| 1 | import numpy as np
|
|---|
| 2 |
|
|---|
| 3 | from MatlabArray import *
|
|---|
| 4 | from MatlabFuncs import *
|
|---|
| 5 | from fielddisplay import fielddisplay
|
|---|
| 6 | from pairoptions import pairoptions
|
|---|
| 7 | from partition_npart import *
|
|---|
| 8 | from qmupart2npart import qmupart2npart
|
|---|
| 9 |
|
|---|
| 10 |
|
|---|
| 11 | class uniform_uncertain(object):
|
|---|
| 12 | '''
|
|---|
| 13 | UNIFORM_UNCERTAIN class definition
|
|---|
| 14 |
|
|---|
| 15 | Usage:
|
|---|
| 16 | nuv = uniform_uncertain(
|
|---|
| 17 | 'descriptor', descriptor,
|
|---|
| 18 | 'lower', lower,
|
|---|
| 19 | 'upper', upper,
|
|---|
| 20 | 'partition', partition
|
|---|
| 21 | )
|
|---|
| 22 |
|
|---|
| 23 | where nuv is the uniform_uncertain object returned by the constructor,
|
|---|
| 24 | lower and upper are the pdf distribution bounds, and partition is the
|
|---|
| 25 | partition vector for distributed variables. Can be a partition vector
|
|---|
| 26 | over elements or vertices.
|
|---|
| 27 |
|
|---|
| 28 | Example:
|
|---|
| 29 | md.qmu.variables.rheology = uniform_uncertain(
|
|---|
| 30 | 'descriptor', 'RheologyBBar',
|
|---|
| 31 | 'lower', 1e8,
|
|---|
| 32 | 'upper', 1e9
|
|---|
| 33 | )
|
|---|
| 34 | md.qmu.variables.rheology = uniform_uncertain(
|
|---|
| 35 | 'descriptor', 'RheologyBBar',
|
|---|
| 36 | 'lower', 1e8,
|
|---|
| 37 | 'upper', 1e9,
|
|---|
| 38 | 'partition', vpartition
|
|---|
| 39 | )
|
|---|
| 40 | '''
|
|---|
| 41 | def __init__(self):
|
|---|
| 42 | self.descriptor = ''
|
|---|
| 43 | self.lower = -np.Inf
|
|---|
| 44 | self.upper = np.Inf
|
|---|
| 45 | self.partition = []
|
|---|
| 46 | self.nsteps = 0
|
|---|
| 47 |
|
|---|
| 48 | @staticmethod
|
|---|
| 49 | def uniform_uncertain(*args):
|
|---|
| 50 | nargin = len(args)
|
|---|
| 51 |
|
|---|
| 52 | # create a default object
|
|---|
| 53 | if nargin == 0:
|
|---|
| 54 | return uniform_uncertain()
|
|---|
| 55 |
|
|---|
| 56 | # copy the object
|
|---|
| 57 | elif nargin == 1:
|
|---|
| 58 | if isinstance(args[0], uniform_uncertain):
|
|---|
| 59 | uuv = args[0]
|
|---|
| 60 | else:
|
|---|
| 61 | raise RuntimeError('Object ' + str(args[0]) + ' is a ' + str(type(args[0])) + ' class object, not "uniform_uncertain".')
|
|---|
| 62 |
|
|---|
| 63 | # create the object from the input
|
|---|
| 64 | else:
|
|---|
| 65 | uuv = uniform_uncertain()
|
|---|
| 66 |
|
|---|
| 67 | #recover options:
|
|---|
| 68 | options = pairoptions(*args)
|
|---|
| 69 |
|
|---|
| 70 | #initialize fields:
|
|---|
| 71 | uuv.descriptor = options.getfieldvalue('descriptor')
|
|---|
| 72 | uuv.lower = options.getfieldvalue('lower')
|
|---|
| 73 | uuv.upper = options.getfieldvalue('upper')
|
|---|
| 74 |
|
|---|
| 75 | #if the variable is scaled, a partition vector should have been
|
|---|
| 76 | #supplied, and that partition vector should have as many partitions as
|
|---|
| 77 | #the lower and upper vectors:
|
|---|
| 78 | if uuv.isscaled():
|
|---|
| 79 | uuv.partition = options.getfieldvalue('partition')
|
|---|
| 80 | nuv.nsteps = options.getfieldvalue('nsteps', 1)
|
|---|
| 81 | npart = qmupart2npart(uuv.partition)
|
|---|
| 82 | if npart != nuv.upper.shape[0]:
|
|---|
| 83 | raise RuntimeError("uniform_uncertain constructor: for the scaled variable %s the upper field is not currently a vector of values for all the partitions described in the partition vector" % uuv.descriptor)
|
|---|
| 84 | if npart != nuv.lower.shape[0]:
|
|---|
| 85 | raise RuntimeError("uniform_uncertain constructor: for the scaled variable %s the lower field is not currently a vector of values for all the partitions described in the partition vector" % uuv.descriptor)
|
|---|
| 86 | if nuv.nsteps != nuv.upper.shape[1]:
|
|---|
| 87 | raise RuntimeError("uniform_uncertain constructor: for the scaled variable %s the col size of the upper field should be identical to the number of time steps" % nuv.descriptor)
|
|---|
| 88 | if nuv.nsteps != nuv.lower.shape[1]:
|
|---|
| 89 | raise RuntimeError("uniform_uncertain constructor: for the scaled variable %s the col size of the lower field should be identical to the number of time steps" % nuv.descriptor)
|
|---|
| 90 |
|
|---|
| 91 | return [uuv] # Always return a list, so we have something akin to a MATLAB single row matrix
|
|---|
| 92 |
|
|---|
| 93 | def __repr__(self): #{{{
|
|---|
| 94 | string = ' uniform uncertain variable: '
|
|---|
| 95 | string = "%s\n%s" % (string, fielddisplay(self, 'descriptor', 'name tag'))
|
|---|
| 96 | string = "%s\n%s" % (string, fielddisplay(self, 'lower', 'pdf lower bound'))
|
|---|
| 97 | string = "%s\n%s" % (string, fielddisplay(self, 'upper', 'pdf upper bound'))
|
|---|
| 98 | if self.partition != []:
|
|---|
| 99 | string = "%s\n%s" % (string, fielddisplay(self, 'partition', 'partition vector defining where sampling will occur'))
|
|---|
| 100 | string = "%s\n%s" % (string, fielddisplay(self, 'nsteps', 'number of time steps'))
|
|---|
| 101 |
|
|---|
| 102 | return string
|
|---|
| 103 | #}}}
|
|---|
| 104 |
|
|---|
| 105 | def __len__(self): #{{{
|
|---|
| 106 | if type(self.lower) in [list, np.ndarray]:
|
|---|
| 107 | return len(self.lower)
|
|---|
| 108 | else:
|
|---|
| 109 | return 1
|
|---|
| 110 | #}}}
|
|---|
| 111 |
|
|---|
| 112 | def checkconsistency(self, md, solution, analyses): #{{{
|
|---|
| 113 | md = checkfield(md, 'field', self.upper, 'fieldname', 'uniform_uncertain.upper', 'NaN', 1, 'Inf', 1, '>', self.lower, 'numel', len(self.lower))
|
|---|
| 114 | md = checkfield(md, 'field', self.lower, 'fieldname', 'uniform_uncertain.upper', 'NaN', 1, 'Inf', 1, '<', self.upper, 'numel', len(self.upper))
|
|---|
| 115 | if self.isscaled():
|
|---|
| 116 | if self.partition == []:
|
|---|
| 117 | raise RuntimeError("uniform_uncertain is a scaled variable, but it's missing a partition vector")
|
|---|
| 118 | #better have a partition vector that has as many partitions as
|
|---|
| 119 | #upper and lower's size:
|
|---|
| 120 | if self.upper.shape[0] != partition_npart(self.partititon):
|
|---|
| 121 | raise RuntimeError("uniform_uncertain error message: row size of upper and partition size should be identical")
|
|---|
| 122 | if self.lower.shape[0] != partition_npart(self.partition):
|
|---|
| 123 | raise RuntimeError("uniform_uncertain error message: row size of lower and partition size should be identical")
|
|---|
| 124 | #we need as steps in upper and lower as there are time steps
|
|---|
| 125 | if self.stddev.shape[1] != self.nsteps:
|
|---|
| 126 | raise RuntimeError("uniform_uncertain error message: col size of upper and partition size should be identical")
|
|---|
| 127 | if self.mean.shape[1] != self.nsteps:
|
|---|
| 128 | raise RuntimeError("uniform_uncertain error message: col size of lower and partition size should be identical")
|
|---|
| 129 | md = checkfield(md, 'field', self.partition, 'fieldname', 'uniform_uncertain.partition', 'NaN', 1, 'Inf', 1, '>=', -1, 'numel', [md.mesh.numberofvertices, md.mesh.numberofvertices])
|
|---|
| 130 | if self.partition.shape[1] > 1:
|
|---|
| 131 | raise RuntimeError("uniform_uncertain error message: partition should be a column vector")
|
|---|
| 132 | partcheck = np.unique(self.partition)
|
|---|
| 133 | partmin = min(partcheck)
|
|---|
| 134 | partmax = max(partcheck)
|
|---|
| 135 | if partmax < -1:
|
|---|
| 136 | raise RuntimeError("uniform_uncertain error message: partition vector's min value should be -1 (for no partition), or start at 0")
|
|---|
| 137 | nmax = max(md.mesh.numberofelements, md.mesh.numberofvertices)
|
|---|
| 138 | if partmax > nmax:
|
|---|
| 139 | raise RuntimeError("uniform_uncertain error message: partition vector's values cannot go over the number of vertices or elements")
|
|---|
| 140 | #}}}
|
|---|
| 141 |
|
|---|
| 142 | #virtual functions needed by qmu processing algorithms:
|
|---|
| 143 | #implemented:
|
|---|
| 144 |
|
|---|
| 145 | @staticmethod
|
|---|
| 146 | def prop_desc(uuv, dstr): #{{{
|
|---|
| 147 | desc = ['' for i in range(np.size(uuv))]
|
|---|
| 148 | for i in range(np.size(uuv)):
|
|---|
| 149 | if uuv[i].descriptor != '' or type(uuv[i].descriptor) != str:
|
|---|
| 150 | desc[i] = str(uuv[i].descriptor)
|
|---|
| 151 | elif dstr != '':
|
|---|
| 152 | desc[i] = str(dstr) + str(string_dim(uuv, i, 'vector'))
|
|---|
| 153 | else:
|
|---|
| 154 | desc[i] = 'uuv' + str(string_dim(uuv, i, 'vector'))
|
|---|
| 155 |
|
|---|
| 156 | desc = allempty(desc)
|
|---|
| 157 |
|
|---|
| 158 | return desc
|
|---|
| 159 | #}}}
|
|---|
| 160 |
|
|---|
| 161 | @staticmethod
|
|---|
| 162 | def prop_lower(uuv): #{{{
|
|---|
| 163 | lower = np.zeros(np.size(uuv))
|
|---|
| 164 | for i in range(np.size(uuv)):
|
|---|
| 165 | lower[i] = uuv[i].lower
|
|---|
| 166 |
|
|---|
| 167 | lower = allequal(lower, -np.Inf)
|
|---|
| 168 |
|
|---|
| 169 | return lower
|
|---|
| 170 | #}}}
|
|---|
| 171 |
|
|---|
| 172 | @staticmethod
|
|---|
| 173 | def prop_upper(uuv): #{{{
|
|---|
| 174 | upper = np.zeros(np.size(uuv))
|
|---|
| 175 | for i in range(np.size(uuv)):
|
|---|
| 176 | upper[i] = uuv[i].upper
|
|---|
| 177 |
|
|---|
| 178 | #upper = allequal(upper, np.Inf)
|
|---|
| 179 |
|
|---|
| 180 | return upper
|
|---|
| 181 | #}}}
|
|---|
| 182 |
|
|---|
| 183 | @staticmethod
|
|---|
| 184 | def prop_stddev(uuv): #{{{
|
|---|
| 185 | stddev = []
|
|---|
| 186 | return stddev
|
|---|
| 187 | #}}}
|
|---|
| 188 |
|
|---|
| 189 | @staticmethod
|
|---|
| 190 | def prop_mean(uuv): #{{{
|
|---|
| 191 | mean = []
|
|---|
| 192 | return mean
|
|---|
| 193 | #}}}
|
|---|
| 194 |
|
|---|
| 195 | @staticmethod
|
|---|
| 196 | def prop_initpt(uuv): #{{{
|
|---|
| 197 | initpt = []
|
|---|
| 198 | return initpt
|
|---|
| 199 | #}}}
|
|---|
| 200 |
|
|---|
| 201 | @staticmethod
|
|---|
| 202 | def prop_initst(uuv): #{{{
|
|---|
| 203 | initst = []
|
|---|
| 204 | return initst
|
|---|
| 205 | #}}}
|
|---|
| 206 |
|
|---|
| 207 | @staticmethod
|
|---|
| 208 | def prop_stype(uuv): #{{{
|
|---|
| 209 | stype = []
|
|---|
| 210 | return stype
|
|---|
| 211 | #}}}
|
|---|
| 212 |
|
|---|
| 213 | @staticmethod
|
|---|
| 214 | def prop_scale(uuv): #{{{
|
|---|
| 215 | scale = []
|
|---|
| 216 | return scale
|
|---|
| 217 | #}}}
|
|---|
| 218 |
|
|---|
| 219 | @staticmethod
|
|---|
| 220 | def prop_abscissas(hbu): #{{{
|
|---|
| 221 | abscissas = []
|
|---|
| 222 | return abscissas
|
|---|
| 223 | #}}}
|
|---|
| 224 |
|
|---|
| 225 | @staticmethod
|
|---|
| 226 | def prop_counts(hbu): #{{{
|
|---|
| 227 | counts = []
|
|---|
| 228 | return counts
|
|---|
| 229 | #}}}
|
|---|
| 230 |
|
|---|
| 231 | @staticmethod
|
|---|
| 232 | def prop_pairs_per_variable(hbu): #{{{
|
|---|
| 233 | pairs_per_variable = []
|
|---|
| 234 | return pairs_per_variable
|
|---|
| 235 | #}}}
|
|---|
| 236 |
|
|---|
| 237 | #new methods:
|
|---|
| 238 | def isscaled(self): #{{{
|
|---|
| 239 | if strncmp(self.descriptor, 'scaled_', 7):
|
|---|
| 240 | return True
|
|---|
| 241 | else:
|
|---|
| 242 | return False
|
|---|
| 243 | #}}}
|
|---|
| 244 |
|
|---|
| 245 | @staticmethod
|
|---|
| 246 | def dakota_write(fidi, dvar): #{{{
|
|---|
| 247 | # possible namespace pollution, the above import seems not to work
|
|---|
| 248 | from vlist_write import vlist_write
|
|---|
| 249 | # # collect only the variables of the appropriate class
|
|---|
| 250 | # uuv = [struc_class(i, 'uniform_uncertain', 'uuv') for i in dvar]
|
|---|
| 251 | uuv = deepcopy(dvar)
|
|---|
| 252 | fields = fieldnames(uuv)
|
|---|
| 253 | for field in fields:
|
|---|
| 254 | if getattr(uuv, field)[0].__class__.__name__ != 'uniform_uncertain':
|
|---|
| 255 | delattr(uuv, field)
|
|---|
| 256 | if len(uuv) > 0:
|
|---|
| 257 | vlist_write(fidi, 'uniform_uncertain', 'uuv', uuv)
|
|---|
| 258 | #}}}
|
|---|