source: issm/trunk-jpl/src/m/classes/model.m@ 25767

Last change on this file since 25767 was 25767, checked in by jdquinn, 4 years ago

BUG: Fix for SE with rigid (corrected issue that I introduced earlier); various

File size: 72.4 KB
Line 
1%MODEL class definition
2%
3% Usage:
4% md = model(varargin)
5
6classdef model
7 properties (SetAccess=public) %Model fields
8 % {{{
9 %Careful here: no other class should be used as default value this is a bug of matlab
10 mesh = 0;
11 mask = 0;
12
13 geometry = 0;
14 constants = 0;
15 smb = 0;
16 basalforcings = 0;
17 materials = 0;
18 damage = 0;
19 friction = 0;
20 flowequation = 0;
21 timestepping = 0;
22 initialization = 0;
23 rifts = 0;
24 dsl = 0;
25 solidearth = 0;
26
27 debug = 0;
28 verbose = 0;
29 settings = 0;
30 toolkits = 0;
31 cluster = 0;
32
33 balancethickness = 0;
34 stressbalance = 0;
35 groundingline = 0;
36 hydrology = 0;
37 masstransport = 0;
38 thermal = 0;
39 steadystate = 0;
40 transient = 0;
41 levelset = 0;
42 calving = 0;
43 frontalforcings = 0;
44 love = 0;
45 gia = 0;
46 esa = 0;
47
48 autodiff = 0;
49 inversion = 0;
50 qmu = 0;
51 amr = 0;
52 results = 0;
53 outputdefinition = 0;
54 radaroverlay = 0;
55 miscellaneous = 0;
56 private = 0;
57
58 %}}}
59 end
60 methods (Static)
61 function md = loadobj(md) % {{{
62 % This function is directly called by matlab when a model object is
63 % loaded. If the input is a struct it is an old version of model and
64 % old fields must be recovered (make sure they are in the deprecated
65 % model properties)
66
67 if verLessThan('matlab','7.9'),
68 disp('Warning: your matlab version is old and there is a risk that load does not work correctly');
69 disp(' if the model is not loaded correctly, rename temporarily loadobj so that matlab does not use it');
70
71 % This is a Matlab bug: all the fields of md have their default value
72 % Example of error message:
73 % Warning: Error loading an object of class 'model':
74 % Undefined function or method 'exist' for input arguments of type 'cell'
75 %
76 % This has been fixed in MATLAB 7.9 (R2009b) and later versions
77 end
78
79 if isstruct(md)
80 disp('Recovering model object from a previous version');
81 md = structtomodel(model,md);
82 end
83
84 %2012 August 4th
85 if isa(md.materials,'materials'),
86 disp('Recovering old materials');
87 if numel(md.materials.rheology_Z)==1 & isnan(md.materials.rheology_Z),
88 md.materials=matice(md.materials);
89 else
90 md.materials=matdamageice(md.materials);
91 end
92 end
93 %2013 April 12
94 if numel(md.stressbalance.loadingforce==1)
95 md.stressbalance.loadingforce=0*ones(md.mesh.numberofvertices,3);
96 end
97 %2013 April 17
98 if isa(md.hydrology,'hydrology'),
99 disp('Recovering old hydrology class');
100 md.hydrology=hydrologyshreve(md.materials);
101 end
102 %2013 October 9
103 if ~isa(md.damage,'damage'),
104 md.damage=damage();
105 md.damage.D=zeros(md.mesh.numberofvertices,1);
106 md.damage.spcdamage=NaN*ones(md.mesh.numberofvertices,1);
107 end
108 %2013 November 18
109 if ~isa(md.outputdefinition,'outputdefinition'),
110 md.outputdefinition=outputdefinition();
111 end
112 %2014 March 26th
113 if isa(md.mesh,'mesh'),
114 disp('Recovering old mesh class');
115 if isprop(md.mesh,'dimension'),
116 if md.mesh.dimension==2,
117 md.mesh=mesh2d(md.mesh);
118 else
119 md.mesh=mesh3dprisms(md.mesh);
120 end
121 else
122 md.mesh=mesh2dvertical(md.mesh);
123 end
124 end
125 %2014 November 12
126 if isa(md.calving,'double'); md.calving=calving(); end
127 %2016 October 11
128 if isa(md.esa,'double'); md.esa=esa(); end
129 %2017 February 10th
130 if isa(md.settings,'settings'), %this 'isa' verification: 2018 October 24th
131 if md.settings.solver_residue_threshold==0,
132 md.settings.solver_residue_threshold = 1e-6;
133 end
134 end
135 %2017 April 10th
136 if isa(md.gia,'gia'), md.gia=giamme(); end
137 %2017 May 4th
138 if isa(md.amr,'double'); md.amr=amr(); end
139 %2017 Aug 29th
140 if isa(md.love,'double'); md.love=fourierlove(); end
141 %2017 Oct 26th
142 if isa(md.calving,'calvingdev')
143 disp('Warning: calvingdev is now calvingvonmises');
144 md.calving=calvingvonmises(md.calving);
145 end
146 %2017 Dec 21st (needs to be here)
147 if isempty(md.settings)
148 disp('Warning: md.settings had to be reset, make sure to adjust md.settings.output_frequency and other fields');
149 md.settings = issmsettings();
150 end
151 %2018 Dec 1st
152 if md.settings.sb_coupling_frequency==0
153 md.settings.sb_coupling_frequency=1;
154 end
155 %2019 Jan..
156 if isa(md.frontalforcings,'double');
157 if(isprop('meltingrate',md.calving) & ~isnan(md.calving.meltingrate))
158 disp('Warning: md.calving.meltingrate is now in md.frontalforcings');
159 end
160 md.frontalforcings=frontalforcings(md.calving);
161 end
162 %2019 Feb 26
163 if isa(md.settings.results_on_nodes,'double')
164 if md.settings.results_on_nodes == 0
165 md.settings.results_on_nodes = {};
166 else
167 md.settings.results_on_nodes = {'all'};
168 end
169 end
170 %2019 Mar 28
171 if isa(md.smb,'SMBcomponents') | isa(md.smb,'SMBmeltcomponents') | isa(md.smb,'SMBforcing') | isa(md.smb,'SMBgemb')
172 if isa(md.smb.isclimatology,'double')
173 if prod(size(md.smb.isclimatology)) ~= 1
174 md.smb.isclimatology = 0;
175 end
176 end
177 end
178 %2019 Dec 16
179 if isa(md.dsl,'double') | isempty(md.dsl.compute_fingerprints)
180 md.dsl=dsl();
181 end
182 %2020 April 24
183 if isa(md.smb,'SMBgemb')
184 if isa(md.smb.isconstrainsurfaceT,'double')
185 if prod(size(md.smb.isconstrainsurfaceT)) ~= 1
186 md.smb.isconstrainsurfaceT = 0;
187 end
188 end
189 end
190 end% }}}
191 end
192 methods
193 function md = model(varargin) % {{{
194
195 switch nargin
196 case 0
197 md=setdefaultparameters(md,'earth');
198 otherwise
199 options=pairoptions(varargin{:});
200 planet=getfieldvalue(options,'planet','earth');
201 md=setdefaultparameters(md,planet);
202 end
203
204 end
205 %}}}
206 function md = setdefaultparameters(md,planet) % {{{
207
208 %initialize subclasses
209 md.mesh = mesh2d();
210 md.mask = mask();
211 md.constants = constants();
212 md.geometry = geometry();
213 md.initialization = initialization();
214 md.smb = SMBforcing();
215 md.basalforcings = basalforcings();
216 md.friction = friction();
217 md.rifts = rifts();
218 md.solidearth = solidearth(planet);
219 md.dsl = dsl();
220 md.timestepping = timestepping();
221 md.groundingline = groundingline();
222 md.materials = matice();
223 md.damage = damage();
224 md.flowequation = flowequation();
225 md.debug = debug();
226 md.verbose = verbose();
227 md.settings = issmsettings();
228 md.toolkits = toolkits();
229 md.cluster = generic();
230 md.balancethickness = balancethickness();
231 md.stressbalance = stressbalance();
232 md.hydrology = hydrologyshreve();
233 md.masstransport = masstransport();
234 md.thermal = thermal();
235 md.steadystate = steadystate();
236 md.transient = transient();
237 md.levelset = levelset();
238 md.calving = calving();
239 md.frontalforcings = frontalforcings();
240 md.gia = giamme();
241 md.love = fourierlove();
242 md.esa = esa();
243 md.autodiff = autodiff();
244 md.inversion = inversion();
245 md.qmu = qmu();
246 md.amr = amr();
247 md.radaroverlay = radaroverlay();
248 md.results = struct();
249 md.outputdefinition = outputdefinition();
250 md.miscellaneous = miscellaneous();
251 md.private = private();
252 end
253 %}}}
254 function md = checkmessage(md,string) % {{{
255 if(nargout~=1) error('wrong usage, model must be an output'); end
256 disp(['model not consistent: ' string]);
257 md.private.isconsistent=false;
258 end
259 %}}}
260 function md = collapse(md)% {{{
261 %COLLAPSE - collapses a 3d mesh into a 2d mesh
262 %
263 % This routine collapses a 3d model into a 2d model
264 % and collapses all the fields of the 3d model by
265 % taking their depth-averaged values
266 %
267 % Usage:
268 % md=collapse(md)
269 %
270 % See also: EXTRUDE, MODELEXTRACT
271
272 %Check that the model is really a 3d model
273 if ~strcmp(md.mesh.elementtype(),'Penta'),
274 error('collapse error message: only 3d mesh can be collapsed')
275 end
276
277 %Start with changing all the fields from the 3d mesh
278
279 %dealing with the friction law
280 %drag is limited to nodes that are on the bedrock.
281 if isa(md.friction,'friction'),
282 md.friction.coefficient=project2d(md,md.friction.coefficient,1);
283 md.friction.p=project2d(md,md.friction.p,1);
284 md.friction.q=project2d(md,md.friction.q,1);
285 elseif isa(md.friction,'frictioncoulomb'),
286 md.friction.coefficient=project2d(md,md.friction.coefficient,1);
287 md.friction.coefficientcoulomb=project2d(md,md.friction.coefficientcoulomb,1);
288 md.friction.p=project2d(md,md.friction.p,1);
289 md.friction.q=project2d(md,md.friction.q,1);
290 elseif isa(md.friction,'frictionhydro'),
291 md.friction.q=project2d(md,md.friction.q,1);
292 md.friction.C=project2d(md,md.friction.C,1);
293 md.friction.As=project2d(md,md.friction.As,1);
294 md.friction.effective_pressure=project2d(md,md.friction.effective_pressure,1);
295 elseif isa(md.friction,'frictionwaterlayer'),
296 md.friction.coefficient=project2d(md,md.friction.coefficient,1);
297 md.friction.p=project2d(md,md.friction.p,1);
298 md.friction.q=project2d(md,md.friction.q,1);
299 md.friction.water_layer=project2d(md,md.friction.water_layer,1);
300 elseif isa(md.friction,'frictionweertman'),
301 md.friction.C=project2d(md,md.friction.C,1);
302 md.friction.m=project2d(md,md.friction.m,1);
303 elseif isa(md.friction,'frictionweertmantemp'),
304 md.friction.C=project2d(md,md.friction.C,1);
305 md.friction.m=project2d(md,md.friction.m,1);
306 else
307 disp('friction type not supported');
308 end
309
310 %observations
311 if ~isnan(md.inversion.vx_obs),
312 md.inversion.vx_obs=project2d(md,md.inversion.vx_obs,md.mesh.numberoflayers);
313 end
314 if ~isnan(md.inversion.vy_obs),
315 md.inversion.vy_obs=project2d(md,md.inversion.vy_obs,md.mesh.numberoflayers);
316 end
317 if ~isnan(md.inversion.vel_obs),
318 md.inversion.vel_obs=project2d(md,md.inversion.vel_obs,md.mesh.numberoflayers);
319 end
320 if ~isnan(md.inversion.thickness_obs),
321 md.inversion.thickness_obs=project2d(md,md.inversion.thickness_obs,md.mesh.numberoflayers);
322 end
323 if ~isnan(md.inversion.cost_functions_coefficients),
324 md.inversion.cost_functions_coefficients=project2d(md,md.inversion.cost_functions_coefficients,md.mesh.numberoflayers);
325 end
326 if numel(md.inversion.min_parameters)>1,
327 md.inversion.min_parameters=project2d(md,md.inversion.min_parameters,md.mesh.numberoflayers);
328 end
329 if numel(md.inversion.max_parameters)>1,
330 md.inversion.max_parameters=project2d(md,md.inversion.max_parameters,md.mesh.numberoflayers);
331 end
332 if isa(md.smb,'SMBforcing') & ~isnan(md.smb.mass_balance),
333 md.smb.mass_balance=project2d(md,md.smb.mass_balance,md.mesh.numberoflayers);
334 elseif isa(md.smb,'SMBhenning') & ~isnan(md.smb.smbref),
335 md.smb.smbref=project2d(md,md.smb.smbref,md.mesh.numberoflayers);
336 end
337
338 %results
339 if ~isnan(md.initialization.vx),
340 md.initialization.vx=DepthAverage(md,md.initialization.vx);
341 end
342 if ~isnan(md.initialization.vy),
343 md.initialization.vy=DepthAverage(md,md.initialization.vy);
344 end
345 if ~isnan(md.initialization.vz),
346 md.initialization.vz=DepthAverage(md,md.initialization.vz);
347 end
348 if ~isnan(md.initialization.vel),
349 md.initialization.vel=DepthAverage(md,md.initialization.vel);
350 end
351 if ~isnan(md.initialization.temperature),
352 md.initialization.temperature=DepthAverage(md,md.initialization.temperature);
353 end
354 if ~isnan(md.initialization.pressure),
355 md.initialization.pressure=project2d(md,md.initialization.pressure,1);
356 end
357 if ~isnan(md.initialization.sediment_head),
358 md.initialization.sediment_head=project2d(md,md.initialization.sediment_head,1);
359 end
360 if ~isnan(md.initialization.epl_head),
361 md.initialization.epl_head=project2d(md,md.initialization.epl_head,1);
362 end
363 if ~isnan(md.initialization.epl_thickness),
364 md.initialization.epl_thickness=project2d(md,md.initialization.epl_thickness,1);
365 end
366 if ~isnan(md.initialization.waterfraction),
367 md.initialization.waterfraction=project2d(md,md.initialization.waterfraction,1);
368 end
369 if ~isnan(md.initialization.watercolumn),
370 md.initialization.watercolumn=project2d(md,md.initialization.watercolumn,1);
371 end
372
373 %giaivins
374 if isa(md.gia,'giaivins'),
375 if ~isnan(md.gia.mantle_viscosity), md.gia.mantle_viscosity=project2d(md,md.gia.mantle_viscosity,1); end
376 if ~isnan(md.gia.lithosphere_thickness), md.gia.lithosphere_thickness=project2d(md,md.gia.lithosphere_thickness,1); end
377 end
378
379 %elementstype
380 if ~isnan(md.flowequation.element_equation)
381 md.flowequation.element_equation=project2d(md,md.flowequation.element_equation,1);
382 md.flowequation.vertex_equation=project2d(md,md.flowequation.vertex_equation,1);
383 md.flowequation.borderSSA=project2d(md,md.flowequation.borderSSA,1);
384 md.flowequation.borderHO=project2d(md,md.flowequation.borderHO,1);
385 md.flowequation.borderFS=project2d(md,md.flowequation.borderFS,1);
386 end
387
388 %boundary conditions
389 md.stressbalance.spcvx=project2d(md,md.stressbalance.spcvx,md.mesh.numberoflayers);
390 md.stressbalance.spcvy=project2d(md,md.stressbalance.spcvy,md.mesh.numberoflayers);
391 md.stressbalance.spcvz=project2d(md,md.stressbalance.spcvz,md.mesh.numberoflayers);
392 md.stressbalance.referential=project2d(md,md.stressbalance.referential,md.mesh.numberoflayers);
393 md.stressbalance.loadingforce=project2d(md,md.stressbalance.loadingforce,md.mesh.numberoflayers);
394 if numel(md.masstransport.spcthickness)>1,
395 md.masstransport.spcthickness=project2d(md,md.masstransport.spcthickness,md.mesh.numberoflayers);
396 end
397 if numel(md.damage.spcdamage)>1,
398 md.damage.spcdamage=project2d(md,md.damage.spcdamage,md.mesh.numberoflayers);
399 end
400 if numel(md.levelset.spclevelset)>1,
401 md.levelset.spclevelset=project2d(md,md.levelset.spclevelset,md.mesh.numberoflayers);
402 end
403 md.thermal.spctemperature=project2d(md,md.thermal.spctemperature,md.mesh.numberoflayers);
404
405 % Hydrologydc variables
406 if isa(md.hydrology,'hydrologydc');
407 md.hydrology.spcsediment_head=project2d(md,md.hydrology.spcsediment_head,1);
408 md.hydrology.mask_eplactive_node=project2d(md,md.hydrology.mask_eplactive_node,1);
409 md.hydrology.sediment_transmitivity=project2d(md,md.hydrology.sediment_transmitivity,1);
410 md.hydrology.basal_moulin_input=project2d(md,md.hydrology.basal_moulin_input,1);
411 if(md.hydrology.isefficientlayer==1)
412 md.hydrology.spcepl_head=project2d(md,md.hydrology.spcepl_head,1);
413 end
414 end
415
416 %materials
417 md.materials.rheology_B=DepthAverage(md,md.materials.rheology_B);
418 md.materials.rheology_n=project2d(md,md.materials.rheology_n,1);
419
420 %damage:
421 if md.damage.isdamage,
422 md.damage.D=DepthAverage(md,md.damage.D);
423 end
424
425 %special for thermal modeling:
426 if ~isnan(md.basalforcings.groundedice_melting_rate),
427 md.basalforcings.groundedice_melting_rate=project2d(md,md.basalforcings.groundedice_melting_rate,1);
428 end
429 if isprop(md.basalforcings,'floatingice_melting_rate') & ~isnan(md.basalforcings.floatingice_melting_rate),
430 md.basalforcings.floatingice_melting_rate=project2d(md,md.basalforcings.floatingice_melting_rate,1);
431 end
432 md.basalforcings.geothermalflux=project2d(md,md.basalforcings.geothermalflux,1); %bedrock only gets geothermal flux
433
434 if isprop(md.calving,'coeff') & ~isnan(md.calving.coeff),
435 md.calving.coeff=project2d(md,md.calving.coeff,1);
436 end
437 if isprop(md.frontalforcings,'meltingrate') & ~isnan(md.frontalforcings.meltingrate),
438 md.frontalforcings.meltingrate=project2d(md,md.frontalforcings.meltingrate,1);
439 end
440
441 %update of connectivity matrix
442 md.mesh.average_vertex_connectivity=25;
443
444 %Collapse the mesh
445 nodes2d=md.mesh.numberofvertices2d;
446 elements2d=md.mesh.numberofelements2d;
447
448 %parameters
449 md.geometry.surface=project2d(md,md.geometry.surface,1);
450 md.geometry.thickness=project2d(md,md.geometry.thickness,1);
451 md.geometry.base=project2d(md,md.geometry.base,1);
452 if ~isnan(md.geometry.bed),
453 md.geometry.bed=project2d(md,md.geometry.bed,1);
454 end
455 if ~isnan(md.mask.ocean_levelset),
456 md.mask.ocean_levelset=project2d(md,md.mask.ocean_levelset,1);
457 end
458 if ~isnan(md.mask.ice_levelset),
459 md.mask.ice_levelset=project2d(md,md.mask.ice_levelset,1);
460 end
461
462 %lat long
463 if numel(md.mesh.lat)==md.mesh.numberofvertices,
464 md.mesh.lat=project2d(md,md.mesh.lat,1);
465 end
466 if numel(md.mesh.long)==md.mesh.numberofvertices,
467 md.mesh.long=project2d(md,md.mesh.long,1);
468 end
469
470 %outputdefinitions
471 for i=1:length(md.outputdefinition.definitions)
472 if isobject(md.outputdefinition.definitions{i})
473 %get subfields
474 solutionsubfields=fields(md.outputdefinition.definitions{i});
475 for j=1:length(solutionsubfields),
476 field=md.outputdefinition.definitions{i}.(solutionsubfields{j});
477 if length(field)==md.mesh.numberofvertices | length(field)==md.mesh.numberofelements,
478 md.outputdefinition.definitions{i}.(solutionsubfields{j})=project2d(md,md.outputdefinition.definitions{i}.(solutionsubfields{j}),1);
479 end
480 end
481 end
482 end
483
484 %Initialize the 2d mesh
485 mesh=mesh2d();
486 mesh.x=md.mesh.x2d;
487 mesh.y=md.mesh.y2d;
488 mesh.numberofvertices=md.mesh.numberofvertices2d;
489 mesh.numberofelements=md.mesh.numberofelements2d;
490 mesh.elements=md.mesh.elements2d;
491 if numel(md.mesh.lat)==md.mesh.numberofvertices,
492 mesh.lat=project2d(md,md.mesh.lat,1);
493 end
494 if numel(md.mesh.long)==md.mesh.numberofvertices,
495 mesh.long=project2d(md,md.mesh.long,1);
496 end
497 mesh.epsg=md.mesh.epsg;
498 if numel(md.mesh.scale_factor)==md.mesh.numberofvertices,
499 mesh.scale_factor=project2d(md,md.mesh.scale_factor,1);
500 end
501 if ~isnan(md.mesh.vertexonboundary),
502 mesh.vertexonboundary=project2d(md,md.mesh.vertexonboundary,1);
503 end
504 if ~isnan(md.mesh.elementconnectivity),
505 mesh.elementconnectivity=project2d(md,md.mesh.elementconnectivity,1);
506 end
507 md.mesh=mesh;
508 md.mesh.vertexconnectivity=NodeConnectivity(md.mesh.elements,md.mesh.numberofvertices);
509 md.mesh.elementconnectivity=ElementConnectivity(md.mesh.elements,md.mesh.vertexconnectivity);
510 md.mesh.segments=contourenvelope(md.mesh);
511
512 end % }}}
513 function md2 = extract(md,area,varargin) % {{{
514 %extract - extract a model according to an Argus contour or flag list
515 %
516 % This routine extracts a submodel from a bigger model with respect to a given contour
517 % md must be followed by the corresponding exp file or flags list
518 % It can either be a domain file (argus type, .exp extension), or an array of element flags.
519 % If user wants every element outside the domain to be
520 % extract2d, add '~' to the name of the domain file (ex: '~HO.exp');
521 % an empty string '' will be considered as an empty domain
522 % a string 'all' will be considered as the entire domain
523 %
524 % Usage:
525 % md2=extract(md,area);
526 %
527 % Examples:
528 % md2=extract(md,'Domain.exp');
529 %
530 % See also: EXTRUDE, COLLAPSE
531
532 %copy model
533 md1=md;
534
535 %recover optoins:
536 options=pairoptions(varargin{:});
537
538 %some checks
539 if ((nargin<2) | (nargout~=1)),
540 help extract
541 error('extract error message: bad usage');
542 end
543
544 %get elements that are inside area
545 flag_elem=FlagElements(md1,area);
546 if ~any(flag_elem),
547 error('extracted model is empty');
548 end
549
550 %kick out all elements with 3 dirichlets
551 if getfieldvalue(options,'spccheck',1)
552 spc_elem=find(~flag_elem);
553 spc_node=sort(unique(md1.mesh.elements(spc_elem,:)));
554 flag=ones(md1.mesh.numberofvertices,1);
555 flag(spc_node)=0;
556 pos=find(sum(flag(md1.mesh.elements),2)==0);
557 flag_elem(pos)=0;
558 end
559
560 %extracted elements and nodes lists
561 pos_elem=find(flag_elem);
562 pos_node=sort(unique(md1.mesh.elements(pos_elem,:)));
563
564 %keep track of some fields
565 numberofvertices1=md1.mesh.numberofvertices;
566 numberofelements1=md1.mesh.numberofelements;
567 numberofvertices2=length(pos_node);
568 numberofelements2=length(pos_elem);
569 flag_node=zeros(numberofvertices1,1);
570 flag_node(pos_node)=1;
571
572 %Create Pelem and Pnode (transform old nodes in new nodes and same thing for the elements)
573 Pelem=zeros(numberofelements1,1);
574 Pelem(pos_elem)=[1:numberofelements2]';
575 Pnode=zeros(numberofvertices1,1);
576 Pnode(pos_node)=[1:numberofvertices2]';
577
578 %renumber the elements (some nodes won't exist anymore)
579 elements_1=md1.mesh.elements;
580 elements_2=elements_1(pos_elem,:);
581 elements_2(:,1)=Pnode(elements_2(:,1));
582 elements_2(:,2)=Pnode(elements_2(:,2));
583 elements_2(:,3)=Pnode(elements_2(:,3));
584 if isa(md1.mesh,'mesh3dprisms'),
585 elements_2(:,4)=Pnode(elements_2(:,4));
586 elements_2(:,5)=Pnode(elements_2(:,5));
587 elements_2(:,6)=Pnode(elements_2(:,6));
588 end
589
590 %OK, now create the new model!
591
592 %take every field from model
593 md2=md1;
594
595 %automatically modify fields
596
597 %loop over model fields
598 model_fields=fields(md1);
599 for i=1:length(model_fields),
600 %get field
601 field=md1.(model_fields{i});
602 fieldsize=size(field);
603 if isobject(field), %recursive call
604 object_fields=fields(md1.(model_fields{i}));
605 for j=1:length(object_fields),
606 %get field
607 field=md1.(model_fields{i}).(object_fields{j});
608 fieldsize=size(field);
609 %size = number of nodes * n
610 if fieldsize(1)==numberofvertices1
611 md2.(model_fields{i}).(object_fields{j})=field(pos_node,:);
612 elseif (fieldsize(1)==numberofvertices1+1)
613 md2.(model_fields{i}).(object_fields{j})=[field(pos_node,:); field(end,:)];
614 %size = number of elements * n
615 elseif fieldsize(1)==numberofelements1
616 md2.(model_fields{i}).(object_fields{j})=field(pos_elem,:);
617 elseif (fieldsize(1)==numberofelements1+1)
618 md2.(model_fields{i}).(object_fields{j})=[field(pos_elem,:); field(end,:)];
619 end
620 end
621 else
622 %size = number of nodes * n
623 if fieldsize(1)==numberofvertices1
624 md2.(model_fields{i})=field(pos_node,:);
625 elseif (fieldsize(1)==numberofvertices1+1)
626 md2.(model_fields{i})=[field(pos_node,:); field(end,:)];
627 %size = number of elements * n
628 elseif fieldsize(1)==numberofelements1
629 md2.(model_fields{i})=field(pos_elem,:);
630 elseif (fieldsize(1)==numberofelements1+1)
631 md2.(model_fields{i})=[field(pos_elem,:); field(end,:)];
632 end
633 end
634 end
635
636 %modify some specific fields
637
638 %Mesh
639 md2.mesh.numberofelements=numberofelements2;
640 md2.mesh.numberofvertices=numberofvertices2;
641 md2.mesh.elements=elements_2;
642
643 %mesh.uppervertex mesh.lowervertex
644 if isa(md1.mesh,'mesh3dprisms'),
645 md2.mesh.uppervertex=md1.mesh.uppervertex(pos_node);
646 pos=find(~isnan(md2.mesh.uppervertex));
647 md2.mesh.uppervertex(pos)=Pnode(md2.mesh.uppervertex(pos));
648
649 md2.mesh.lowervertex=md1.mesh.lowervertex(pos_node);
650 pos=find(~isnan(md2.mesh.lowervertex));
651 md2.mesh.lowervertex(pos)=Pnode(md2.mesh.lowervertex(pos));
652
653 md2.mesh.upperelements=md1.mesh.upperelements(pos_elem);
654 pos=find(~isnan(md2.mesh.upperelements));
655 md2.mesh.upperelements(pos)=Pelem(md2.mesh.upperelements(pos));
656
657 md2.mesh.lowerelements=md1.mesh.lowerelements(pos_elem);
658 pos=find(~isnan(md2.mesh.lowerelements));
659 md2.mesh.lowerelements(pos)=Pelem(md2.mesh.lowerelements(pos));
660 end
661
662 %Initial 2d mesh
663 if isa(md1.mesh,'mesh3dprisms'),
664 flag_elem_2d=flag_elem(1:md1.mesh.numberofelements2d);
665 pos_elem_2d=find(flag_elem_2d);
666 flag_node_2d=flag_node(1:md1.mesh.numberofvertices2d);
667 pos_node_2d=find(flag_node_2d);
668
669 md2.mesh.numberofelements2d=length(pos_elem_2d);
670 md2.mesh.numberofvertices2d=length(pos_node_2d);
671 md2.mesh.elements2d=md1.mesh.elements2d(pos_elem_2d,:);
672 md2.mesh.elements2d(:,1)=Pnode(md2.mesh.elements2d(:,1));
673 md2.mesh.elements2d(:,2)=Pnode(md2.mesh.elements2d(:,2));
674 md2.mesh.elements2d(:,3)=Pnode(md2.mesh.elements2d(:,3));
675
676 md2.mesh.x2d=md1.mesh.x(pos_node_2d);
677 md2.mesh.y2d=md1.mesh.y(pos_node_2d);
678 end
679
680 %Edges
681 if(dimension(md.mesh)==2),
682 if size(md2.mesh.edges,2)>1, %do not use ~isnan because there are some NaNs...
683 %renumber first two columns
684 pos=find(md2.mesh.edges(:,4)~=-1);
685 md2.mesh.edges(: ,1)=Pnode(md2.mesh.edges(:,1));
686 md2.mesh.edges(: ,2)=Pnode(md2.mesh.edges(:,2));
687 md2.mesh.edges(: ,3)=Pelem(md2.mesh.edges(:,3));
688 md2.mesh.edges(pos,4)=Pelem(md2.mesh.edges(pos,4));
689 %remove edges when the 2 vertices are not in the domain.
690 md2.mesh.edges=md2.mesh.edges(find(md2.mesh.edges(:,1) & md2.mesh.edges(:,2)),:);
691 %Replace all zeros by -1 in the last two columns
692 pos=find(md2.mesh.edges(:,3)==0);
693 md2.mesh.edges(pos,3)=-1;
694 pos=find(md2.mesh.edges(:,4)==0);
695 md2.mesh.edges(pos,4)=-1;
696 %Invert -1 on the third column with last column (Also invert first two columns!!)
697 pos=find(md2.mesh.edges(:,3)==-1);
698 md2.mesh.edges(pos,3)=md2.mesh.edges(pos,4);
699 md2.mesh.edges(pos,4)=-1;
700 values=md2.mesh.edges(pos,2);
701 md2.mesh.edges(pos,2)=md2.mesh.edges(pos,1);
702 md2.mesh.edges(pos,1)=values;
703 %Finally remove edges that do not belong to any element
704 pos=find(md2.mesh.edges(:,3)==-1 & md2.mesh.edges(:,4)==-1);
705 md2.mesh.edges(pos,:)=[];
706 end
707 end
708
709 %Penalties
710 if ~isnan(md2.stressbalance.vertex_pairing),
711 for i=1:size(md1.stressbalance.vertex_pairing,1);
712 md2.stressbalance.vertex_pairing(i,:)=Pnode(md1.stressbalance.vertex_pairing(i,:));
713 end
714 md2.stressbalance.vertex_pairing=md2.stressbalance.vertex_pairing(find(md2.stressbalance.vertex_pairing(:,1)),:);
715 end
716 if ~isnan(md2.masstransport.vertex_pairing),
717 for i=1:size(md1.masstransport.vertex_pairing,1);
718 md2.masstransport.vertex_pairing(i,:)=Pnode(md1.masstransport.vertex_pairing(i,:));
719 end
720 md2.masstransport.vertex_pairing=md2.masstransport.vertex_pairing(find(md2.masstransport.vertex_pairing(:,1)),:);
721 end
722
723 %recreate segments
724 if isa(md1.mesh,'mesh2d') | isa(md1.mesh','mesh3dsurface'),
725 md2.mesh.vertexconnectivity=NodeConnectivity(md2.mesh.elements,md2.mesh.numberofvertices);
726 md2.mesh.elementconnectivity=ElementConnectivity(md2.mesh.elements,md2.mesh.vertexconnectivity);
727 md2.mesh.segments=contourenvelope(md2.mesh);
728 md2.mesh.vertexonboundary=zeros(numberofvertices2,1);
729 md2.mesh.vertexonboundary(md2.mesh.segments(:,1:2))=1;
730 else
731 %First do the connectivity for the contourenvelope in 2d
732 md2.mesh.vertexconnectivity=NodeConnectivity(md2.mesh.elements2d,md2.mesh.numberofvertices2d);
733 md2.mesh.elementconnectivity=ElementConnectivity(md2.mesh.elements2d,md2.mesh.vertexconnectivity);
734 segments=contourenvelope(md2.mesh);
735 md2.mesh.vertexonboundary=zeros(numberofvertices2/md2.mesh.numberoflayers,1);
736 md2.mesh.vertexonboundary(segments(:,1:2))=1;
737 md2.mesh.vertexonboundary=repmat(md2.mesh.vertexonboundary,md2.mesh.numberoflayers,1);
738 %Then do it for 3d as usual
739 md2.mesh.vertexconnectivity=NodeConnectivity(md2.mesh.elements,md2.mesh.numberofvertices);
740 md2.mesh.elementconnectivity=ElementConnectivity(md2.mesh.elements,md2.mesh.vertexconnectivity);
741 end
742
743 %Boundary conditions: Dirichlets on new boundary
744 %Catch the elements that have not been extracted
745 orphans_elem=find(~flag_elem);
746 orphans_node=unique(md1.mesh.elements(orphans_elem,:))';
747 %Figure out which node are on the boundary between md2 and md1
748 nodestoflag1=intersect(orphans_node,pos_node);
749 nodestoflag2=Pnode(nodestoflag1);
750 if numel(md1.stressbalance.spcvx)>1 & numel(md1.stressbalance.spcvy)>1 & numel(md1.stressbalance.spcvz)>1,
751 if numel(md1.inversion.vx_obs)>1 & numel(md1.inversion.vy_obs)>1
752 md2.stressbalance.spcvx(nodestoflag2)=md2.inversion.vx_obs(nodestoflag2);
753 md2.stressbalance.spcvy(nodestoflag2)=md2.inversion.vy_obs(nodestoflag2);
754 else
755 md2.stressbalance.spcvx(nodestoflag2)=NaN;
756 md2.stressbalance.spcvy(nodestoflag2)=NaN;
757 disp(' ')
758 disp('!! extract warning: spc values should be checked !!')
759 disp(' ')
760 end
761 %put 0 for vz
762 md2.stressbalance.spcvz(nodestoflag2)=0;
763 end
764 if ~isnan(md1.thermal.spctemperature),
765 md2.thermal.spctemperature(nodestoflag2,1)=1;
766 end
767
768 %Results fields
769 if isstruct(md1.results),
770 md2.results=struct();
771 solutionfields=fields(md1.results);
772 for i=1:length(solutionfields),
773 if isstruct(md1.results.(solutionfields{i}))
774 %get subfields
775 % loop over time steps
776 for p=1:length(md1.results.(solutionfields{i}))
777 current = md1.results.(solutionfields{i})(p);
778 solutionsubfields=fields(current);
779 for j=1:length(solutionsubfields),
780 field=md1.results.(solutionfields{i})(p).(solutionsubfields{j});
781 if length(field)==numberofvertices1,
782 md2.results.(solutionfields{i})(p).(solutionsubfields{j})=field(pos_node);
783 elseif length(field)==numberofelements1,
784 md2.results.(solutionfields{i})(p).(solutionsubfields{j})=field(pos_elem);
785 else
786 md2.results.(solutionfields{i})(p).(solutionsubfields{j})=field;
787 end
788 end
789 end
790 else
791 field=md1.results.(solutionfields{i});
792 if length(field)==numberofvertices1,
793 md2.results.(solutionfields{i})=field(pos_node);
794 elseif length(field)==numberofelements1,
795 md2.results.(solutionfields{i})=field(pos_elem);
796 else
797 md2.results.(solutionfields{i})=field;
798 end
799 end
800 end
801 end
802
803 %OutputDefinitions fields
804 for i=1:length(md1.outputdefinition.definitions),
805 if isobject(md1.outputdefinition.definitions{i})
806 %get subfields
807 solutionsubfields=fields(md1.outputdefinition.definitions{i});
808 for j=1:length(solutionsubfields),
809 field=md1.outputdefinition.definitions{i}.(solutionsubfields{j});
810 if length(field)==numberofvertices1,
811 md2.outputdefinition.definitions{i}.(solutionsubfields{j})=field(pos_node);
812 elseif length(field)==numberofelements1,
813 md2.outputdefinition.definitions{i}.(solutionsubfields{j})=field(pos_elem);
814 end
815 end
816 end
817 end
818
819 %Keep track of pos_node and pos_elem
820 md2.mesh.extractedvertices=pos_node;
821 md2.mesh.extractedelements=pos_elem;
822 end % }}}
823 function md = extrude(md,varargin) % {{{
824 %EXTRUDE - vertically extrude a 2d mesh
825 %
826 % vertically extrude a 2d mesh and create corresponding 3d mesh.
827 % The vertical distribution can:
828 % - follow a polynomial law
829 % - follow two polynomial laws, one for the lower part and one for the upper part of the mesh
830 % - be discribed by a list of coefficients (between 0 and 1)
831 %
832 %
833 % Usage:
834 % md=extrude(md,numlayers,extrusionexponent);
835 % md=extrude(md,numlayers,lowerexponent,upperexponent);
836 % md=extrude(md,listofcoefficients);
837 %
838 % Example:
839 % md=extrude(md,15,1.3);
840 % md=extrude(md,15,1.3,1.2);
841 % md=extrude(md,[0 0.2 0.5 0.7 0.9 0.95 1]);
842 %
843 % See also: MODELEXTRACT, COLLAPSE
844
845 %some checks on list of arguments
846 if ((nargin>4) | (nargin<2) | (nargout~=1)),
847 help extrude;
848 error('extrude error message');
849 end
850 if numel(md.geometry.base)~=md.mesh.numberofvertices || numel(md.geometry.surface)~=md.mesh.numberofvertices
851 error('model has not been parameterized yet: base and/or surface not set');
852 end
853
854 %Extrude the mesh
855 if nargin==2, %list of coefficients
856 clist=varargin{1};
857 if any(clist<0) | any(clist>1),
858 error('extrusioncoefficients must be between 0 and 1');
859 end
860 extrusionlist=sort(unique([clist(:);0;1]));
861 numlayers=length(extrusionlist);
862 elseif nargin==3, %one polynomial law
863 if varargin{2}<=0,
864 help extrude;
865 error('extrusionexponent must be >=0');
866 end
867 numlayers=varargin{1};
868 extrusionlist=((0:1:numlayers-1)/(numlayers-1)).^varargin{2};
869 elseif nargin==4, %two polynomial laws
870 numlayers=varargin{1};
871 lowerexp=varargin{2};
872 upperexp=varargin{3};
873
874 if varargin{2}<=0 | varargin{3}<=0,
875 help extrude;
876 error('lower and upper extrusionexponents must be >=0');
877 end
878
879 lowerextrusionlist=[(0:2/(numlayers-1):1).^lowerexp]/2;
880 upperextrusionlist=[(0:2/(numlayers-1):1).^upperexp]/2;
881 extrusionlist=sort(unique([lowerextrusionlist 1-upperextrusionlist]));
882
883 end
884
885 if numlayers<2,
886 error('number of layers should be at least 2');
887 end
888 if strcmp(md.mesh.domaintype(),'3D')
889 error('Cannot extrude a 3d mesh (extrude cannot be called more than once)');
890 end
891
892 %Initialize with the 2d mesh
893 mesh2d = md.mesh;
894 md.mesh=mesh3dprisms();
895 md.mesh.x = mesh2d.x;
896 md.mesh.y = mesh2d.y;
897 md.mesh.elements = mesh2d.elements;
898 md.mesh.numberofelements = mesh2d.numberofelements;
899 md.mesh.numberofvertices = mesh2d.numberofvertices;
900
901 md.mesh.lat = mesh2d.lat;
902 md.mesh.long = mesh2d.long;
903 md.mesh.epsg = mesh2d.epsg;
904 md.mesh.scale_factor = mesh2d.scale_factor;
905
906 md.mesh.vertexonboundary = mesh2d.vertexonboundary;
907 md.mesh.vertexconnectivity = mesh2d.vertexconnectivity;
908 md.mesh.elementconnectivity = mesh2d.elementconnectivity;
909 md.mesh.average_vertex_connectivity = mesh2d.average_vertex_connectivity;
910
911 md.mesh.extractedvertices = mesh2d.extractedvertices;
912 md.mesh.extractedelements = mesh2d.extractedelements;
913
914 x3d=[];
915 y3d=[];
916 z3d=[]; %the lower node is on the bed
917 thickness3d=md.geometry.thickness; %thickness and bed for these nodes
918 bed3d=md.geometry.base;
919
920 %Create the new layers
921 for i=1:numlayers,
922 x3d=[x3d; md.mesh.x];
923 y3d=[y3d; md.mesh.y];
924 %nodes are distributed between bed and surface accordingly to the given exponent
925 z3d=[z3d; bed3d+thickness3d*extrusionlist(i)];
926 end
927 number_nodes3d=size(x3d,1); %number of 3d nodes for the non extruded part of the mesh
928
929 %Extrude elements
930 elements3d=[];
931 for i=1:numlayers-1,
932 elements3d=[elements3d;[md.mesh.elements+(i-1)*md.mesh.numberofvertices md.mesh.elements+i*md.mesh.numberofvertices]]; %Create the elements of the 3d mesh for the non extruded part
933 end
934 number_el3d=size(elements3d,1); %number of 3d nodes for the non extruded part of the mesh
935
936 %Keep a trace of lower and upper nodes
937 lowervertex=NaN*ones(number_nodes3d,1);
938 uppervertex=NaN*ones(number_nodes3d,1);
939 lowervertex(md.mesh.numberofvertices+1:end)=1:(numlayers-1)*md.mesh.numberofvertices;
940 uppervertex(1:(numlayers-1)*md.mesh.numberofvertices)=md.mesh.numberofvertices+1:number_nodes3d;
941 md.mesh.lowervertex=lowervertex;
942 md.mesh.uppervertex=uppervertex;
943
944 %same for lower and upper elements
945 lowerelements=NaN*ones(number_el3d,1);
946 upperelements=NaN*ones(number_el3d,1);
947 lowerelements(md.mesh.numberofelements+1:end)=1:(numlayers-2)*md.mesh.numberofelements;
948 upperelements(1:(numlayers-2)*md.mesh.numberofelements)=md.mesh.numberofelements+1:(numlayers-1)*md.mesh.numberofelements;
949 md.mesh.lowerelements=lowerelements;
950 md.mesh.upperelements=upperelements;
951
952 %Save old mesh
953 md.mesh.x2d=md.mesh.x;
954 md.mesh.y2d=md.mesh.y;
955 md.mesh.elements2d=md.mesh.elements;
956 md.mesh.numberofelements2d=md.mesh.numberofelements;
957 md.mesh.numberofvertices2d=md.mesh.numberofvertices;
958
959 %Build global 3d mesh
960 md.mesh.elements=elements3d;
961 md.mesh.x=x3d;
962 md.mesh.y=y3d;
963 md.mesh.z=z3d;
964 md.mesh.numberofelements=number_el3d;
965 md.mesh.numberofvertices=number_nodes3d;
966 md.mesh.numberoflayers=numlayers;
967
968 %Ok, now deal with the other fields from the 2d mesh:
969
970 %bedinfo and surface info
971 md.mesh.vertexonbase=project3d(md,'vector',ones(md.mesh.numberofvertices2d,1),'type','node','layer',1);
972 md.mesh.vertexonsurface=project3d(md,'vector',ones(md.mesh.numberofvertices2d,1),'type','node','layer',md.mesh.numberoflayers);
973 md.mesh.vertexonboundary=project3d(md,'vector',md.mesh.vertexonboundary,'type','node');
974
975 %lat long
976 md.mesh.lat=project3d(md,'vector',md.mesh.lat,'type','node');
977 md.mesh.long=project3d(md,'vector',md.mesh.long,'type','node');
978 md.mesh.scale_factor=project3d(md,'vector',md.mesh.scale_factor,'type','node');
979
980 md.geometry=extrude(md.geometry,md);
981 md.friction = extrude(md.friction,md);
982 md.inversion = extrude(md.inversion,md);
983 md.smb = extrude(md.smb,md);
984 md.initialization = extrude(md.initialization,md);
985
986 md.flowequation=md.flowequation.extrude(md);
987 md.stressbalance=extrude(md.stressbalance,md);
988 md.thermal=md.thermal.extrude(md);
989 md.masstransport=md.masstransport.extrude(md);
990 md.levelset=extrude(md.levelset,md);
991 md.calving=extrude(md.calving,md);
992 md.frontalforcings=extrude(md.frontalforcings,md);
993 md.hydrology = extrude(md.hydrology,md);
994 md.solidearth = extrude(md.solidearth,md);
995 md.dsl = extrude(md.dsl,md);
996
997 %connectivity
998 if ~isnan(md.mesh.elementconnectivity)
999 md.mesh.elementconnectivity=repmat(md.mesh.elementconnectivity,numlayers-1,1);
1000 md.mesh.elementconnectivity(find(md.mesh.elementconnectivity==0))=NaN;
1001 for i=2:numlayers-1,
1002 md.mesh.elementconnectivity((i-1)*md.mesh.numberofelements2d+1:(i)*md.mesh.numberofelements2d,:)...
1003 =md.mesh.elementconnectivity((i-1)*md.mesh.numberofelements2d+1:(i)*md.mesh.numberofelements2d,:)+md.mesh.numberofelements2d;
1004 end
1005 md.mesh.elementconnectivity(find(isnan(md.mesh.elementconnectivity)))=0;
1006 end
1007
1008 md.materials=extrude(md.materials,md);
1009 md.damage=extrude(md.damage,md);
1010 md.mask=extrude(md.mask,md);
1011 md.qmu=extrude(md.qmu,md);
1012 md.basalforcings=extrude(md.basalforcings,md);
1013 md.outputdefinition=extrude(md.outputdefinition,md);
1014
1015 %increase connectivity if less than 25:
1016 if md.mesh.average_vertex_connectivity<=25,
1017 md.mesh.average_vertex_connectivity=100;
1018 end
1019 end % }}}
1020 function md = structtomodel(md,structmd) % {{{
1021
1022 if ~isstruct(structmd) error('input model is not a structure'); end
1023
1024 %loaded model is a struct, initialize output and recover all fields
1025 md = structtoobj(model,structmd);
1026
1027 %Old field now classes
1028 if (isfield(structmd,'timestepping') & isnumeric(md.timestepping)), md.timestepping=timestepping(); end
1029 if (isfield(structmd,'mask') & isnumeric(md.mask)),md.mask=mask(); end
1030
1031 %Field name change
1032 if isfield(structmd,'drag'), md.friction.coefficient=structmd.drag; end
1033 if isfield(structmd,'p'), md.friction.p=structmd.p; end
1034 if isfield(structmd,'q'), md.friction.q=structmd.p; end
1035 if isfield(structmd,'melting'), md.basalforcings.floatingice_melting_rate=structmd.melting; end
1036 if isfield(structmd,'melting_rate'), md.basalforcings.floatingice_melting_rate=structmd.melting_rate; end
1037 if isfield(structmd,'melting_rate'), md.basalforcings.groundedice_melting_rate=structmd.melting_rate; end
1038 if isfield(structmd,'accumulation'), md.smb.mass_balance=structmd.accumulation; end
1039 if isfield(structmd,'numberofgrids'), md.mesh.numberofvertices=structmd.numberofgrids; end
1040 if isfield(structmd,'numberofgrids2d'), md.mesh.numberofvertices2d=structmd.numberofgrids2d; end
1041 if isfield(structmd,'uppergrids'), md.mesh.uppervertex=structmd.uppergrids; end
1042 if isfield(structmd,'lowergrids'), md.mesh.lowervertex=structmd.lowergrids; end
1043 if isfield(structmd,'gridonbase'), md.mesh.vertexonbase=structmd.gridonbase; end
1044 if isfield(structmd,'gridonsurface'), md.mesh.vertexonsurface=structmd.gridonsurface; end
1045 if isfield(structmd,'extractedgrids'), md.mesh.extractedvertices=structmd.extractedgrids; end
1046 if isfield(structmd,'gridonboundary'), md.mesh.vertexonboundary=structmd.gridonboundary; end
1047 if isfield(structmd,'petscoptions') & ~isempty(structmd.petscoptions), md.toolkits=structmd.petscoptions; end
1048 if isfield(structmd,'g'), md.constants.g=structmd.g; end
1049 if isfield(structmd,'yts'), md.constants.yts=structmd.yts; end
1050 if isfield(structmd,'surface_mass_balance'), md.smb.mass_balance=structmd.surface_mass_balance; end
1051 if isfield(structmd,'basal_melting_rate'), md.basalforcings.floatingice_melting_rate=structmd.basal_melting_rate; end
1052 if isfield(structmd,'geothermalflux'), md.basalforcings.geothermalflux=structmd.geothermalflux; end
1053 if isfield(structmd,'drag'), md.friction.coefficient=structmd.drag; end
1054 if isfield(structmd,'drag_coefficient'), md.friction.coefficient=structmd.drag_coefficient; end
1055 if isfield(structmd,'drag_p'), md.friction.p=structmd.drag_p; end
1056 if isfield(structmd,'drag_q'), md.friction.q=structmd.drag_q; end
1057 if isfield(structmd,'riftproperties'), %old implementation
1058 md.rifts=rifts();
1059 md.rifts.riftproperties=structmd.riftproperties;
1060 md.rifts.riftstruct=structmd.rifts;
1061 md.rifts.riftproperties=structmd.riftinfo;
1062 end
1063 if isfield(structmd,'bamg'), md.private.bamg=structmd.bamg; end
1064 if isfield(structmd,'lowmem'), md.settings.lowmem=structmd.lowmem; end
1065 if isfield(structmd,'io_gather'), md.settings.io_gather=structmd.io_gather; end
1066 if isfield(structmd,'spcwatercolumn'), md.hydrology.spcwatercolumn=structmd.spcwatercolumn; end
1067 if isfield(structmd,'hydro_n'), md.hydrology.n=structmd.hydro_n; end
1068 if isfield(structmd,'hydro_p'), md.hydrology.p=structmd.hydro_p; end
1069 if isfield(structmd,'hydro_q'), md.hydrology.q=structmd.hydro_q; end
1070 if isfield(structmd,'hydro_CR'), md.hydrology.CR=structmd.hydro_CR; end
1071 if isfield(structmd,'hydro_kn'), md.hydrology.kn=structmd.hydro_kn; end
1072 if isfield(structmd,'spctemperature'), md.thermal.spctemperature=structmd.spctemperature; end
1073 if isfield(structmd,'min_thermal_constraints'), md.thermal.penalty_threshold=structmd.min_thermal_constraints; end
1074 if isfield(structmd,'artificial_diffusivity'), md.thermal.stabilization=structmd.artificial_diffusivity; end
1075 if isfield(structmd,'max_nonlinear_iterations'), md.thermal.maxiter=structmd.max_nonlinear_iterations; end
1076 if isfield(structmd,'stabilize_constraints'), md.thermal.penalty_lock=structmd.stabilize_constraints; end
1077 if isfield(structmd,'penalty_offset'), md.thermal.penalty_factor=structmd.penalty_offset; end
1078 if isfield(structmd,'name'), md.miscellaneous.name=structmd.name; end
1079 if isfield(structmd,'notes'), md.miscellaneous.notes=structmd.notes; end
1080 if isfield(structmd,'dummy'), md.miscellaneous.dummy=structmd.dummy; end
1081 if isfield(structmd,'dt'), md.timestepping.time_step=structmd.dt; end
1082 if isfield(structmd,'ndt'), md.timestepping.final_time=structmd.ndt; end
1083 if isfield(structmd,'time_adapt'), md.timestepping.time_adapt=structmd.time_adapt; end
1084 if isfield(structmd,'cfl_coefficient'), md.timestepping.cfl_coefficient=structmd.cfl_coefficient; end
1085 if isfield(structmd,'spcthickness'), md.masstransport.spcthickness=structmd.spcthickness; end
1086 if isfield(structmd,'artificial_diffusivity'), md.masstransport.stabilization=structmd.artificial_diffusivity; end
1087 if isfield(structmd,'hydrostatic_adjustment'), md.masstransport.hydrostatic_adjustment=structmd.hydrostatic_adjustment; end
1088 if isfield(structmd,'penalties'), md.masstransport.vertex_pairing=structmd.penalties; end
1089 if isfield(structmd,'penalty_offset'), md.masstransport.penalty_factor=structmd.penalty_offset; end
1090 if isfield(structmd,'B'), md.materials.rheology_B=structmd.B; end
1091 if isfield(structmd,'n'), md.materials.rheology_n=structmd.n; end
1092 if isfield(structmd,'rheology_B'), md.materials.rheology_B=structmd.rheology_B; end
1093 if isfield(structmd,'rheology_n'), md.materials.rheology_n=structmd.rheology_n; end
1094 if isfield(structmd,'rheology_Z'), md.damage.D=(1-structmd.rheology_Z); end
1095 if isfield(structmd,'spcthickness'), md.balancethickness.spcthickness=structmd.spcthickness; end
1096 if isfield(structmd,'artificial_diffusivity'), md.balancethickness.stabilization=structmd.artificial_diffusivity; end
1097 if isfield(structmd,'dhdt'), md.balancethickness.thickening_rate=structmd.dhdt; end
1098 if isfield(structmd,'isSIA'), md.flowequation.isSIA=structmd.isSIA; end
1099 if isfield(structmd,'isFS'), md.flowequation.isFS=structmd.isFS; end
1100 if isfield(structmd,'elements_type'), md.flowequation.element_equation=structmd.elements_type; end
1101 if isfield(structmd,'vertices_type'), md.flowequation.vertex_equation=structmd.vertices_type; end
1102 if isfield(structmd,'eps_rel'), md.steadystate.reltol=structmd.eps_rel; end
1103 if isfield(structmd,'max_steadystate_iterations'), md.steadystate.maxiter=structmd.max_steadystate_iterations; end
1104 if isfield(structmd,'isdiagnostic'), md.transient.isstressbalance=structmd.isdiagnostic; end
1105 if isfield(structmd,'isprognostic'), md.transient.ismasstransport=structmd.isprognostic; end
1106 if isfield(structmd,'isthermal'), md.transient.isthermal=structmd.isthermal; end
1107 if isfield(structmd,'control_analysis'), md.inversion.iscontrol=structmd.control_analysis; end
1108 if isfield(structmd,'weights'), md.inversion.cost_functions_coefficients=structmd.weights; end
1109 if isfield(structmd,'nsteps'), md.inversion.nsteps=structmd.nsteps; end
1110 if isfield(structmd,'maxiter_per_step'), md.inversion.maxiter_per_step=structmd.maxiter_per_step; end
1111 if isfield(structmd,'cm_min'), md.inversion.min_parameters=structmd.cm_min; end
1112 if isfield(structmd,'cm_max'), md.inversion.max_parameters=structmd.cm_max; end
1113 if isfield(structmd,'vx_obs'), md.inversion.vx_obs=structmd.vx_obs; end
1114 if isfield(structmd,'vy_obs'), md.inversion.vy_obs=structmd.vy_obs; end
1115 if isfield(structmd,'vel_obs'), md.inversion.vel_obs=structmd.vel_obs; end
1116 if isfield(structmd,'thickness_obs'), md.inversion.thickness_obs=structmd.thickness_obs; end
1117 if isfield(structmd,'vx'), md.initialization.vx=structmd.vx; end
1118 if isfield(structmd,'vy'), md.initialization.vy=structmd.vy; end
1119 if isfield(structmd,'vz'), md.initialization.vz=structmd.vz; end
1120 if isfield(structmd,'vel'), md.initialization.vel=structmd.vel; end
1121 if isfield(structmd,'pressure'), md.initialization.pressure=structmd.pressure; end
1122 if isfield(structmd,'temperature'), md.initialization.temperature=structmd.temperature; end
1123 if isfield(structmd,'waterfraction'), md.initialization.waterfraction=structmd.waterfraction; end
1124 if isfield(structmd,'watercolumn'), md.initialization.watercolumn=structmd.watercolumn; end
1125 if isfield(structmd,'surface'), md.geometry.surface=structmd.surface; end
1126 if isfield(structmd,'bed'), md.geometry.base=structmd.bed; end
1127 if isfield(structmd,'thickness'), md.geometry.thickness=structmd.thickness; end
1128 if isfield(structmd,'bathymetry'), md.geometry.bed=structmd.bathymetry; end
1129 if isfield(structmd,'thickness_coeff'), md.geometry.hydrostatic_ratio=structmd.thickness_coeff; end
1130 if isfield(structmd,'connectivity'), md.mesh.average_vertex_connectivity=structmd.connectivity; end
1131 if isfield(structmd,'extractednodes'), md.mesh.extractedvertices=structmd.extractednodes; end
1132 if isfield(structmd,'extractedelements'), md.mesh.extractedelements=structmd.extractedelements; end
1133 if isfield(structmd,'nodeonboundary'), md.mesh.vertexonboundary=structmd.nodeonboundary; end
1134 if isfield(structmd,'lat'), md.mesh.lat=structmd.lat; end
1135 if isfield(structmd,'long'), md.mesh.long=structmd.long; end
1136 if isfield(structmd,'scale_factor'), md.mesh.scale_factor=structmd.scale_factor; end
1137 if isfield(structmd,'segments'), md.mesh.segments=structmd.segments; end
1138 if isfield(structmd,'segmentmarkers'), md.mesh.segmentmarkers=structmd.segmentmarkers; end
1139 if isfield(structmd,'numlayers'), md.mesh.numberoflayers=structmd.numlayers; end
1140 if isfield(structmd,'numberofelements'), md.mesh.numberofelements=structmd.numberofelements; end
1141 if isfield(structmd,'numberofvertices'), md.mesh.numberofvertices=structmd.numberofvertices; end
1142 if isfield(structmd,'numberofnodes'), md.mesh.numberofvertices=structmd.numberofnodes; end
1143 if isfield(structmd,'numberofedges'), md.mesh.numberofedges=structmd.numberofedges; end
1144 if isfield(structmd,'numberofelements2d'), md.mesh.numberofelements2d=structmd.numberofelements2d; end
1145 if isfield(structmd,'numberofnodes2d'), md.mesh.numberofvertices2d=structmd.numberofnodes2d; end
1146 if isfield(structmd,'nodeconnectivity'), md.mesh.vertexconnectivity=structmd.nodeconnectivity; end
1147 if isfield(structmd,'elementconnectivity'), md.mesh.elementconnectivity=structmd.elementconnectivity; end
1148 if isfield(structmd,'uppernodes'), md.mesh.uppervertex=structmd.uppernodes; end
1149 if isfield(structmd,'lowernodes'), md.mesh.lowervertex=structmd.lowernodes; end
1150 if isfield(structmd,'upperelements'), md.mesh.upperelements=structmd.upperelements; end
1151 if isfield(structmd,'lowerelements'), md.mesh.lowerelements=structmd.lowerelements; end
1152 if isfield(structmd,'nodeonsurface'), md.mesh.vertexonsurface=structmd.nodeonsurface; end
1153 if isfield(structmd,'nodeonbase'), md.mesh.vertexonbase=structmd.nodeonbase; end
1154 if isfield(structmd,'elements2d'), md.mesh.elements2d=structmd.elements2d; end
1155 if isfield(structmd,'y2d'), md.mesh.y2d=structmd.y2d; end
1156 if isfield(structmd,'x2d'), md.mesh.x2d=structmd.x2d; end
1157 if isfield(structmd,'elements'), md.mesh.elements=structmd.elements; end
1158 if isfield(structmd,'edges'),
1159 md.mesh.edges=structmd.edges;
1160 md.mesh.edges(isnan(md.mesh.edges))=-1;
1161 end
1162 if isfield(structmd,'y'), md.mesh.y=structmd.y; end
1163 if isfield(structmd,'x'), md.mesh.x=structmd.x; end
1164 if isfield(structmd,'z'), md.mesh.z=structmd.z; end
1165 if isfield(structmd,'diagnostic_ref'), md.stressbalance.referential=structmd.diagnostic_ref; end
1166 if isfield(structmd,'npart'); md.qmu.numberofpartitions=structmd.npart; end
1167 if isfield(structmd,'part'); md.qmu.partition=structmd.part; end
1168
1169 if isnumeric(md.verbose),
1170 md.verbose=verbose;
1171 end
1172
1173 if isfield(structmd,'spcvelocity'),
1174 md.stressbalance.spcvx=NaN*ones(md.mesh.numberofvertices,1);
1175 md.stressbalance.spcvy=NaN*ones(md.mesh.numberofvertices,1);
1176 md.stressbalance.spcvz=NaN*ones(md.mesh.numberofvertices,1);
1177 pos=find(structmd.spcvelocity(:,1)); md.stressbalance.spcvx(pos)=structmd.spcvelocity(pos,4);
1178 pos=find(structmd.spcvelocity(:,2)); md.stressbalance.spcvy(pos)=structmd.spcvelocity(pos,5);
1179 pos=find(structmd.spcvelocity(:,3)); md.stressbalance.spcvz(pos)=structmd.spcvelocity(pos,6);
1180 end
1181 if isfield(structmd,'spcvx'),
1182 md.stressbalance.spcvx=NaN*ones(md.mesh.numberofvertices,1);
1183 pos=find(~isnan(structmd.spcvx)); md.stressbalance.spcvx(pos)=structmd.spcvx(pos);
1184 end
1185 if isfield(structmd,'spcvy'),
1186 md.stressbalance.spcvy=NaN*ones(md.mesh.numberofvertices,1);
1187 pos=find(~isnan(structmd.spcvy)); md.stressbalance.spcvy(pos)=structmd.spcvy(pos);
1188 end
1189 if isfield(structmd,'spcvz'),
1190 md.stressbalance.spcvz=NaN*ones(md.mesh.numberofvertices,1);
1191 pos=find(~isnan(structmd.spcvz)); md.stressbalance.spcvz(pos)=structmd.spcvz(pos);
1192 end
1193 if isfield(structmd,'pressureload'),
1194 if ~isempty(structmd.pressureload) & ismember(structmd.pressureload(end,end),[118 119 120]),
1195 pos=find(structmd.pressureload(:,end)==120); md.stressbalance.icefront(pos,end)=0;
1196 pos=find(structmd.pressureload(:,end)==118); md.stressbalance.icefront(pos,end)=1;
1197 pos=find(structmd.pressureload(:,end)==119); md.stressbalance.icefront(pos,end)=2;
1198 end
1199 end
1200 if isfield(structmd,'elements_type') & structmd.elements_type(end,end)>50,
1201 pos=find(structmd.elements_type==59); md.flowequation.element_equation(pos,end)=0;
1202 pos=find(structmd.elements_type==55); md.flowequation.element_equation(pos,end)=1;
1203 pos=find(structmd.elements_type==56); md.flowequation.element_equation(pos,end)=2;
1204 pos=find(structmd.elements_type==60); md.flowequation.element_equation(pos,end)=3;
1205 pos=find(structmd.elements_type==62); md.flowequation.element_equation(pos,end)=4;
1206 pos=find(structmd.elements_type==57); md.flowequation.element_equation(pos,end)=5;
1207 pos=find(structmd.elements_type==58); md.flowequation.element_equation(pos,end)=6;
1208 pos=find(structmd.elements_type==61); md.flowequation.element_equation(pos,end)=7;
1209 end
1210 if isfield(structmd,'vertices_type') & structmd.vertices_type(end,end)>50,
1211 pos=find(structmd.vertices_type==59); md.flowequation.vertex_equation(pos,end)=0;
1212 pos=find(structmd.vertices_type==55); md.flowequation.vertex_equation(pos,end)=1;
1213 pos=find(structmd.vertices_type==56); md.flowequation.vertex_equation(pos,end)=2;
1214 pos=find(structmd.vertices_type==60); md.flowequation.vertex_equation(pos,end)=3;
1215 pos=find(structmd.vertices_type==62); md.flowequation.vertex_equation(pos,end)=4;
1216 pos=find(structmd.vertices_type==57); md.flowequation.vertex_equation(pos,end)=5;
1217 pos=find(structmd.vertices_type==58); md.flowequation.vertex_equation(pos,end)=6;
1218 pos=find(structmd.vertices_type==61); md.flowequation.vertex_equation(pos,end)=7;
1219 end
1220 if isfield(structmd,'rheology_law') & isnumeric(structmd.rheology_law),
1221 if (structmd.rheology_law==272), md.materials.rheology_law='None'; end
1222 if (structmd.rheology_law==368), md.materials.rheology_law='Paterson'; end
1223 if (structmd.rheology_law==369), md.materials.rheology_law='Arrhenius'; end
1224 end
1225 if isfield(structmd,'groundingline_migration') & isnumeric(structmd.groundingline_migration),
1226 if (structmd.groundingline_migration==272), md.groundingline.migration='None'; end
1227 if (structmd.groundingline_migration==273), md.groundingline.migration='AggressiveMigration'; end
1228 if (structmd.groundingline_migration==274), md.groundingline.migration='SoftMigration'; end
1229 end
1230 if isfield(structmd,'control_type') & isnumeric(structmd.control_type),
1231 if (structmd.control_type==143), md.inversion.control_parameters={'FrictionCoefficient'}; end
1232 if (structmd.control_type==190), md.inversion.control_parameters={'RheologyBbar'}; end
1233 if (structmd.control_type==147), md.inversion.control_parameters={'Thickeningrate'}; end
1234 end
1235 if isfield(structmd,'cm_responses') & ismember(structmd.cm_responses(end,end),[165:170 383 388 389]),
1236 pos=find(structmd.cm_responses==166); md.inversion.cost_functions(pos)=101;
1237 pos=find(structmd.cm_responses==167); md.inversion.cost_functions(pos)=102;
1238 pos=find(structmd.cm_responses==168); md.inversion.cost_functions(pos)=103;
1239 pos=find(structmd.cm_responses==169); md.inversion.cost_functions(pos)=104;
1240 pos=find(structmd.cm_responses==170); md.inversion.cost_functions(pos)=105;
1241 pos=find(structmd.cm_responses==165); md.inversion.cost_functions(pos)=201;
1242 pos=find(structmd.cm_responses==389); md.inversion.cost_functions(pos)=501;
1243 pos=find(structmd.cm_responses==388); md.inversion.cost_functions(pos)=502;
1244 pos=find(structmd.cm_responses==382); md.inversion.cost_functions(pos)=503;
1245 end
1246
1247 if isfield(structmd,'artificial_diffusivity') & structmd.artificial_diffusivity==2,
1248 md.thermal.stabilization=2;
1249 md.masstransport.stabilization=1;
1250 md.balancethickness.stabilization=1;
1251 end
1252 if isnumeric(md.masstransport.hydrostatic_adjustment)
1253 if md.masstransport.hydrostatic_adjustment==269,
1254 md.masstransport.hydrostatic_adjustment='Incremental';
1255 else
1256 md.masstransport.hydrostatic_adjustment='Absolute';
1257 end
1258 end
1259
1260 %New fields
1261 if ~isfield(structmd,'upperelements') & isa(md.mesh,'mesh3dprisms')
1262 md.mesh.upperelements=transpose(1:md.mesh.numberofelements)+md.mesh.numberofelements2d;
1263 md.mesh.upperelements(end-md.mesh.numberofelements2d+1:end)=NaN;
1264 end
1265 if ~isfield(structmd,'lowerelements') & isa(md.mesh,'mesh3dprisms')
1266 md.mesh.lowerelements=transpose(1:md.mesh.numberofelements)-md.mesh.numberofelements2d;
1267 md.mesh.lowerelements(1:md.mesh.numberofelements2d)=NaN;
1268 end
1269 if ~isfield(structmd,'diagnostic_ref');
1270 md.stressbalance.referential=NaN*ones(md.mesh.numberofvertices,6);
1271 end
1272 if ~isfield(structmd,'loadingforce');
1273 md.stressbalance.loadingforce=0*ones(md.mesh.numberofvertices,3);
1274 end
1275
1276 %2013 August 9
1277 if isfield(structmd,'prognostic') & isa(structmd.prognostic,'prognostic'),
1278 disp('Recovering old prognostic class');
1279 md.masstransport=masstransport(structmd.prognostic);
1280 end
1281 %2013 August 9
1282 if isfield(structmd,'diagnostic') & (isa(structmd.diagnostic,'diagnostic') || isa(structmd.diagnostic,'stressbalance')),
1283 disp('Recovering old diagnostic class');
1284 md.stressbalance=stressbalance(structmd.diagnostic);
1285 end
1286 %2014 January 9th
1287 if isfield(structmd,'surfaceforcings') & isa(md.smb,'surfaceforcings'),
1288 disp('Recovering old surfaceforcings class');
1289 mass_balance=structmd.surfaceforcings.mass_balance;
1290 md.smb=SMB();
1291 md.smb.mass_balance=mass_balance;
1292 end
1293 %2015 September 10
1294 if isfield(structmd,'surfaceforcings') & isa(structmd.surfaceforcings,'SMB'),
1295 disp('Recovering old SMB class');
1296 md.smb=SMBforcing(structmd.surfaceforcings);
1297 end
1298 if isfield(structmd,'surfaceforcings') & isa(structmd.surfaceforcings,'SMBhenning'),
1299 disp('Recovering old SMBhenning class');
1300 md.smb=SMBhenning(structmd.surfaceforcings);
1301 end
1302 if isfield(structmd,'slr'),
1303 disp('Recovering old slr class');
1304 md.solidearth.sealevel=structmd.slr.sealevel;
1305 md.solidearth.planetradius=structmd.slr.planetradius;
1306 md.solidearth.requested_outputs=structmd.slr.requested_outputs;
1307 md.solidearth.transitions=structmd.slr.transitions;
1308
1309 md.solidearth.transitions=structmd.slr.transitions;
1310 md.solidearth.settings.reltol=structmd.slr.reltol;
1311 md.solidearth.settings.abstol=structmd.slr.abstol;
1312 md.solidearth.settings.maxiter=structmd.slr.maxiter;
1313 md.solidearth.settings.rigid=structmd.slr.rigid;
1314 md.solidearth.settings.elastic=structmd.slr.elastic;
1315 md.solidearth.settings.rotation=structmd.slr.rotation;
1316 md.solidearth.settings.runfrequency=structmd.slr.geodetic_run_frequency;
1317 md.solidearth.settings.computesealevelchange=structmd.slr.geodetic;
1318 md.solidearth.settings.degacc=structmd.slr.degacc;
1319 md.solidearth.settings.horiz=structmd.slr.horiz;
1320 md.solidearth.settings.ocean_area_scaling=structmd.slr.ocean_area_scaling;
1321
1322 md.solidearth.surfaceload.icethicknesschange=structmd.slr.deltathickness;
1323 md.solidearth.surfaceload.waterheightchange=structmd.slr.hydro_rate;
1324
1325 md.solidearth.lovenumbers.h=structmd.slr.love_h;
1326 md.solidearth.lovenumbers.k=structmd.slr.love_k;
1327 md.solidearth.lovenumbers.l=structmd.slr.love_l;
1328 md.solidearth.lovenumbers.th=structmd.slr.tide_love_h;
1329 md.solidearth.lovenumbers.tk=structmd.slr.tide_love_k;
1330 md.solidearth.lovenumbers.tk2secular=structmd.slr.fluid_love;
1331
1332 md.solidearth.rotational.equatorialmoi=structmd.slr.equatorial_moi;
1333 md.solidearth.rotational.polarmoi=structmd.slr.polar_moi;
1334 md.solidearth.rotational.angularvelocity=structmd.slr.angular_velocity;
1335 end
1336 end% }}}
1337 function md = tetras(md,varargin) % {{{
1338 %TETRAS - split 3d prismatic mesh into 3 tetrahedrons
1339 %
1340 % Usage:
1341 % md=tetra(md)
1342
1343 if ~isa(md.mesh,'mesh3dprisms')
1344 error('mesh is not a 3d prismatic mesh');
1345 end
1346
1347 %Initialize tetra mesh
1348 md.mesh=mesh3dtetras(md.mesh);
1349
1350 %Subdivision from Philipp Furnstahl (http://studierstube.icg.tugraz.at/thesis/fuernstahl_thesis.pdf)
1351 steiner = 0;
1352 nbv = md.mesh.numberofvertices;
1353 nbt = 3*md.mesh.numberofelements;
1354 elements = zeros(nbt,4);
1355 for i=1:md.mesh.numberofelements
1356 v1=md.mesh.elements(i,1); v2=md.mesh.elements(i,2); v3=md.mesh.elements(i,3);
1357 v4=md.mesh.elements(i,4); v5=md.mesh.elements(i,5); v6=md.mesh.elements(i,6);
1358 if(min(v2,v4)<min(v1,v5) & min(v1,v6)<min(v3,v4) & min(v3,v5)<min(v2,v6)),
1359 steiner = steiner+1; nbv = nbv+1; nbt = nbt+5; v7 = nbv;
1360 md.mesh.x=[md.mesh.x; mean(md.mesh.x(md.mesh.elements(i,:)))];
1361 md.mesh.y=[md.mesh.y; mean(md.mesh.y(md.mesh.elements(i,:)))];
1362 md.mesh.z=[md.mesh.z; mean(md.mesh.z(md.mesh.elements(i,:)))];
1363 elements(3*(i-1)+1,:) = [v1 v2 v3 v7];
1364 elements(3*(i-1)+2,:) = [v1 v2 v4 v7];
1365 elements(3*(i-1)+3,:) = [v2 v4 v5 v7];
1366 elements(end+1,:) = [v2 v3 v5 v7];
1367 elements(end+1,:) = [v3 v5 v6 v7];
1368 elements(end+1,:) = [v1 v3 v6 v7];
1369 elements(end+1,:) = [v1 v4 v6 v7];
1370 elements(end+1,:) = [v4 v5 v6 v7];
1371 elseif(min(v2,v4)<min(v1,v5) & min(v1,v6)<min(v3,v4) & min(v3,v5)>min(v2,v6)),
1372 elements(3*(i-1)+1,:) = [v1 v2 v4 v6];
1373 elements(3*(i-1)+2,:) = [v2 v4 v5 v6];
1374 elements(3*(i-1)+3,:) = [v1 v2 v3 v6];
1375 elseif(min(v2,v4)<min(v1,v5) & min(v1,v6)>min(v3,v4) & min(v3,v5)<min(v2,v6)),
1376 elements(3*(i-1)+1,:) = [v1 v2 v3 v4];
1377 elements(3*(i-1)+2,:) = [v2 v3 v4 v5];
1378 elements(3*(i-1)+3,:) = [v3 v4 v5 v6];
1379 elseif(min(v2,v4)<min(v1,v5) & min(v1,v6)>min(v3,v4) & min(v3,v5)>min(v2,v6)),
1380 elements(3*(i-1)+1,:) = [v1 v2 v3 v4];
1381 elements(3*(i-1)+2,:) = [v2 v4 v5 v6];
1382 elements(3*(i-1)+3,:) = [v2 v3 v4 v6];
1383 elseif(min(v2,v4)>min(v1,v5) & min(v1,v6)<min(v3,v4) & min(v3,v5)<min(v2,v6)),
1384 elements(3*(i-1)+1,:) = [v1 v4 v5 v6];
1385 elements(3*(i-1)+2,:) = [v1 v2 v3 v5];
1386 elements(3*(i-1)+3,:) = [v1 v3 v5 v6];
1387 elseif(min(v2,v4)>min(v1,v5) & min(v1,v6)<min(v3,v4) & min(v3,v5)>min(v2,v6)),
1388 elements(3*(i-1)+1,:) = [v1 v4 v5 v6];
1389 elements(3*(i-1)+2,:) = [v1 v2 v5 v6];
1390 elements(3*(i-1)+3,:) = [v1 v2 v3 v6];
1391 elseif(min(v2,v4)>min(v1,v5) & min(v1,v6)>min(v3,v4) & min(v3,v5)<min(v2,v6)),
1392 elements(3*(i-1)+1,:) = [v1 v3 v4 v5];
1393 elements(3*(i-1)+2,:) = [v1 v2 v3 v5];
1394 elements(3*(i-1)+3,:) = [v3 v4 v5 v6];
1395 elseif(min(v2,v4)>min(v1,v5) & min(v1,v6)<min(v3,v4) & min(v3,v5)<min(v2,v6)),
1396 elements(3*(i-1)+1,:) = [v1 v5 v6 v4];
1397 elements(3*(i-1)+2,:) = [v1 v2 v3 v5];
1398 elements(3*(i-1)+3,:) = [v5 v6 v3 v1];
1399 elseif(min(v2,v4)>min(v1,v5) & min(v1,v6)>min(v3,v4) & min(v3,v5)>min(v2,v6)),
1400 steiner = steiner+1; nbv = nbv+1; nbt = nbt+5; v7 = nbv;
1401 md.mesh.x=[md.mesh.x; mean(md.mesh.x(md.mesh.elements(i,:)))];
1402 md.mesh.y=[md.mesh.y; mean(md.mesh.y(md.mesh.elements(i,:)))];
1403 md.mesh.z=[md.mesh.z; mean(md.mesh.z(md.mesh.elements(i,:)))];
1404 elements(3*(i-1)+1,:) = [v1 v2 v3 v7];
1405 elements(3*(i-1)+2,:) = [v1 v4 v5 v7];
1406 elements(3*(i-1)+3,:) = [v1 v2 v5 v7];
1407 elements(end+1,:) = [v2 v5 v6 v7];
1408 elements(end+1,:) = [v2 v3 v6 v7];
1409 elements(end+1,:) = [v3 v4 v6 v7];
1410 elements(end+1,:) = [v1 v3 v4 v7];
1411 elements(end+1,:) = [v4 v5 v6 v7];
1412 else
1413 error('Case not supported'); %not supposed to happen!
1414 end
1415 %Reorder elements to make sure they are direct
1416 for j=1:3
1417 element = elements(3*(i-1)+j,:);
1418 matrix = [md.mesh.x(element), md.mesh.y(element), md.mesh.z(element), ones(4,1)];
1419 if det(matrix)>0,
1420 elements(3*(i-1)+j,1)=element(2);
1421 elements(3*(i-1)+j,2)=element(1);
1422 end
1423 end
1424 end
1425 %%Split in 3 tetras
1426 %subelement1 = [1 2 3 5];
1427 %subelement2 = [4 6 5 1];
1428 %subelement3 = [5 6 3 1];
1429 %elements=[md.mesh.elements(:,subelement1);md.mesh.elements(:,subelement2);md.mesh.elements(:,subelement3)];
1430 if steiner==0,
1431 disp('No Steiner point required to split prismatic mesh into tets');
1432 else
1433 disp([num2str(steiner) ' Steiner points had to be included'])
1434 error('Steiner point not supported yet');
1435 end
1436
1437 pos_elements = repmat([1:md.mesh.numberofelements]',3,1);
1438
1439 md.mesh.elements=elements;
1440 md.mesh.numberofelements=size(elements,1);
1441
1442 %p and q (same deal, except for element that are on the bedrock: )
1443 if ~isnan(md.friction.p),
1444 md.friction.p=md.friction.p(pos_elements);
1445 md.friction.q=md.friction.q(pos_elements);
1446 end
1447
1448 %elementstype
1449 if ~isnan(md.flowequation.element_equation)
1450 oldelements_type=md.flowequation.element_equation;
1451 md.flowequation.element_equation=md.flowequation.element_equation(pos_elements);
1452 end
1453
1454 %connectivity
1455 md.mesh.elementconnectivity=NaN;
1456
1457 %materials
1458 if ~isnan(md.materials.rheology_n),
1459 md.materials.rheology_n=md.materials.rheology_n(pos_elements);
1460 end
1461
1462 %increase connectivity if less than 25:
1463 if md.mesh.average_vertex_connectivity<=25,
1464 md.mesh.average_vertex_connectivity=100;
1465 end
1466 end % }}}
1467 function disp(self) % {{{
1468 disp(sprintf('%19s: %-22s -- %s','mesh' ,['[1x1 ' class(self.mesh) ']'],'mesh properties'));
1469 disp(sprintf('%19s: %-22s -- %s','mask' ,['[1x1 ' class(self.mask) ']'],'defines grounded and floating elements'));
1470 disp(sprintf('%19s: %-22s -- %s','geometry' ,['[1x1 ' class(self.geometry) ']'],'surface elevation, bedrock topography, ice thickness,...'));
1471 disp(sprintf('%19s: %-22s -- %s','constants' ,['[1x1 ' class(self.constants) ']'],'physical constants'));
1472 disp(sprintf('%19s: %-22s -- %s','smb' ,['[1x1 ' class(self.smb) ']'],'surface mass balance'));
1473 disp(sprintf('%19s: %-22s -- %s','basalforcings' ,['[1x1 ' class(self.basalforcings) ']'],'bed forcings'));
1474 disp(sprintf('%19s: %-22s -- %s','materials' ,['[1x1 ' class(self.materials) ']'],'material properties'));
1475 disp(sprintf('%19s: %-22s -- %s','damage' ,['[1x1 ' class(self.damage) ']'],'parameters for damage evolution solution'));
1476 disp(sprintf('%19s: %-22s -- %s','friction' ,['[1x1 ' class(self.friction) ']'],'basal friction/drag properties'));
1477 disp(sprintf('%19s: %-22s -- %s','flowequation' ,['[1x1 ' class(self.flowequation) ']'],'flow equations'));
1478 disp(sprintf('%19s: %-22s -- %s','timestepping' ,['[1x1 ' class(self.timestepping) ']'],'time stepping for transient models'));
1479 disp(sprintf('%19s: %-22s -- %s','initialization' ,['[1x1 ' class(self.initialization) ']'],'initial guess/state'));
1480 disp(sprintf('%19s: %-22s -- %s','rifts' ,['[1x1 ' class(self.rifts) ']'],'rifts properties'));
1481 disp(sprintf('%19s: %-22s -- %s','solidearth' ,['[1x1 ' class(self.solidearth) ']'],'solidearth inputs and settings'));
1482 disp(sprintf('%19s: %-22s -- %s','dsl' ,['[1x1 ' class(self.dsl) ']'],'dynamic sea-level '));
1483 disp(sprintf('%19s: %-22s -- %s','debug' ,['[1x1 ' class(self.debug) ']'],'debugging tools (valgrind, gprof)'));
1484 disp(sprintf('%19s: %-22s -- %s','verbose' ,['[1x1 ' class(self.verbose) ']'],'verbosity level in solve'));
1485 disp(sprintf('%19s: %-22s -- %s','settings' ,['[1x1 ' class(self.settings) ']'],'settings properties'));
1486 disp(sprintf('%19s: %-22s -- %s','toolkits' ,['[1x1 ' class(self.toolkits) ']'],'PETSc options for each solution'));
1487 disp(sprintf('%19s: %-22s -- %s','cluster' ,['[1x1 ' class(self.cluster) ']'],'cluster parameters (number of cpus...)'));
1488 disp(sprintf('%19s: %-22s -- %s','balancethickness',['[1x1 ' class(self.balancethickness) ']'],'parameters for balancethickness solution'));
1489 disp(sprintf('%19s: %-22s -- %s','stressbalance' ,['[1x1 ' class(self.stressbalance) ']'],'parameters for stressbalance solution'));
1490 disp(sprintf('%19s: %-22s -- %s','groundingline' ,['[1x1 ' class(self.groundingline) ']'],'parameters for groundingline solution'));
1491 disp(sprintf('%19s: %-22s -- %s','hydrology' ,['[1x1 ' class(self.hydrology) ']'],'parameters for hydrology solution'));
1492 disp(sprintf('%19s: %-22s -- %s','masstransport' ,['[1x1 ' class(self.masstransport) ']'],'parameters for masstransport solution'));
1493 disp(sprintf('%19s: %-22s -- %s','thermal' ,['[1x1 ' class(self.thermal) ']'],'parameters for thermal solution'));
1494 disp(sprintf('%19s: %-22s -- %s','steadystate' ,['[1x1 ' class(self.steadystate) ']'],'parameters for steadystate solution'));
1495 disp(sprintf('%19s: %-22s -- %s','transient' ,['[1x1 ' class(self.transient) ']'],'parameters for transient solution'));
1496 disp(sprintf('%19s: %-22s -- %s','levelset' ,['[1x1 ' class(self.levelset) ']'],'parameters for moving boundaries (level-set method)'));
1497 disp(sprintf('%19s: %-22s -- %s','calving' ,['[1x1 ' class(self.calving) ']'],'parameters for calving'));
1498 disp(sprintf('%19s: %-22s -- %s','frontalforcings' ,['[1x1 ' class(self.frontalforcings) ']'],'parameters for frontalforcings'));
1499 disp(sprintf('%19s: %-22s -- %s','gia' ,['[1x1 ' class(self.gia) ']'],'parameters for gia solution'));
1500 disp(sprintf('%19s: %-22s -- %s','esa' ,['[1x1 ' class(self.esa) ']'],'parameters for elastic adjustment solution'));
1501 disp(sprintf('%19s: %-22s -- %s','love' ,['[1x1 ' class(self.love) ']'],'parameters for love solution'));
1502 disp(sprintf('%19s: %-22s -- %s','autodiff' ,['[1x1 ' class(self.autodiff) ']'],'automatic differentiation parameters'));
1503 disp(sprintf('%19s: %-22s -- %s','inversion' ,['[1x1 ' class(self.inversion) ']'],'parameters for inverse methods'));
1504 disp(sprintf('%19s: %-22s -- %s','qmu' ,['[1x1 ' class(self.qmu) ']'],'dakota properties'));
1505 disp(sprintf('%19s: %-22s -- %s','amr' ,['[1x1 ' class(self.amr) ']'],'adaptive mesh refinement properties'));
1506 disp(sprintf('%19s: %-22s -- %s','outputdefinition',['[1x1 ' class(self.outputdefinition) ']'],'output definition'));
1507 disp(sprintf('%19s: %-22s -- %s','results' ,['[1x1 ' class(self.results) ']'],'model results'));
1508 disp(sprintf('%19s: %-22s -- %s','radaroverlay' ,['[1x1 ' class(self.radaroverlay) ']'],'radar image for plot overlay'));
1509 disp(sprintf('%19s: %-22s -- %s','miscellaneous' ,['[1x1 ' class(self.miscellaneous) ']'],'miscellaneous fields'));
1510 end % }}}
1511 function memory(self) % {{{
1512
1513 disp(sprintf('\nMemory imprint:\n'));
1514
1515 fields=properties('model');
1516 mem=0;
1517
1518 for i=1:length(fields),
1519 field=self.(fields{i});
1520 s=whos('field');
1521 mem=mem+s.bytes/1e6;
1522 disp(sprintf('%19s: %6.2f Mb',fields{i},s.bytes/1e6));
1523 end
1524 disp(sprintf('%19s--%10s','--------------','--------------'));
1525 disp(sprintf('%19s: %g Mb','Total',mem));
1526 end % }}}
1527 function netcdf(self,filename) % {{{
1528 %NETCDF - save model as netcdf
1529 %
1530 % Usage:
1531 % netcdf(md,filename)
1532 %
1533 % Example:
1534 % netcdf(md,'model.nc');
1535
1536 disp('Saving model as NetCDF');
1537 %1. Create NetCDF file
1538 ncid=netcdf.create(filename,'CLOBBER');
1539 netcdf.putAtt(ncid,netcdf.getConstant('NC_GLOBAL'),'Conventions','CF-1.4');
1540 netcdf.putAtt(ncid,netcdf.getConstant('NC_GLOBAL'),'Title',['ISSM model (' self.miscellaneous.name ')']);
1541 netcdf.putAtt(ncid,netcdf.getConstant('NC_GLOBAL'),'Author',getenv('USER'));
1542 netcdf.putAtt(ncid,netcdf.getConstant('NC_GLOBAL'),'Date',datestr(now));
1543
1544 %Preallocate variable id, needed to write variables in netcdf file
1545 var_id=zeros(1000,1);%preallocate
1546
1547 for step=1:2,
1548 counter=0;
1549 [var_id,counter]=structtonc(ncid,'md',self,0,var_id,counter,step);
1550 if step==1, netcdf.endDef(ncid); end
1551 end
1552
1553 if counter>1000,
1554 warning(['preallocation of var_id need to be updated from ' num2str(1000) ' to ' num2str(counter)]);
1555 end
1556
1557 netcdf.close(ncid)
1558 end % }}}
1559 function xylim(self) % {{{
1560
1561 xlim([min(self.mesh.x) max(self.mesh.x)]);
1562 ylim([min(self.mesh.y) max(self.mesh.y)])
1563 end % }}}
1564 function md=upload(md) % {{{
1565 %the goal of this routine is to upload the model onto a server, and to empty it.
1566 %So first, save the model with a unique name and upload the file to the server:
1567 random_part=fix(rand(1)*10000);
1568 id=[md.miscellaneous.name '-' regexprep(datestr(now),'[^\w'']','') '-' num2str(random_part) '-' getenv('USER') '-' oshostname() '.upload'];
1569 eval(['save ' id ' md']);
1570
1571 %Now, upload the file:
1572 issmscpout(md.settings.upload_server,md.settings.upload_path,md.settings.upload_login,md.settings.upload_port,{id},1);
1573
1574 %Now, empty this model of everything except settings, and record name of file we just uploaded!
1575 settings_back=md.settings;
1576 md=model();
1577 md.settings=settings_back;
1578 md.settings.upload_filename=id;
1579
1580 %get locally rid of file that was uploaded
1581 eval(['delete ' id]);
1582
1583 end % }}}
1584 function md=download(md) % {{{
1585
1586 %the goal of this routine is to download the internals of the current model from a server, because
1587 %this model is empty, except for the settings which tell us where to go and find this model!
1588
1589 %Download the file:
1590 issmscpin(md.settings.upload_server, md.settings.upload_login, md.settings.upload_port, md.settings.upload_path, {md.settings.upload_filename});
1591
1592 name=md.settings.upload_filename;
1593
1594 %Now, load this model:
1595 md=loadmodel(md.settings.upload_filename);
1596
1597 %get locally rid of file that was downloaded
1598 eval(['delete ' name]);
1599
1600 end % }}}
1601 function savemodeljs(md,modelname,websiteroot,varargin) % {{{
1602
1603 %the goal of this routine is to save the model as a javascript array that can be included in any html
1604 %file:
1605
1606 options=pairoptions(varargin{:});
1607 optimization=getfieldvalue(options,'optimize',0);
1608
1609
1610 %disp:
1611 disp(['saving model ''' modelname ''' in file ' websiteroot '/js/' modelname '.js']);
1612
1613 %open file for writing and declare the model:
1614 fid=fopen([websiteroot '/js/' modelname '.js'],'w');
1615 fprintf(fid,'var %s=new model();\n',modelname);
1616
1617 %now go through all the classes and fwrite all the corresponding fields:
1618
1619 fields=properties('model');
1620 for i=1:length(fields),
1621 field=fields{i};
1622
1623 %Some properties do not need to be saved
1624 if ismember(field,{'results','cluster' }),
1625 continue;
1626 end
1627
1628 %some optimization:
1629 if optimization==1,
1630 %optimize for plotting only:
1631 if ~ismember(field,{'geometry','mesh','mask'}),
1632 continue;
1633 end
1634 end
1635
1636 %Check that current field is an object
1637 if ~isobject(md.(field))
1638 error(['field ''' char(field) ''' is not an object']);
1639 end
1640
1641 %savemodeljs for current object
1642 %disp(['javascript saving ' field '...']);
1643 savemodeljs(md.(field),fid,modelname);
1644 end
1645
1646 %done, close file:
1647 fclose(fid);
1648 end
1649 end
1650 end
Note: See TracBrowser for help on using the repository browser.