1 | import numpy as np
|
---|
2 | from vlist_write import *
|
---|
3 | from MatlabArray import *
|
---|
4 |
|
---|
5 |
|
---|
6 | class continuous_state(object):
|
---|
7 | '''
|
---|
8 | definition for the continuous_state class.
|
---|
9 |
|
---|
10 | [csv] = continuous_state.continuous_state(args)
|
---|
11 | csv = continuous_state()
|
---|
12 |
|
---|
13 | where the required args are:
|
---|
14 | descriptor (char, description, '')
|
---|
15 | initst (double, initial state, 0.)
|
---|
16 | and the optional args and defaults are:
|
---|
17 | lower (double, lower bound, -Inf)
|
---|
18 | upper (double, upper bound, Inf)
|
---|
19 |
|
---|
20 | note that zero arguments constructs a default instance, one
|
---|
21 | argument of the class copies the instance, and two or more
|
---|
22 | arguments constructs a new instance from the arguments.
|
---|
23 | '''
|
---|
24 |
|
---|
25 | def __init__(self):
|
---|
26 | self.descriptor = ''
|
---|
27 | self.initst = 0.
|
---|
28 | self.lower = -np.inf
|
---|
29 | self.upper = np.inf
|
---|
30 |
|
---|
31 | @staticmethod
|
---|
32 | def continuous_state(*args):
|
---|
33 | nargin = len(args)
|
---|
34 |
|
---|
35 | # create a default object
|
---|
36 | if nargin == 0:
|
---|
37 | return continuous_state()
|
---|
38 |
|
---|
39 | # copy the object
|
---|
40 | if nargin == 1:
|
---|
41 | if isinstance(args[0], continuous_state):
|
---|
42 | csv = args[0]
|
---|
43 | else:
|
---|
44 | raise RuntimeError('Object is a ' + str(type(args[0])) + ' class object, not "continuous_state".')
|
---|
45 |
|
---|
46 | # create the object from the input
|
---|
47 | else:
|
---|
48 | shapec = np.shape(*args[0:min(nargin, 4)])
|
---|
49 | csv = [continuous_state() for i in range(shapec[0]) for j in range(shapec[1])]
|
---|
50 |
|
---|
51 | for i in range(np.size(csv)):
|
---|
52 | if (np.size(args[0]) > 1):
|
---|
53 | csv[i].descriptor = args[0][i]
|
---|
54 | else:
|
---|
55 | csv[i].descriptor = str(args[0]) + string_dim(csv, i, 'vector')
|
---|
56 |
|
---|
57 | if (nargin >= 2):
|
---|
58 | for i in range(np.size(csv)):
|
---|
59 | if (np.size(args[1]) > 1):
|
---|
60 | csv[i].initst = args[1][i]
|
---|
61 | else:
|
---|
62 | csv[i].initst = args[1]
|
---|
63 |
|
---|
64 | if (nargin >= 3):
|
---|
65 | for i in range(np.size(csv)):
|
---|
66 | if (np.size(args[2]) > 1):
|
---|
67 | csv[i].lower = args[2][i]
|
---|
68 | else:
|
---|
69 | csv[i].lower = args[2]
|
---|
70 |
|
---|
71 | if (nargin >= 4):
|
---|
72 | for i in range(np.size(csv)):
|
---|
73 | if (np.size(args[3]) > 1):
|
---|
74 | csv[i].upper = args[3][i]
|
---|
75 | else:
|
---|
76 | csv[i].upper = args[3]
|
---|
77 |
|
---|
78 | if (nargin > 4):
|
---|
79 | print('continuous_state:extra_arg', 'Extra arguments for object of class ' + str(type(csv)) + '.')
|
---|
80 |
|
---|
81 | return csv
|
---|
82 |
|
---|
83 | def __repr__(self):
|
---|
84 | # display the object
|
---|
85 | string = '\n'
|
---|
86 | string += 'class "continuous_state" object = \n'
|
---|
87 | string += ' descriptor: ' + str(self.descriptor) + '\n'
|
---|
88 | string += ' initst: ' + str(self.initst) + '\n'
|
---|
89 | string += ' lower: ' + str(self.lower) + '\n'
|
---|
90 | string += ' upper: ' + str(self.upper) + '\n'
|
---|
91 |
|
---|
92 | return string
|
---|
93 |
|
---|
94 | @staticmethod
|
---|
95 | def prop_desc(csv, dstr):
|
---|
96 | if type(csv) not in [list, np.ndarray]:
|
---|
97 | csv = [csv]
|
---|
98 |
|
---|
99 | desc = ['' for i in range(np.size(csv))]
|
---|
100 | for i in range(np.size(csv)):
|
---|
101 | if csv[i].descriptor != '' or type(cdv[i].descriptor) != str:
|
---|
102 | desc[i] = str(csv[i].descriptor)
|
---|
103 | elif dstr != '':
|
---|
104 | desc[i] = str(dstr) + str(string_dim(csv, i, 'vector'))
|
---|
105 | else:
|
---|
106 | desc[i] = 'csv' + str(string_dim(csv, i, 'vector'))
|
---|
107 |
|
---|
108 | desc = allempty(desc)
|
---|
109 |
|
---|
110 | return desc
|
---|
111 |
|
---|
112 | @staticmethod
|
---|
113 | def prop_initpt(csv):
|
---|
114 | initpt = []
|
---|
115 | return initpt
|
---|
116 |
|
---|
117 | @staticmethod
|
---|
118 | def prop_lower(csv):
|
---|
119 | if type(csv) not in [list, np.ndarray]:
|
---|
120 | return csv.lower
|
---|
121 |
|
---|
122 | lower = np.zeros(np.size(csv))
|
---|
123 | for i in range(np.size(csv)):
|
---|
124 | lower[i] = csv[i].lower
|
---|
125 |
|
---|
126 | lower = allequal(lower, -np.inf)
|
---|
127 |
|
---|
128 | return lower
|
---|
129 |
|
---|
130 | @staticmethod
|
---|
131 | def prop_upper(csv):
|
---|
132 | if type(csv) not in [list, np.ndarray]:
|
---|
133 | return csv.upper
|
---|
134 |
|
---|
135 | upper = np.zeros(np.size(csv))
|
---|
136 | for i in range(np.size(csv)):
|
---|
137 | upper[i] = csv[i].upper
|
---|
138 |
|
---|
139 | upper = allequal(upper, np.inf)
|
---|
140 |
|
---|
141 | return upper
|
---|
142 |
|
---|
143 | @staticmethod
|
---|
144 | def prop_mean(csv):
|
---|
145 | mean = []
|
---|
146 | return mean
|
---|
147 |
|
---|
148 | @staticmethod
|
---|
149 | def prop_stddev(csv):
|
---|
150 | stddev = []
|
---|
151 | return stddev
|
---|
152 |
|
---|
153 | @staticmethod
|
---|
154 | def prop_initst(csv):
|
---|
155 | if type(csv) not in [list, np.ndarray]:
|
---|
156 | return csv.initst
|
---|
157 |
|
---|
158 | initst = np.zeros(np.size(csv))
|
---|
159 | for i in range(np.size(csv)):
|
---|
160 | initst[i] = csv[i].initst
|
---|
161 |
|
---|
162 | initst = allequal(initst, 0.)
|
---|
163 |
|
---|
164 | return initst
|
---|
165 |
|
---|
166 | @staticmethod
|
---|
167 | def prop_stype(csv):
|
---|
168 | stype = ''
|
---|
169 | return stype
|
---|
170 |
|
---|
171 | @staticmethod
|
---|
172 | def prop_scale(csv):
|
---|
173 | scale = []
|
---|
174 | return scale
|
---|
175 |
|
---|
176 | @staticmethod
|
---|
177 | def dakota_write(fidi, dvar):
|
---|
178 | # collect only the variables of the appropriate class
|
---|
179 | csv = [struc_class(i, 'continuous_state', 'csv') for i in dvar]
|
---|
180 |
|
---|
181 | # write variables
|
---|
182 | vlist_write(fidi, 'continuous_state', 'csv', csv)
|
---|