = 0;
|
---|
25 | rotation = 0;
|
---|
26 | ocean_area_scaling = 0;
|
---|
27 | hydro_rate = 0; %rate of steric expansion from hydrological effects.
|
---|
28 | geodetic_run_frequency = 1; %how many time steps we skip before we run the geodetic part of the solver during transient
|
---|
29 | geodetic = 0; %compute geodetic SLR? (in addition to steric?)
|
---|
30 | degacc = 0;
|
---|
31 | loop_increment = 0;
|
---|
32 | horiz = 0;
|
---|
33 | Ngia = NaN;
|
---|
34 | Ugia = NaN;
|
---|
35 |
|
---|
36 | requested_outputs = {};
|
---|
37 | transitions = {};
|
---|
38 | end
|
---|
39 | methods
|
---|
40 | function self = slr(varargin) % {{{
|
---|
41 | switch nargin
|
---|
42 | case 0
|
---|
43 | self=setdefaultparameters(self);
|
---|
44 | otherwise
|
---|
45 | error('constructor not supported');
|
---|
46 | end
|
---|
47 | end % }}}
|
---|
48 | function self = setdefaultparameters(self) % {{{
|
---|
49 |
|
---|
50 | %Convergence criterion: absolute, relative and residual
|
---|
51 | self.reltol=0.01; % 1 per cent
|
---|
52 | self.abstol=NaN; % default
|
---|
53 |
|
---|
54 | %maximum of non-linear iterations.
|
---|
55 | self.maxiter=5;
|
---|
56 | self.loop_increment=200;
|
---|
57 |
|
---|
58 | %computational flags:
|
---|
59 | self.geodetic=0;
|
---|
60 | self.rigid=1;
|
---|
61 | self.elastic=1;
|
---|
62 | self.ocean_area_scaling=0;
|
---|
63 | self.rotation=1;
|
---|
64 |
|
---|
65 | %tidal love numbers:
|
---|
66 | self.tide_love_h=0.6149; %degree 2
|
---|
67 | self.tide_love_k=0.3055; % degree 2
|
---|
68 |
|
---|
69 | %secular fluid love number:
|
---|
70 | self.fluid_love=0.942;
|
---|
71 |
|
---|
72 | %moment of inertia:
|
---|
73 | self.equatorial_moi=8.0077*10^37; % [kg m^2]
|
---|
74 | self.polar_moi =8.0345*10^37; % [kg m^2]
|
---|
75 |
|
---|
76 | % mean rotational velocity of earth
|
---|
77 | self.angular_velocity=7.2921*10^-5; % [s^-1]
|
---|
78 |
|
---|
79 | %numerical discretization accuracy
|
---|
80 | self.degacc=.01;
|
---|
81 |
|
---|
82 | %hydro
|
---|
83 | self.hydro_rate=0;
|
---|
84 |
|
---|
85 | %how many time steps we skip before we run SLR solver during transient
|
---|
86 | self.geodetic_run_frequency=1;
|
---|
87 |
|
---|
88 | %output default:
|
---|
89 | self.requested_outputs={'default'};
|
---|
90 |
|
---|
91 | %transitions should be a cell array of vectors:
|
---|
92 | self.transitions={};
|
---|
93 |
|
---|
94 | %horizontal displacement? (not by default)
|
---|
95 | self.horiz=0;
|
---|
96 |
|
---|
97 | end % }}}
|
---|
98 | function md = checkconsistency(self,md,solution,analyses) % {{{
|
---|
99 |
|
---|
100 | if ~ismember('SealevelriseAnalysis',analyses) | (strcmp(solution,'TransientSolution') & md.transient.isslr==0),
|
---|
101 | return;
|
---|
102 | end
|
---|
103 |
|
---|
104 | md = checkfield(md,'fieldname','slr.deltathickness','NaN',1,'Inf',1,'size',[md.mesh.numberofelements 1]);
|
---|
105 | md = checkfield(md,'fieldname','slr.sealevel','NaN',1,'Inf',1,'size',[md.mesh.numberofvertices 1]);
|
---|
106 | md = checkfield(md,'fieldname','slr.spcthickness','Inf',1,'timeseries',1);
|
---|
107 | md = checkfield(md,'fieldname','slr.love_h','NaN',1,'Inf',1);
|
---|
108 | md = checkfield(md,'fieldname','slr.love_k','NaN',1,'Inf',1);
|
---|
109 | md = checkfield(md,'fieldname','slr.love_l','NaN',1,'Inf',1);
|
---|
110 | md = checkfield(md,'fieldname','slr.tide_love_h','NaN',1,'Inf',1);
|
---|
111 | md = checkfield(md,'fieldname','slr.tide_love_k','NaN',1,'Inf',1);
|
---|
112 | md = checkfield(md,'fieldname','slr.fluid_love','NaN',1,'Inf',1);
|
---|
113 | md = checkfield(md,'fieldname','slr.equatorial_moi','NaN',1,'Inf',1);
|
---|
114 | md = checkfield(md,'fieldname','slr.polar_moi','NaN',1,'Inf',1);
|
---|
115 | md = checkfield(md,'fieldname','slr.angular_velocity','NaN',1,'Inf',1);
|
---|
116 | md = checkfield(md,'fieldname','slr.reltol','size',[1 1]);
|
---|
117 | md = checkfield(md,'fieldname','slr.abstol','size',[1 1]);
|
---|
118 | md = checkfield(md,'fieldname','slr.maxiter','size',[1 1],'>=',1);
|
---|
119 | md = checkfield(md,'fieldname','slr.geodetic_run_frequency','size',[1 1],'>=',1);
|
---|
120 | md = checkfield(md,'fieldname','slr.hydro_rate','NaN',1,'Inf',1,'size',[md.mesh.numberofvertices 1]);
|
---|
121 | md = checkfield(md,'fieldname','slr.degacc','size',[1 1],'>=',1e-10);
|
---|
122 | md = checkfield(md,'fieldname','slr.requested_outputs','stringrow',1);
|
---|
123 | md = checkfield(md,'fieldname','slr.loop_increment','NaN',1,'Inf',1,'>=',1);
|
---|
124 | md = checkfield(md,'fieldname','slr.horiz','NaN',1,'Inf',1,'values',[0 1]);
|
---|
125 | md = checkfield(md,'fieldname','slr.Ngia','NaN',1,'Inf',1,'size',[md.mesh.numberofvertices 1]);
|
---|
126 | md = checkfield(md,'fieldname','slr.Ugia','NaN',1,'Inf',1,'size',[md.mesh.numberofvertices 1]);
|
---|
127 |
|
---|
128 | %check that love numbers are provided at the same level of accuracy:
|
---|
129 | if (size(self.love_h,1)~=size(self.love_k,1) | size(self.love_h,1)~=size(self.love_l,1)),
|
---|
130 | error('slr error message: love numbers should be provided at the same level of accuracy');
|
---|
131 | end
|
---|
132 |
|
---|
133 | %cross check that whereever we have an ice load, the mask is <0 on each vertex:
|
---|
134 | pos=find(self.deltathickness);
|
---|
135 | maskpos=md.mask.ice_levelset(md.mesh.elements(pos,:));
|
---|
136 | [els,vertices]=find(maskpos>0);
|
---|
137 | if length(els),
|
---|
138 | warning('slr checkconsistency fail: there are elements with ice loads where some vertices are not on the ice!');
|
---|
139 | end
|
---|
140 |
|
---|
141 | %check that if geodetic is requested, we are a mesh3dsurface model (planet), or if we are not,
|
---|
142 | %a coupler to a planet model is provided.
|
---|
143 | if self.geodetic,
|
---|
144 | if md.transient.iscoupler,
|
---|
145 | %we are good;
|
---|
146 | else
|
---|
147 | if strcmpi(class(md.mesh),'mesh3dsurface'),
|
---|
148 | %we are good
|
---|
149 | else
|
---|
150 | error('model is requesting geodetic computations without being a mesh3dsurface, or being coupled to one!');
|
---|
151 | end
|
---|
152 | end
|
---|
153 | end
|
---|
154 |
|
---|
155 | end % }}}
|
---|
156 | function list=defaultoutputs(self,md) % {{{
|
---|
157 | list = {'Sealevel'};
|
---|
158 | end % }}}
|
---|
159 | function disp(self) % {{{
|
---|
160 | disp(sprintf(' slr parameters:'));
|
---|
161 |
|
---|
162 | fielddisplay(self,'deltathickness','thickness change: ice height equivalent [m]');
|
---|
163 | fielddisplay(self,'sealevel','current sea level (prior to computation) [m]');
|
---|
164 | fielddisplay(self,'spcthickness','thickness constraints (NaN means no constraint) [m]');
|
---|
165 | fielddisplay(self,'reltol','sea level rise relative convergence criterion, (default, NaN: not applied)');
|
---|
166 | fielddisplay(self,'abstol','sea level rise absolute convergence criterion, NaN: not applied');
|
---|
167 | fielddisplay(self,'maxiter','maximum number of nonlinear iterations');
|
---|
168 | fielddisplay(self,'love_h','load Love number for radial displacement');
|
---|
169 | fielddisplay(self,'love_k','load Love number for gravitational potential perturbation');
|
---|
170 | fielddisplay(self,'love_l','load Love number for horizontal displacements');
|
---|
171 | fielddisplay(self,'tide_love_k','tidal load Love number (deg 2)');
|
---|
172 | fielddisplay(self,'tide_love_h','tidal load Love number (deg 2)');
|
---|
173 | fielddisplay(self,'fluid_love','secular fluid Love number');
|
---|
174 | fielddisplay(self,'equatorial_moi','mean equatorial moment of inertia [kg m^2]');
|
---|
175 | fielddisplay(self,'polar_moi','polar moment of inertia [kg m^2]');
|
---|
176 | fielddisplay(self,'angular_velocity','mean rotational velocity of earth [per second]');
|
---|
177 | fielddisplay(self,'ocean_area_scaling','correction for model representation of ocean area [default: No correction]');
|
---|
178 | fielddisplay(self,'hydro_rate','rate of hydrological expansion (in mm/yr)');
|
---|
179 | fielddisplay(self,'Ngia','rate of viscous (GIA) geoid expansion (in mm/yr)');
|
---|
180 | fielddisplay(self,'Ugia','rate of viscous (GIA) bedrock uplift (in mm/yr)');
|
---|
181 | fielddisplay(self,'loop_increment','vector assembly (in the convolution) framentation');
|
---|
182 | fielddisplay(self,'geodetic','compute geodetic SLR? ( in addition to steric?) default 0');
|
---|
183 | fielddisplay(self,'geodetic_run_frequency','how many time steps we skip before we run SLR solver during transient (default: 1)');
|
---|
184 | fielddisplay(self,'rigid','rigid earth graviational potential perturbation');
|
---|
185 | fielddisplay(self,'elastic','elastic earth graviational potential perturbation');
|
---|
186 | fielddisplay(self,'rotation','earth rotational potential perturbation');
|
---|
187 | fielddisplay(self,'degacc','accuracy (default .01 deg) for numerical discretization of the Green''s functions');
|
---|
188 | fielddisplay(self,'transitions','indices into parts of the mesh that will be icecaps');
|
---|
189 | fielddisplay(self,'requested_outputs','additional outputs requested');
|
---|
190 |
|
---|
191 | end % }}}
|
---|
192 | function marshall(self,prefix,md,fid) % {{{
|
---|
193 | %WriteData(fid,prefix,'object',self,'fieldname','deltathickness','format','DoubleMat','mattype',2);
|
---|
194 | WriteData(fid,prefix,'object',self,'fieldname','deltathickness','format','DoubleMat','mattype',2,'timeserieslength',md.mesh.numberofelements+1,'yts',md.constants.yts);
|
---|
195 | %WriteData(fid,prefix,'object',self,'fieldname','deltathickness','format','DoubleMat','mattype',1,'timeserieslength',md.mesh.numberofelements+1);
|
---|
196 | WriteData(fid,prefix,'object',self,'fieldname','sealevel','mattype',1,'format','DoubleMat','timeserieslength',md.mesh.numberofvertices+1,'yts',md.constants.yts);
|
---|
197 | WriteData(fid,prefix,'object',self,'fieldname','spcthickness','format','DoubleMat','mattype',1,'timeserieslength',md.mesh.numberofvertices+1,'yts',md.constants.yts);
|
---|
198 | WriteData(fid,prefix,'object',self,'fieldname','reltol','format','Double');
|
---|
199 | WriteData(fid,prefix,'object',self,'fieldname','abstol','format','Double');
|
---|
200 | WriteData(fid,prefix,'object',self,'fieldname','maxiter','format','Integer');
|
---|
201 | WriteData(fid,prefix,'object',self,'fieldname','love_h','format','DoubleMat','mattype',1);
|
---|
202 | WriteData(fid,prefix,'object',self,'fieldname','love_k','format','DoubleMat','mattype',1);
|
---|
203 | WriteData(fid,prefix,'object',self,'fieldname','love_l','format','DoubleMat','mattype',1);
|
---|
204 | WriteData(fid,prefix,'object',self,'fieldname','tide_love_h','format','Double');
|
---|
205 | WriteData(fid,prefix,'object',self,'fieldname','tide_love_k','format','Double');
|
---|
206 | WriteData(fid,prefix,'object',self,'fieldname','fluid_love','format','Double');
|
---|
207 | WriteData(fid,prefix,'object',self,'fieldname','equatorial_moi','format','Double');
|
---|
208 | WriteData(fid,prefix,'object',self,'fieldname','polar_moi','format','Double');
|
---|
209 | WriteData(fid,prefix,'object',self,'fieldname','angular_velocity','format','Double');
|
---|
210 | WriteData(fid,prefix,'object',self,'fieldname','rigid','format','Boolean');
|
---|
211 | WriteData(fid,prefix,'object',self,'fieldname','elastic','format','Boolean');
|
---|
212 | WriteData(fid,prefix,'object',self,'fieldname','rotation','format','Boolean');
|
---|
213 | WriteData(fid,prefix,'object',self,'fieldname','ocean_area_scaling','format','Boolean');
|
---|
214 | WriteData(fid,prefix,'object',self,'fieldname','geodetic_run_frequency','format','Integer');
|
---|
215 | WriteData(fid,prefix,'object',self,'fieldname','hydro_rate','format','DoubleMat','mattype',1,'timeserieslength',md.mesh.numberofvertices+1,'yts',md.constants.yts,'scale',1e-3/md.constants.yts);
|
---|
216 | WriteData(fid,prefix,'object',self,'fieldname','Ngia','format','DoubleMat','mattype',1,'scale',1e-3/md.constants.yts);
|
---|
217 | WriteData(fid,prefix,'object',self,'fieldname','Ugia','format','DoubleMat','mattype',1,'scale',1e-3/md.constants.yts);
|
---|
218 | WriteData(fid,prefix,'object',self,'fieldname','degacc','format','Double');
|
---|
219 | WriteData(fid,prefix,'object',self,'fieldname','transitions','format','MatArray');
|
---|
220 | WriteData(fid,prefix,'object',self,'fieldname','loop_increment','format','Integer');
|
---|
221 | WriteData(fid,prefix,'object',self,'fieldname','horiz','format','Integer');
|
---|
222 | WriteData(fid,prefix,'object',self,'fieldname','geodetic','format','Integer');
|
---|
223 |
|
---|
224 | %process requested outputs
|
---|
225 | outputs = self.requested_outputs;
|
---|
226 | pos = find(ismember(outputs,'default'));
|
---|
227 | if ~isempty(pos),
|
---|
228 | outputs(pos) = []; %remove 'default' from outputs
|
---|
229 | outputs = [outputs defaultoutputs(self,md)]; %add defaults
|
---|
230 | end
|
---|
231 | WriteData(fid,prefix,'data',outputs,'name','md.slr.requested_outputs','format','StringArray');
|
---|
232 |
|
---|
233 | end % }}}
|
---|
234 | function savemodeljs(self,fid,modelname) % {{{
|
---|
235 |
|
---|
236 | writejs1Darray(fid,[modelname '.slr.deltathickness'],self.deltathickness);
|
---|
237 | writejs1Darray(fid,[modelname '.slr.sealevel'],self.sealevel);
|
---|
238 | writejs1Darray(fid,[modelname '.slr.spcthickness'],self.spcthickness);
|
---|
239 | writejsdouble(fid,[modelname '.slr.maxiter'],self.maxiter);
|
---|
240 | writejsdouble(fid,[modelname '.slr.reltol'],self.reltol);
|
---|
241 | writejsdouble(fid,[modelname '.slr.abstol'],self.abstol);
|
---|
242 | writejs1Darray(fid,[modelname '.slr.love_h'],self.love_h);
|
---|
243 | writejs1Darray(fid,[modelname '.slr.love_k'],self.love_k);
|
---|
244 | writejs1Darray(fid,[modelname '.slr.love_l'],self.love_l);
|
---|
245 | writejsdouble(fid,[modelname '.slr.tide_love_k'],self.tide_love_k);
|
---|
246 | writejsdouble(fid,[modelname '.slr.tide_love_h'],self.tide_love_h);
|
---|
247 | writejsdouble(fid,[modelname '.slr.fluid_love'],self.fluid_love);
|
---|
248 | writejsdouble(fid,[modelname '.slr.equatorial_moi'],self.equatorial_moi);
|
---|
249 | writejsdouble(fid,[modelname '.slr.polar_moi'],self.polar_moi);
|
---|
250 | writejsdouble(fid,[modelname '.slr.angular_velocity'],self.angular_velocity);
|
---|
251 | writejsdouble(fid,[modelname '.slr.rigid'],self.rigid);
|
---|
252 | writejsdouble(fid,[modelname '.slr.elastic'],self.elastic);
|
---|
253 | writejsdouble(fid,[modelname '.slr.rotation'],self.rotation);
|
---|
254 | writejsdouble(fid,[modelname '.slr.ocean_area_scaling'],self.ocean_area_scaling);
|
---|
255 | writejsdouble(fid,[modelname '.slr.geodetic_run_frequency'],self.geodetic_run_frequency);
|
---|
256 | writejs1Darray(fid,[modelname '.slr.hydro_rate'],self.hydro_rate);
|
---|
257 | writejsdouble(fid,[modelname '.slr.degacc'],self.degacc);
|
---|
258 | writejscellstring(fid,[modelname '.slr.requested_outputs'],self.requested_outputs);
|
---|
259 | writejscellarray(fid,[modelname '.slr.transitions'],self.transitions);
|
---|
260 | end % }}}
|
---|
261 | function self = extrude(self,md) % {{{
|
---|
262 | self.sealevel=project3d(md,'vector',self.sealevel,'type','node');
|
---|
263 | end % }}}
|
---|
264 | end
|
---|
265 | end
|
---|