1 | import numpy as np
|
---|
2 |
|
---|
3 | from MatlabArray import *
|
---|
4 | from MatlabFuncs import *
|
---|
5 | from fielddisplay import fielddisplay
|
---|
6 | from pairoptions import pairoptions
|
---|
7 | from partition_npart import *
|
---|
8 | from qmupart2npart import qmupart2npart
|
---|
9 |
|
---|
10 |
|
---|
11 | class uniform_uncertain(object):
|
---|
12 | '''
|
---|
13 | UNIFORM_UNCERTAIN class definition
|
---|
14 |
|
---|
15 | Usage:
|
---|
16 | nuv = uniform_uncertain(
|
---|
17 | 'descriptor', descriptor,
|
---|
18 | 'lower', lower,
|
---|
19 | 'upper', upper,
|
---|
20 | 'partition', partition
|
---|
21 | )
|
---|
22 |
|
---|
23 | where nuv is the uniform_uncertain object returned by the constructor,
|
---|
24 | lower and upper are the pdf distribution bounds, and partition is the
|
---|
25 | partition vector for distributed variables. Can be a partition vector
|
---|
26 | over elements or vertices.
|
---|
27 |
|
---|
28 | Example:
|
---|
29 | md.qmu.variables.rheology = uniform_uncertain(
|
---|
30 | 'descriptor', 'RheologyBBar',
|
---|
31 | 'lower', 1e8,
|
---|
32 | 'upper', 1e9
|
---|
33 | )
|
---|
34 | md.qmu.variables.rheology = uniform_uncertain(
|
---|
35 | 'descriptor', 'RheologyBBar',
|
---|
36 | 'lower', 1e8,
|
---|
37 | 'upper', 1e9,
|
---|
38 | 'partition', vpartition
|
---|
39 | )
|
---|
40 | '''
|
---|
41 | def __init__(self):
|
---|
42 | self.descriptor = ''
|
---|
43 | self.lower = -np.Inf
|
---|
44 | self.upper = np.Inf
|
---|
45 | self.partition = []
|
---|
46 | self.nsteps = 0
|
---|
47 |
|
---|
48 | @staticmethod
|
---|
49 | def uniform_uncertain(*args):
|
---|
50 | nargin = len(args)
|
---|
51 |
|
---|
52 | # create a default object
|
---|
53 | if nargin == 0:
|
---|
54 | return uniform_uncertain()
|
---|
55 |
|
---|
56 | # copy the object
|
---|
57 | elif nargin == 1:
|
---|
58 | if isinstance(args[0], uniform_uncertain):
|
---|
59 | uuv = args[0]
|
---|
60 | else:
|
---|
61 | raise RuntimeError('Object ' + str(args[0]) + ' is a ' + str(type(args[0])) + ' class object, not "uniform_uncertain".')
|
---|
62 |
|
---|
63 | # create the object from the input
|
---|
64 | else:
|
---|
65 | uuv = uniform_uncertain()
|
---|
66 |
|
---|
67 | #recover options:
|
---|
68 | options = pairoptions(*args)
|
---|
69 |
|
---|
70 | #initialize fields:
|
---|
71 | uuv.descriptor = options.getfieldvalue('descriptor')
|
---|
72 | uuv.lower = options.getfieldvalue('lower')
|
---|
73 | uuv.upper = options.getfieldvalue('upper')
|
---|
74 |
|
---|
75 | #if the variable is scaled, a partition vector should have been
|
---|
76 | #supplied, and that partition vector should have as many partitions as
|
---|
77 | #the lower and upper vectors:
|
---|
78 | if uuv.isscaled():
|
---|
79 | uuv.partition = options.getfieldvalue('partition')
|
---|
80 | nuv.nsteps = options.getfieldvalue('nsteps', 1)
|
---|
81 | npart = qmupart2npart(uuv.partition)
|
---|
82 | if npart != nuv.upper.shape[0]:
|
---|
83 | raise RuntimeError("uniform_uncertain constructor: for the scaled variable %s the upper field is not currently a vector of values for all the partitions described in the partition vector" % uuv.descriptor)
|
---|
84 | if npart != nuv.lower.shape[0]:
|
---|
85 | raise RuntimeError("uniform_uncertain constructor: for the scaled variable %s the lower field is not currently a vector of values for all the partitions described in the partition vector" % uuv.descriptor)
|
---|
86 | if nuv.nsteps != nuv.upper.shape[1]:
|
---|
87 | raise RuntimeError("uniform_uncertain constructor: for the scaled variable %s the col size of the upper field should be identical to the number of time steps" % nuv.descriptor)
|
---|
88 | if nuv.nsteps != nuv.lower.shape[1]:
|
---|
89 | raise RuntimeError("uniform_uncertain constructor: for the scaled variable %s the col size of the lower field should be identical to the number of time steps" % nuv.descriptor)
|
---|
90 |
|
---|
91 | return [uuv] # Always return a list, so we have something akin to a MATLAB single row matrix
|
---|
92 |
|
---|
93 | def __repr__(self): #{{{
|
---|
94 | string = ' uniform uncertain variable: '
|
---|
95 | string = "%s\n%s" % (string, fielddisplay(self, 'descriptor', 'name tag'))
|
---|
96 | string = "%s\n%s" % (string, fielddisplay(self, 'lower', 'pdf lower bound'))
|
---|
97 | string = "%s\n%s" % (string, fielddisplay(self, 'upper', 'pdf upper bound'))
|
---|
98 | if self.partition != []:
|
---|
99 | string = "%s\n%s" % (string, fielddisplay(self, 'partition', 'partition vector defining where sampling will occur'))
|
---|
100 | string = "%s\n%s" % (string, fielddisplay(self, 'nsteps', 'number of time steps'))
|
---|
101 |
|
---|
102 | return string
|
---|
103 | #}}}
|
---|
104 |
|
---|
105 | def __len__(self): #{{{
|
---|
106 | if type(self.lower) in [list, np.ndarray]:
|
---|
107 | return len(self.lower)
|
---|
108 | else:
|
---|
109 | return 1
|
---|
110 | #}}}
|
---|
111 |
|
---|
112 | def checkconsistency(self, md, solution, analyses): #{{{
|
---|
113 | md = checkfield(md, 'field', self.upper, 'fieldname', 'uniform_uncertain.upper', 'NaN', 1, 'Inf', 1, '>', self.lower, 'numel', len(self.lower))
|
---|
114 | md = checkfield(md, 'field', self.lower, 'fieldname', 'uniform_uncertain.upper', 'NaN', 1, 'Inf', 1, '<', self.upper, 'numel', len(self.upper))
|
---|
115 | if self.isscaled():
|
---|
116 | if self.partition == []:
|
---|
117 | raise RuntimeError("uniform_uncertain is a scaled variable, but it's missing a partition vector")
|
---|
118 | #better have a partition vector that has as many partitions as
|
---|
119 | #upper and lower's size:
|
---|
120 | if self.upper.shape[0] != partition_npart(self.partititon):
|
---|
121 | raise RuntimeError("uniform_uncertain error message: row size of upper and partition size should be identical")
|
---|
122 | if self.lower.shape[0] != partition_npart(self.partition):
|
---|
123 | raise RuntimeError("uniform_uncertain error message: row size of lower and partition size should be identical")
|
---|
124 | #we need as steps in upper and lower as there are time steps
|
---|
125 | if self.stddev.shape[1] != self.nsteps:
|
---|
126 | raise RuntimeError("uniform_uncertain error message: col size of upper and partition size should be identical")
|
---|
127 | if self.mean.shape[1] != self.nsteps:
|
---|
128 | raise RuntimeError("uniform_uncertain error message: col size of lower and partition size should be identical")
|
---|
129 | md = checkfield(md, 'field', self.partition, 'fieldname', 'uniform_uncertain.partition', 'NaN', 1, 'Inf', 1, '>=', -1, 'numel', [md.mesh.numberofvertices, md.mesh.numberofvertices])
|
---|
130 | if self.partition.shape[1] > 1:
|
---|
131 | raise RuntimeError("uniform_uncertain error message: partition should be a column vector")
|
---|
132 | partcheck = np.unique(self.partition)
|
---|
133 | partmin = min(partcheck)
|
---|
134 | partmax = max(partcheck)
|
---|
135 | if partmax < -1:
|
---|
136 | raise RuntimeError("uniform_uncertain error message: partition vector's min value should be -1 (for no partition), or start at 0")
|
---|
137 | nmax = max(md.mesh.numberofelements, md.mesh.numberofvertices)
|
---|
138 | if partmax > nmax:
|
---|
139 | raise RuntimeError("uniform_uncertain error message: partition vector's values cannot go over the number of vertices or elements")
|
---|
140 | #}}}
|
---|
141 |
|
---|
142 | #virtual functions needed by qmu processing algorithms:
|
---|
143 | #implemented:
|
---|
144 |
|
---|
145 | @staticmethod
|
---|
146 | def prop_desc(uuv, dstr): #{{{
|
---|
147 | desc = ['' for i in range(np.size(uuv))]
|
---|
148 | for i in range(np.size(uuv)):
|
---|
149 | if uuv[i].descriptor != '' or type(uuv[i].descriptor) != str:
|
---|
150 | desc[i] = str(uuv[i].descriptor)
|
---|
151 | elif dstr != '':
|
---|
152 | desc[i] = str(dstr) + str(string_dim(uuv, i, 'vector'))
|
---|
153 | else:
|
---|
154 | desc[i] = 'uuv' + str(string_dim(uuv, i, 'vector'))
|
---|
155 |
|
---|
156 | desc = allempty(desc)
|
---|
157 |
|
---|
158 | return desc
|
---|
159 | #}}}
|
---|
160 |
|
---|
161 | @staticmethod
|
---|
162 | def prop_lower(uuv): #{{{
|
---|
163 | lower = np.zeros(np.size(uuv))
|
---|
164 | for i in range(np.size(uuv)):
|
---|
165 | lower[i] = uuv[i].lower
|
---|
166 |
|
---|
167 | lower = allequal(lower, -np.Inf)
|
---|
168 |
|
---|
169 | return lower
|
---|
170 | #}}}
|
---|
171 |
|
---|
172 | @staticmethod
|
---|
173 | def prop_upper(uuv): #{{{
|
---|
174 | upper = np.zeros(np.size(uuv))
|
---|
175 | for i in range(np.size(uuv)):
|
---|
176 | upper[i] = uuv[i].upper
|
---|
177 |
|
---|
178 | #upper = allequal(upper, np.Inf)
|
---|
179 |
|
---|
180 | return upper
|
---|
181 | #}}}
|
---|
182 |
|
---|
183 | @staticmethod
|
---|
184 | def prop_stddev(uuv): #{{{
|
---|
185 | stddev = []
|
---|
186 | return stddev
|
---|
187 | #}}}
|
---|
188 |
|
---|
189 | @staticmethod
|
---|
190 | def prop_mean(uuv): #{{{
|
---|
191 | mean = []
|
---|
192 | return mean
|
---|
193 | #}}}
|
---|
194 |
|
---|
195 | @staticmethod
|
---|
196 | def prop_initpt(uuv): #{{{
|
---|
197 | initpt = []
|
---|
198 | return initpt
|
---|
199 | #}}}
|
---|
200 |
|
---|
201 | @staticmethod
|
---|
202 | def prop_initst(uuv): #{{{
|
---|
203 | initst = []
|
---|
204 | return initst
|
---|
205 | #}}}
|
---|
206 |
|
---|
207 | @staticmethod
|
---|
208 | def prop_stype(uuv): #{{{
|
---|
209 | stype = []
|
---|
210 | return stype
|
---|
211 | #}}}
|
---|
212 |
|
---|
213 | @staticmethod
|
---|
214 | def prop_scale(uuv): #{{{
|
---|
215 | scale = []
|
---|
216 | return scale
|
---|
217 | #}}}
|
---|
218 |
|
---|
219 | @staticmethod
|
---|
220 | def prop_abscissas(hbu): #{{{
|
---|
221 | abscissas = []
|
---|
222 | return abscissas
|
---|
223 | #}}}
|
---|
224 |
|
---|
225 | @staticmethod
|
---|
226 | def prop_counts(hbu): #{{{
|
---|
227 | counts = []
|
---|
228 | return counts
|
---|
229 | #}}}
|
---|
230 |
|
---|
231 | @staticmethod
|
---|
232 | def prop_pairs_per_variable(hbu): #{{{
|
---|
233 | pairs_per_variable = []
|
---|
234 | return pairs_per_variable
|
---|
235 | #}}}
|
---|
236 |
|
---|
237 | #new methods:
|
---|
238 | def isscaled(self): #{{{
|
---|
239 | if strncmp(self.descriptor, 'scaled_', 7):
|
---|
240 | return True
|
---|
241 | else:
|
---|
242 | return False
|
---|
243 | #}}}
|
---|
244 |
|
---|
245 | @staticmethod
|
---|
246 | def dakota_write(fidi, dvar): #{{{
|
---|
247 | # possible namespace pollution, the above import seems not to work
|
---|
248 | from vlist_write import vlist_write
|
---|
249 | # # collect only the variables of the appropriate class
|
---|
250 | # uuv = [struc_class(i, 'uniform_uncertain', 'uuv') for i in dvar]
|
---|
251 | uuv = deepcopy(dvar)
|
---|
252 | fields = fieldnames(uuv)
|
---|
253 | for field in fields:
|
---|
254 | if getattr(uuv, field)[0].__class__.__name__ != 'uniform_uncertain':
|
---|
255 | delattr(uuv, field)
|
---|
256 | if len(uuv) > 0:
|
---|
257 | vlist_write(fidi, 'uniform_uncertain', 'uuv', uuv)
|
---|
258 | #}}}
|
---|