source: issm/trunk-jpl/src/m/classes/model.m@ 25499

Last change on this file since 25499 was 25499, checked in by jdquinn, 5 years ago

CHG: Committing changes in support of test2004.py (no longer failing, but still need to track down sources of large errors)

File size: 72.4 KB
Line 
1%MODEL class definition
2%
3% Usage:
4% md = model(varargin)
5
6classdef model
7 properties (SetAccess=public) %Model fields
8 % {{{
9 %Careful here: no other class should be used as default value this is a bug of matlab
10 mesh = 0;
11 mask = 0;
12
13 geometry = 0;
14 constants = 0;
15 smb = 0;
16 basalforcings = 0;
17 materials = 0;
18 damage = 0;
19 friction = 0;
20 flowequation = 0;
21 timestepping = 0;
22 initialization = 0;
23 rifts = 0;
24 dsl = 0;
25 solidearth = 0;
26
27 debug = 0;
28 verbose = 0;
29 settings = 0;
30 toolkits = 0;
31 cluster = 0;
32
33 balancethickness = 0;
34 stressbalance = 0;
35 groundingline = 0;
36 hydrology = 0;
37 masstransport = 0;
38 thermal = 0;
39 steadystate = 0;
40 transient = 0;
41 levelset = 0;
42 calving = 0;
43 frontalforcings = 0;
44 love = 0;
45 gia = 0;
46 esa = 0;
47
48 autodiff = 0;
49 inversion = 0;
50 qmu = 0;
51 amr = 0;
52 results = 0;
53 outputdefinition = 0;
54 radaroverlay = 0;
55 miscellaneous = 0;
56 private = 0;
57
58 %}}}
59 end
60 methods (Static)
61 function md = loadobj(md) % {{{
62 % This function is directly called by matlab when a model object is
63 % loaded. If the input is a struct it is an old version of model and
64 % old fields must be recovered (make sure they are in the deprecated
65 % model properties)
66
67 if verLessThan('matlab','7.9'),
68 disp('Warning: your matlab version is old and there is a risk that load does not work correctly');
69 disp(' if the model is not loaded correctly, rename temporarily loadobj so that matlab does not use it');
70
71 % This is a Matlab bug: all the fields of md have their default value
72 % Example of error message:
73 % Warning: Error loading an object of class 'model':
74 % Undefined function or method 'exist' for input arguments of type 'cell'
75 %
76 % This has been fixed in MATLAB 7.9 (R2009b) and later versions
77 end
78
79 if isstruct(md)
80 disp('Recovering model object from a previous version');
81 md = structtomodel(model,md);
82 end
83
84 %2012 August 4th
85 if isa(md.materials,'materials'),
86 disp('Recovering old materials');
87 if numel(md.materials.rheology_Z)==1 & isnan(md.materials.rheology_Z),
88 md.materials=matice(md.materials);
89 else
90 md.materials=matdamageice(md.materials);
91 end
92 end
93 %2013 April 12
94 if numel(md.stressbalance.loadingforce==1)
95 md.stressbalance.loadingforce=0*ones(md.mesh.numberofvertices,3);
96 end
97 %2013 April 17
98 if isa(md.hydrology,'hydrology'),
99 disp('Recovering old hydrology class');
100 md.hydrology=hydrologyshreve(md.materials);
101 end
102 %2013 October 9
103 if ~isa(md.damage,'damage'),
104 md.damage=damage();
105 md.damage.D=zeros(md.mesh.numberofvertices,1);
106 md.damage.spcdamage=NaN*ones(md.mesh.numberofvertices,1);
107 end
108 %2013 November 18
109 if ~isa(md.outputdefinition,'outputdefinition'),
110 md.outputdefinition=outputdefinition();
111 end
112 %2014 March 26th
113 if isa(md.mesh,'mesh'),
114 disp('Recovering old mesh class');
115 if isprop(md.mesh,'dimension'),
116 if md.mesh.dimension==2,
117 md.mesh=mesh2d(md.mesh);
118 else
119 md.mesh=mesh3dprisms(md.mesh);
120 end
121 else
122 md.mesh=mesh2dvertical(md.mesh);
123 end
124 end
125 %2014 November 12
126 if isa(md.calving,'double'); md.calving=calving(); end
127 %2016 October 11
128 if isa(md.esa,'double'); md.esa=esa(); end
129 %2017 February 10th
130 if isa(md.settings,'settings'), %this 'isa' verification: 2018 October 24th
131 if md.settings.solver_residue_threshold==0,
132 md.settings.solver_residue_threshold = 1e-6;
133 end
134 end
135 %2017 April 10th
136 if isa(md.gia,'gia'), md.gia=giamme(); end
137 %2017 May 4th
138 if isa(md.amr,'double'); md.amr=amr(); end
139 %2017 Aug 29th
140 if isa(md.love,'double'); md.love=fourierlove(); end
141 %2017 Oct 26th
142 if isa(md.calving,'calvingdev')
143 disp('Warning: calvingdev is now calvingvonmises');
144 md.calving=calvingvonmises(md.calving);
145 end
146 %2017 Dec 21st (needs to be here)
147 if isempty(md.settings)
148 disp('Warning: md.settings had to be reset, make sure to adjust md.settings.output_frequency and other fields');
149 md.settings = issmsettings();
150 end
151 %2018 Dec 1st
152 if md.settings.sb_coupling_frequency==0
153 md.settings.sb_coupling_frequency=1;
154 end
155 %2019 Jan..
156 if isa(md.frontalforcings,'double');
157 if(isprop('meltingrate',md.calving) & ~isnan(md.calving.meltingrate))
158 disp('Warning: md.calving.meltingrate is now in md.frontalforcings');
159 end
160 md.frontalforcings=frontalforcings(md.calving);
161 end
162 %2019 Feb 26
163 if isa(md.settings.results_on_nodes,'double')
164 if md.settings.results_on_nodes == 0
165 md.settings.results_on_nodes = {};
166 else
167 md.settings.results_on_nodes = {'all'};
168 end
169 end
170 %2019 Mar 28
171 if isa(md.smb,'SMBcomponents') | isa(md.smb,'SMBmeltcomponents') | isa(md.smb,'SMBforcing') | isa(md.smb,'SMBgemb')
172 if isa(md.smb.isclimatology,'double')
173 if prod(size(md.smb.isclimatology)) ~= 1
174 md.smb.isclimatology = 0;
175 end
176 end
177 end
178 %2019 Dec 16
179 if isa(md.dsl,'double') | isempty(md.dsl.compute_fingerprints)
180 md.dsl=dsl();
181 end
182 %2020 April 24
183 if isa(md.smb,'SMBgemb')
184 if isa(md.smb.isconstrainsurfaceT,'double')
185 if prod(size(md.smb.isconstrainsurfaceT)) ~= 1
186 md.smb.isconstrainsurfaceT = 0;
187 end
188 end
189 end
190 end% }}}
191 end
192 methods
193 function md = model(varargin) % {{{
194
195 switch nargin
196 case 0
197 md=setdefaultparameters(md);
198 case 1
199 error('model constructor not supported yet');
200
201 otherwise
202 error('model constructor error message: 0 of 1 argument only in input.');
203 end
204 end
205 %}}}
206 function md = checkmessage(md,string) % {{{
207 if(nargout~=1) error('wrong usage, model must be an output'); end
208 disp(['model not consistent: ' string]);
209 md.private.isconsistent=false;
210 end
211 %}}}
212 function md = collapse(md)% {{{
213 %COLLAPSE - collapses a 3d mesh into a 2d mesh
214 %
215 % This routine collapses a 3d model into a 2d model
216 % and collapses all the fields of the 3d model by
217 % taking their depth-averaged values
218 %
219 % Usage:
220 % md=collapse(md)
221 %
222 % See also: EXTRUDE, MODELEXTRACT
223
224 %Check that the model is really a 3d model
225 if ~strcmp(md.mesh.elementtype(),'Penta'),
226 error('collapse error message: only 3d mesh can be collapsed')
227 end
228
229 %Start with changing all the fields from the 3d mesh
230
231 %dealing with the friction law
232 %drag is limited to nodes that are on the bedrock.
233 if isa(md.friction,'friction'),
234 md.friction.coefficient=project2d(md,md.friction.coefficient,1);
235 md.friction.p=project2d(md,md.friction.p,1);
236 md.friction.q=project2d(md,md.friction.q,1);
237 elseif isa(md.friction,'frictioncoulomb'),
238 md.friction.coefficient=project2d(md,md.friction.coefficient,1);
239 md.friction.coefficientcoulomb=project2d(md,md.friction.coefficientcoulomb,1);
240 md.friction.p=project2d(md,md.friction.p,1);
241 md.friction.q=project2d(md,md.friction.q,1);
242 elseif isa(md.friction,'frictionhydro'),
243 md.friction.q=project2d(md,md.friction.q,1);
244 md.friction.C=project2d(md,md.friction.C,1);
245 md.friction.As=project2d(md,md.friction.As,1);
246 md.friction.effective_pressure=project2d(md,md.friction.effective_pressure,1);
247 elseif isa(md.friction,'frictionwaterlayer'),
248 md.friction.coefficient=project2d(md,md.friction.coefficient,1);
249 md.friction.p=project2d(md,md.friction.p,1);
250 md.friction.q=project2d(md,md.friction.q,1);
251 md.friction.water_layer=project2d(md,md.friction.water_layer,1);
252 elseif isa(md.friction,'frictionweertman'),
253 md.friction.C=project2d(md,md.friction.C,1);
254 md.friction.m=project2d(md,md.friction.m,1);
255 elseif isa(md.friction,'frictionweertmantemp'),
256 md.friction.C=project2d(md,md.friction.C,1);
257 md.friction.m=project2d(md,md.friction.m,1);
258 else
259 disp('friction type not supported');
260 end
261
262 %observations
263 if ~isnan(md.inversion.vx_obs),
264 md.inversion.vx_obs=project2d(md,md.inversion.vx_obs,md.mesh.numberoflayers);
265 end
266 if ~isnan(md.inversion.vy_obs),
267 md.inversion.vy_obs=project2d(md,md.inversion.vy_obs,md.mesh.numberoflayers);
268 end
269 if ~isnan(md.inversion.vel_obs),
270 md.inversion.vel_obs=project2d(md,md.inversion.vel_obs,md.mesh.numberoflayers);
271 end
272 if ~isnan(md.inversion.thickness_obs),
273 md.inversion.thickness_obs=project2d(md,md.inversion.thickness_obs,md.mesh.numberoflayers);
274 end
275 if ~isnan(md.inversion.cost_functions_coefficients),
276 md.inversion.cost_functions_coefficients=project2d(md,md.inversion.cost_functions_coefficients,md.mesh.numberoflayers);
277 end
278 if numel(md.inversion.min_parameters)>1,
279 md.inversion.min_parameters=project2d(md,md.inversion.min_parameters,md.mesh.numberoflayers);
280 end
281 if numel(md.inversion.max_parameters)>1,
282 md.inversion.max_parameters=project2d(md,md.inversion.max_parameters,md.mesh.numberoflayers);
283 end
284 if isa(md.smb,'SMBforcing') & ~isnan(md.smb.mass_balance),
285 md.smb.mass_balance=project2d(md,md.smb.mass_balance,md.mesh.numberoflayers);
286 elseif isa(md.smb,'SMBhenning') & ~isnan(md.smb.smbref),
287 md.smb.smbref=project2d(md,md.smb.smbref,md.mesh.numberoflayers);
288 end
289
290 %results
291 if ~isnan(md.initialization.vx),
292 md.initialization.vx=DepthAverage(md,md.initialization.vx);
293 end
294 if ~isnan(md.initialization.vy),
295 md.initialization.vy=DepthAverage(md,md.initialization.vy);
296 end
297 if ~isnan(md.initialization.vz),
298 md.initialization.vz=DepthAverage(md,md.initialization.vz);
299 end
300 if ~isnan(md.initialization.vel),
301 md.initialization.vel=DepthAverage(md,md.initialization.vel);
302 end
303 if ~isnan(md.initialization.temperature),
304 md.initialization.temperature=DepthAverage(md,md.initialization.temperature);
305 end
306 if ~isnan(md.initialization.pressure),
307 md.initialization.pressure=project2d(md,md.initialization.pressure,1);
308 end
309 if ~isnan(md.initialization.sediment_head),
310 md.initialization.sediment_head=project2d(md,md.initialization.sediment_head,1);
311 end
312 if ~isnan(md.initialization.epl_head),
313 md.initialization.epl_head=project2d(md,md.initialization.epl_head,1);
314 end
315 if ~isnan(md.initialization.epl_thickness),
316 md.initialization.epl_thickness=project2d(md,md.initialization.epl_thickness,1);
317 end
318 if ~isnan(md.initialization.waterfraction),
319 md.initialization.waterfraction=project2d(md,md.initialization.waterfraction,1);
320 end
321 if ~isnan(md.initialization.watercolumn),
322 md.initialization.watercolumn=project2d(md,md.initialization.watercolumn,1);
323 end
324
325 %giaivins
326 if isa(md.gia,'giaivins'),
327 if ~isnan(md.gia.mantle_viscosity), md.gia.mantle_viscosity=project2d(md,md.gia.mantle_viscosity,1); end
328 if ~isnan(md.gia.lithosphere_thickness), md.gia.lithosphere_thickness=project2d(md,md.gia.lithosphere_thickness,1); end
329 end
330
331 %elementstype
332 if ~isnan(md.flowequation.element_equation)
333 md.flowequation.element_equation=project2d(md,md.flowequation.element_equation,1);
334 md.flowequation.vertex_equation=project2d(md,md.flowequation.vertex_equation,1);
335 md.flowequation.borderSSA=project2d(md,md.flowequation.borderSSA,1);
336 md.flowequation.borderHO=project2d(md,md.flowequation.borderHO,1);
337 md.flowequation.borderFS=project2d(md,md.flowequation.borderFS,1);
338 end
339
340 %boundary conditions
341 md.stressbalance.spcvx=project2d(md,md.stressbalance.spcvx,md.mesh.numberoflayers);
342 md.stressbalance.spcvy=project2d(md,md.stressbalance.spcvy,md.mesh.numberoflayers);
343 md.stressbalance.spcvz=project2d(md,md.stressbalance.spcvz,md.mesh.numberoflayers);
344 md.stressbalance.referential=project2d(md,md.stressbalance.referential,md.mesh.numberoflayers);
345 md.stressbalance.loadingforce=project2d(md,md.stressbalance.loadingforce,md.mesh.numberoflayers);
346 if numel(md.masstransport.spcthickness)>1,
347 md.masstransport.spcthickness=project2d(md,md.masstransport.spcthickness,md.mesh.numberoflayers);
348 end
349 if numel(md.damage.spcdamage)>1,
350 md.damage.spcdamage=project2d(md,md.damage.spcdamage,md.mesh.numberoflayers);
351 end
352 if numel(md.levelset.spclevelset)>1,
353 md.levelset.spclevelset=project2d(md,md.levelset.spclevelset,md.mesh.numberoflayers);
354 end
355 md.thermal.spctemperature=project2d(md,md.thermal.spctemperature,md.mesh.numberoflayers);
356
357 % Hydrologydc variables
358 if isa(md.hydrology,'hydrologydc');
359 md.hydrology.spcsediment_head=project2d(md,md.hydrology.spcsediment_head,1);
360 md.hydrology.mask_eplactive_node=project2d(md,md.hydrology.mask_eplactive_node,1);
361 md.hydrology.sediment_transmitivity=project2d(md,md.hydrology.sediment_transmitivity,1);
362 md.hydrology.basal_moulin_input=project2d(md,md.hydrology.basal_moulin_input,1);
363 if(md.hydrology.isefficientlayer==1)
364 md.hydrology.spcepl_head=project2d(md,md.hydrology.spcepl_head,1);
365 end
366 end
367
368 %materials
369 md.materials.rheology_B=DepthAverage(md,md.materials.rheology_B);
370 md.materials.rheology_n=project2d(md,md.materials.rheology_n,1);
371
372 %damage:
373 if md.damage.isdamage,
374 md.damage.D=DepthAverage(md,md.damage.D);
375 end
376
377 %special for thermal modeling:
378 if ~isnan(md.basalforcings.groundedice_melting_rate),
379 md.basalforcings.groundedice_melting_rate=project2d(md,md.basalforcings.groundedice_melting_rate,1);
380 end
381 if isprop(md.basalforcings,'floatingice_melting_rate') & ~isnan(md.basalforcings.floatingice_melting_rate),
382 md.basalforcings.floatingice_melting_rate=project2d(md,md.basalforcings.floatingice_melting_rate,1);
383 end
384 md.basalforcings.geothermalflux=project2d(md,md.basalforcings.geothermalflux,1); %bedrock only gets geothermal flux
385
386 if isprop(md.calving,'coeff') & ~isnan(md.calving.coeff),
387 md.calving.coeff=project2d(md,md.calving.coeff,1);
388 end
389 if isprop(md.frontalforcings,'meltingrate') & ~isnan(md.frontalforcings.meltingrate),
390 md.frontalforcings.meltingrate=project2d(md,md.frontalforcings.meltingrate,1);
391 end
392
393 %update of connectivity matrix
394 md.mesh.average_vertex_connectivity=25;
395
396 %Collapse the mesh
397 nodes2d=md.mesh.numberofvertices2d;
398 elements2d=md.mesh.numberofelements2d;
399
400 %parameters
401 md.geometry.surface=project2d(md,md.geometry.surface,1);
402 md.geometry.thickness=project2d(md,md.geometry.thickness,1);
403 md.geometry.base=project2d(md,md.geometry.base,1);
404 if ~isnan(md.geometry.bed),
405 md.geometry.bed=project2d(md,md.geometry.bed,1);
406 end
407 if ~isnan(md.mask.ocean_levelset),
408 md.mask.ocean_levelset=project2d(md,md.mask.ocean_levelset,1);
409 end
410 if ~isnan(md.mask.ice_levelset),
411 md.mask.ice_levelset=project2d(md,md.mask.ice_levelset,1);
412 end
413
414 %lat long
415 if numel(md.mesh.lat)==md.mesh.numberofvertices,
416 md.mesh.lat=project2d(md,md.mesh.lat,1);
417 end
418 if numel(md.mesh.long)==md.mesh.numberofvertices,
419 md.mesh.long=project2d(md,md.mesh.long,1);
420 end
421
422 %outputdefinitions
423 for i=1:length(md.outputdefinition.definitions)
424 if isobject(md.outputdefinition.definitions{i})
425 %get subfields
426 solutionsubfields=fields(md.outputdefinition.definitions{i});
427 for j=1:length(solutionsubfields),
428 field=md.outputdefinition.definitions{i}.(solutionsubfields{j});
429 if length(field)==md.mesh.numberofvertices | length(field)==md.mesh.numberofelements,
430 md.outputdefinition.definitions{i}.(solutionsubfields{j})=project2d(md,md.outputdefinition.definitions{i}.(solutionsubfields{j}),1);
431 end
432 end
433 end
434 end
435
436 %Initialize the 2d mesh
437 mesh=mesh2d();
438 mesh.x=md.mesh.x2d;
439 mesh.y=md.mesh.y2d;
440 mesh.numberofvertices=md.mesh.numberofvertices2d;
441 mesh.numberofelements=md.mesh.numberofelements2d;
442 mesh.elements=md.mesh.elements2d;
443 if numel(md.mesh.lat)==md.mesh.numberofvertices,
444 mesh.lat=project2d(md,md.mesh.lat,1);
445 end
446 if numel(md.mesh.long)==md.mesh.numberofvertices,
447 mesh.long=project2d(md,md.mesh.long,1);
448 end
449 mesh.epsg=md.mesh.epsg;
450 if numel(md.mesh.scale_factor)==md.mesh.numberofvertices,
451 mesh.scale_factor=project2d(md,md.mesh.scale_factor,1);
452 end
453 if ~isnan(md.mesh.vertexonboundary),
454 mesh.vertexonboundary=project2d(md,md.mesh.vertexonboundary,1);
455 end
456 if ~isnan(md.mesh.elementconnectivity),
457 mesh.elementconnectivity=project2d(md,md.mesh.elementconnectivity,1);
458 end
459 md.mesh=mesh;
460 md.mesh.vertexconnectivity=NodeConnectivity(md.mesh.elements,md.mesh.numberofvertices);
461 md.mesh.elementconnectivity=ElementConnectivity(md.mesh.elements,md.mesh.vertexconnectivity);
462 md.mesh.segments=contourenvelope(md.mesh);
463
464 end % }}}
465 function md2 = extract(md,area,varargin) % {{{
466 %extract - extract a model according to an Argus contour or flag list
467 %
468 % This routine extracts a submodel from a bigger model with respect to a given contour
469 % md must be followed by the corresponding exp file or flags list
470 % It can either be a domain file (argus type, .exp extension), or an array of element flags.
471 % If user wants every element outside the domain to be
472 % extract2d, add '~' to the name of the domain file (ex: '~HO.exp');
473 % an empty string '' will be considered as an empty domain
474 % a string 'all' will be considered as the entire domain
475 %
476 % Usage:
477 % md2=extract(md,area);
478 %
479 % Examples:
480 % md2=extract(md,'Domain.exp');
481 %
482 % See also: EXTRUDE, COLLAPSE
483
484 %copy model
485 md1=md;
486
487 %recover optoins:
488 options=pairoptions(varargin{:});
489
490 %some checks
491 if ((nargin<2) | (nargout~=1)),
492 help extract
493 error('extract error message: bad usage');
494 end
495
496 %get elements that are inside area
497 flag_elem=FlagElements(md1,area);
498 if ~any(flag_elem),
499 error('extracted model is empty');
500 end
501
502 %kick out all elements with 3 dirichlets
503 if getfieldvalue(options,'spccheck',1)
504 spc_elem=find(~flag_elem);
505 spc_node=sort(unique(md1.mesh.elements(spc_elem,:)));
506 flag=ones(md1.mesh.numberofvertices,1);
507 flag(spc_node)=0;
508 pos=find(sum(flag(md1.mesh.elements),2)==0);
509 flag_elem(pos)=0;
510 end
511
512 %extracted elements and nodes lists
513 pos_elem=find(flag_elem);
514 pos_node=sort(unique(md1.mesh.elements(pos_elem,:)));
515
516 %keep track of some fields
517 numberofvertices1=md1.mesh.numberofvertices;
518 numberofelements1=md1.mesh.numberofelements;
519 numberofvertices2=length(pos_node);
520 numberofelements2=length(pos_elem);
521 flag_node=zeros(numberofvertices1,1);
522 flag_node(pos_node)=1;
523
524 %Create Pelem and Pnode (transform old nodes in new nodes and same thing for the elements)
525 Pelem=zeros(numberofelements1,1);
526 Pelem(pos_elem)=[1:numberofelements2]';
527 Pnode=zeros(numberofvertices1,1);
528 Pnode(pos_node)=[1:numberofvertices2]';
529
530 %renumber the elements (some nodes won't exist anymore)
531 elements_1=md1.mesh.elements;
532 elements_2=elements_1(pos_elem,:);
533 elements_2(:,1)=Pnode(elements_2(:,1));
534 elements_2(:,2)=Pnode(elements_2(:,2));
535 elements_2(:,3)=Pnode(elements_2(:,3));
536 if isa(md1.mesh,'mesh3dprisms'),
537 elements_2(:,4)=Pnode(elements_2(:,4));
538 elements_2(:,5)=Pnode(elements_2(:,5));
539 elements_2(:,6)=Pnode(elements_2(:,6));
540 end
541
542 %OK, now create the new model!
543
544 %take every field from model
545 md2=md1;
546
547 %automatically modify fields
548
549 %loop over model fields
550 model_fields=fields(md1);
551 for i=1:length(model_fields),
552 %get field
553 field=md1.(model_fields{i});
554 fieldsize=size(field);
555 if isobject(field), %recursive call
556 object_fields=fields(md1.(model_fields{i}));
557 for j=1:length(object_fields),
558 %get field
559 field=md1.(model_fields{i}).(object_fields{j});
560 fieldsize=size(field);
561 %size = number of nodes * n
562 if fieldsize(1)==numberofvertices1
563 md2.(model_fields{i}).(object_fields{j})=field(pos_node,:);
564 elseif (fieldsize(1)==numberofvertices1+1)
565 md2.(model_fields{i}).(object_fields{j})=[field(pos_node,:); field(end,:)];
566 %size = number of elements * n
567 elseif fieldsize(1)==numberofelements1
568 md2.(model_fields{i}).(object_fields{j})=field(pos_elem,:);
569 elseif (fieldsize(1)==numberofelements1+1)
570 md2.(model_fields{i}).(object_fields{j})=[field(pos_elem,:); field(end,:)];
571 end
572 end
573 else
574 %size = number of nodes * n
575 if fieldsize(1)==numberofvertices1
576 md2.(model_fields{i})=field(pos_node,:);
577 elseif (fieldsize(1)==numberofvertices1+1)
578 md2.(model_fields{i})=[field(pos_node,:); field(end,:)];
579 %size = number of elements * n
580 elseif fieldsize(1)==numberofelements1
581 md2.(model_fields{i})=field(pos_elem,:);
582 elseif (fieldsize(1)==numberofelements1+1)
583 md2.(model_fields{i})=[field(pos_elem,:); field(end,:)];
584 end
585 end
586 end
587
588 %modify some specific fields
589
590 %Mesh
591 md2.mesh.numberofelements=numberofelements2;
592 md2.mesh.numberofvertices=numberofvertices2;
593 md2.mesh.elements=elements_2;
594
595 %mesh.uppervertex mesh.lowervertex
596 if isa(md1.mesh,'mesh3dprisms'),
597 md2.mesh.uppervertex=md1.mesh.uppervertex(pos_node);
598 pos=find(~isnan(md2.mesh.uppervertex));
599 md2.mesh.uppervertex(pos)=Pnode(md2.mesh.uppervertex(pos));
600
601 md2.mesh.lowervertex=md1.mesh.lowervertex(pos_node);
602 pos=find(~isnan(md2.mesh.lowervertex));
603 md2.mesh.lowervertex(pos)=Pnode(md2.mesh.lowervertex(pos));
604
605 md2.mesh.upperelements=md1.mesh.upperelements(pos_elem);
606 pos=find(~isnan(md2.mesh.upperelements));
607 md2.mesh.upperelements(pos)=Pelem(md2.mesh.upperelements(pos));
608
609 md2.mesh.lowerelements=md1.mesh.lowerelements(pos_elem);
610 pos=find(~isnan(md2.mesh.lowerelements));
611 md2.mesh.lowerelements(pos)=Pelem(md2.mesh.lowerelements(pos));
612 end
613
614 %Initial 2d mesh
615 if isa(md1.mesh,'mesh3dprisms'),
616 flag_elem_2d=flag_elem(1:md1.mesh.numberofelements2d);
617 pos_elem_2d=find(flag_elem_2d);
618 flag_node_2d=flag_node(1:md1.mesh.numberofvertices2d);
619 pos_node_2d=find(flag_node_2d);
620
621 md2.mesh.numberofelements2d=length(pos_elem_2d);
622 md2.mesh.numberofvertices2d=length(pos_node_2d);
623 md2.mesh.elements2d=md1.mesh.elements2d(pos_elem_2d,:);
624 md2.mesh.elements2d(:,1)=Pnode(md2.mesh.elements2d(:,1));
625 md2.mesh.elements2d(:,2)=Pnode(md2.mesh.elements2d(:,2));
626 md2.mesh.elements2d(:,3)=Pnode(md2.mesh.elements2d(:,3));
627
628 md2.mesh.x2d=md1.mesh.x(pos_node_2d);
629 md2.mesh.y2d=md1.mesh.y(pos_node_2d);
630 end
631
632 %Edges
633 if(dimension(md.mesh)==2),
634 if size(md2.mesh.edges,2)>1, %do not use ~isnan because there are some NaNs...
635 %renumber first two columns
636 pos=find(md2.mesh.edges(:,4)~=-1);
637 md2.mesh.edges(: ,1)=Pnode(md2.mesh.edges(:,1));
638 md2.mesh.edges(: ,2)=Pnode(md2.mesh.edges(:,2));
639 md2.mesh.edges(: ,3)=Pelem(md2.mesh.edges(:,3));
640 md2.mesh.edges(pos,4)=Pelem(md2.mesh.edges(pos,4));
641 %remove edges when the 2 vertices are not in the domain.
642 md2.mesh.edges=md2.mesh.edges(find(md2.mesh.edges(:,1) & md2.mesh.edges(:,2)),:);
643 %Replace all zeros by -1 in the last two columns
644 pos=find(md2.mesh.edges(:,3)==0);
645 md2.mesh.edges(pos,3)=-1;
646 pos=find(md2.mesh.edges(:,4)==0);
647 md2.mesh.edges(pos,4)=-1;
648 %Invert -1 on the third column with last column (Also invert first two columns!!)
649 pos=find(md2.mesh.edges(:,3)==-1);
650 md2.mesh.edges(pos,3)=md2.mesh.edges(pos,4);
651 md2.mesh.edges(pos,4)=-1;
652 values=md2.mesh.edges(pos,2);
653 md2.mesh.edges(pos,2)=md2.mesh.edges(pos,1);
654 md2.mesh.edges(pos,1)=values;
655 %Finally remove edges that do not belong to any element
656 pos=find(md2.mesh.edges(:,3)==-1 & md2.mesh.edges(:,4)==-1);
657 md2.mesh.edges(pos,:)=[];
658 end
659 end
660
661 %Penalties
662 if ~isnan(md2.stressbalance.vertex_pairing),
663 for i=1:size(md1.stressbalance.vertex_pairing,1);
664 md2.stressbalance.vertex_pairing(i,:)=Pnode(md1.stressbalance.vertex_pairing(i,:));
665 end
666 md2.stressbalance.vertex_pairing=md2.stressbalance.vertex_pairing(find(md2.stressbalance.vertex_pairing(:,1)),:);
667 end
668 if ~isnan(md2.masstransport.vertex_pairing),
669 for i=1:size(md1.masstransport.vertex_pairing,1);
670 md2.masstransport.vertex_pairing(i,:)=Pnode(md1.masstransport.vertex_pairing(i,:));
671 end
672 md2.masstransport.vertex_pairing=md2.masstransport.vertex_pairing(find(md2.masstransport.vertex_pairing(:,1)),:);
673 end
674
675 %recreate segments
676 if isa(md1.mesh,'mesh2d') | isa(md1.mesh','mesh3dsurface'),
677 md2.mesh.vertexconnectivity=NodeConnectivity(md2.mesh.elements,md2.mesh.numberofvertices);
678 md2.mesh.elementconnectivity=ElementConnectivity(md2.mesh.elements,md2.mesh.vertexconnectivity);
679 md2.mesh.segments=contourenvelope(md2.mesh);
680 md2.mesh.vertexonboundary=zeros(numberofvertices2,1);
681 md2.mesh.vertexonboundary(md2.mesh.segments(:,1:2))=1;
682 else
683 %First do the connectivity for the contourenvelope in 2d
684 md2.mesh.vertexconnectivity=NodeConnectivity(md2.mesh.elements2d,md2.mesh.numberofvertices2d);
685 md2.mesh.elementconnectivity=ElementConnectivity(md2.mesh.elements2d,md2.mesh.vertexconnectivity);
686 segments=contourenvelope(md2.mesh);
687 md2.mesh.vertexonboundary=zeros(numberofvertices2/md2.mesh.numberoflayers,1);
688 md2.mesh.vertexonboundary(segments(:,1:2))=1;
689 md2.mesh.vertexonboundary=repmat(md2.mesh.vertexonboundary,md2.mesh.numberoflayers,1);
690 %Then do it for 3d as usual
691 md2.mesh.vertexconnectivity=NodeConnectivity(md2.mesh.elements,md2.mesh.numberofvertices);
692 md2.mesh.elementconnectivity=ElementConnectivity(md2.mesh.elements,md2.mesh.vertexconnectivity);
693 end
694
695 %Boundary conditions: Dirichlets on new boundary
696 %Catch the elements that have not been extracted
697 orphans_elem=find(~flag_elem);
698 orphans_node=unique(md1.mesh.elements(orphans_elem,:))';
699 %Figure out which node are on the boundary between md2 and md1
700 nodestoflag1=intersect(orphans_node,pos_node);
701 nodestoflag2=Pnode(nodestoflag1);
702 if numel(md1.stressbalance.spcvx)>1 & numel(md1.stressbalance.spcvy)>1 & numel(md1.stressbalance.spcvz)>1,
703 if numel(md1.inversion.vx_obs)>1 & numel(md1.inversion.vy_obs)>1
704 md2.stressbalance.spcvx(nodestoflag2)=md2.inversion.vx_obs(nodestoflag2);
705 md2.stressbalance.spcvy(nodestoflag2)=md2.inversion.vy_obs(nodestoflag2);
706 else
707 md2.stressbalance.spcvx(nodestoflag2)=NaN;
708 md2.stressbalance.spcvy(nodestoflag2)=NaN;
709 disp(' ')
710 disp('!! extract warning: spc values should be checked !!')
711 disp(' ')
712 end
713 %put 0 for vz
714 md2.stressbalance.spcvz(nodestoflag2)=0;
715 end
716 if ~isnan(md1.thermal.spctemperature),
717 md2.thermal.spctemperature(nodestoflag2,1)=1;
718 end
719
720 %Results fields
721 if isstruct(md1.results),
722 md2.results=struct();
723 solutionfields=fields(md1.results);
724 for i=1:length(solutionfields),
725 if isstruct(md1.results.(solutionfields{i}))
726 %get subfields
727 % loop over time steps
728 for p=1:length(md1.results.(solutionfields{i}))
729 current = md1.results.(solutionfields{i})(p);
730 solutionsubfields=fields(current);
731 for j=1:length(solutionsubfields),
732 field=md1.results.(solutionfields{i})(p).(solutionsubfields{j});
733 if length(field)==numberofvertices1,
734 md2.results.(solutionfields{i})(p).(solutionsubfields{j})=field(pos_node);
735 elseif length(field)==numberofelements1,
736 md2.results.(solutionfields{i})(p).(solutionsubfields{j})=field(pos_elem);
737 else
738 md2.results.(solutionfields{i})(p).(solutionsubfields{j})=field;
739 end
740 end
741 end
742 else
743 field=md1.results.(solutionfields{i});
744 if length(field)==numberofvertices1,
745 md2.results.(solutionfields{i})=field(pos_node);
746 elseif length(field)==numberofelements1,
747 md2.results.(solutionfields{i})=field(pos_elem);
748 else
749 md2.results.(solutionfields{i})=field;
750 end
751 end
752 end
753 end
754
755 %OutputDefinitions fields
756 for i=1:length(md1.outputdefinition.definitions),
757 if isobject(md1.outputdefinition.definitions{i})
758 %get subfields
759 solutionsubfields=fields(md1.outputdefinition.definitions{i});
760 for j=1:length(solutionsubfields),
761 field=md1.outputdefinition.definitions{i}.(solutionsubfields{j});
762 if length(field)==numberofvertices1,
763 md2.outputdefinition.definitions{i}.(solutionsubfields{j})=field(pos_node);
764 elseif length(field)==numberofelements1,
765 md2.outputdefinition.definitions{i}.(solutionsubfields{j})=field(pos_elem);
766 end
767 end
768 end
769 end
770
771 %Keep track of pos_node and pos_elem
772 md2.mesh.extractedvertices=pos_node;
773 md2.mesh.extractedelements=pos_elem;
774 end % }}}
775 function md = extrude(md,varargin) % {{{
776 %EXTRUDE - vertically extrude a 2d mesh
777 %
778 % vertically extrude a 2d mesh and create corresponding 3d mesh.
779 % The vertical distribution can:
780 % - follow a polynomial law
781 % - follow two polynomial laws, one for the lower part and one for the upper part of the mesh
782 % - be discribed by a list of coefficients (between 0 and 1)
783 %
784 %
785 % Usage:
786 % md=extrude(md,numlayers,extrusionexponent);
787 % md=extrude(md,numlayers,lowerexponent,upperexponent);
788 % md=extrude(md,listofcoefficients);
789 %
790 % Example:
791 % md=extrude(md,15,1.3);
792 % md=extrude(md,15,1.3,1.2);
793 % md=extrude(md,[0 0.2 0.5 0.7 0.9 0.95 1]);
794 %
795 % See also: MODELEXTRACT, COLLAPSE
796
797 %some checks on list of arguments
798 if ((nargin>4) | (nargin<2) | (nargout~=1)),
799 help extrude;
800 error('extrude error message');
801 end
802 if numel(md.geometry.base)~=md.mesh.numberofvertices || numel(md.geometry.surface)~=md.mesh.numberofvertices
803 error('model has not been parameterized yet: base and/or surface not set');
804 end
805
806 %Extrude the mesh
807 if nargin==2, %list of coefficients
808 clist=varargin{1};
809 if any(clist<0) | any(clist>1),
810 error('extrusioncoefficients must be between 0 and 1');
811 end
812 extrusionlist=sort(unique([clist(:);0;1]));
813 numlayers=length(extrusionlist);
814 elseif nargin==3, %one polynomial law
815 if varargin{2}<=0,
816 help extrude;
817 error('extrusionexponent must be >=0');
818 end
819 numlayers=varargin{1};
820 extrusionlist=((0:1:numlayers-1)/(numlayers-1)).^varargin{2};
821 elseif nargin==4, %two polynomial laws
822 numlayers=varargin{1};
823 lowerexp=varargin{2};
824 upperexp=varargin{3};
825
826 if varargin{2}<=0 | varargin{3}<=0,
827 help extrude;
828 error('lower and upper extrusionexponents must be >=0');
829 end
830
831 lowerextrusionlist=[(0:2/(numlayers-1):1).^lowerexp]/2;
832 upperextrusionlist=[(0:2/(numlayers-1):1).^upperexp]/2;
833 extrusionlist=sort(unique([lowerextrusionlist 1-upperextrusionlist]));
834
835 end
836
837 if numlayers<2,
838 error('number of layers should be at least 2');
839 end
840 if strcmp(md.mesh.domaintype(),'3D')
841 error('Cannot extrude a 3d mesh (extrude cannot be called more than once)');
842 end
843
844 %Initialize with the 2d mesh
845 mesh2d = md.mesh;
846 md.mesh=mesh3dprisms();
847 md.mesh.x = mesh2d.x;
848 md.mesh.y = mesh2d.y;
849 md.mesh.elements = mesh2d.elements;
850 md.mesh.numberofelements = mesh2d.numberofelements;
851 md.mesh.numberofvertices = mesh2d.numberofvertices;
852
853 md.mesh.lat = mesh2d.lat;
854 md.mesh.long = mesh2d.long;
855 md.mesh.epsg = mesh2d.epsg;
856 md.mesh.scale_factor = mesh2d.scale_factor;
857
858 md.mesh.vertexonboundary = mesh2d.vertexonboundary;
859 md.mesh.vertexconnectivity = mesh2d.vertexconnectivity;
860 md.mesh.elementconnectivity = mesh2d.elementconnectivity;
861 md.mesh.average_vertex_connectivity = mesh2d.average_vertex_connectivity;
862
863 md.mesh.extractedvertices = mesh2d.extractedvertices;
864 md.mesh.extractedelements = mesh2d.extractedelements;
865
866 x3d=[];
867 y3d=[];
868 z3d=[]; %the lower node is on the bed
869 thickness3d=md.geometry.thickness; %thickness and bed for these nodes
870 bed3d=md.geometry.base;
871
872 %Create the new layers
873 for i=1:numlayers,
874 x3d=[x3d; md.mesh.x];
875 y3d=[y3d; md.mesh.y];
876 %nodes are distributed between bed and surface accordingly to the given exponent
877 z3d=[z3d; bed3d+thickness3d*extrusionlist(i)];
878 end
879 number_nodes3d=size(x3d,1); %number of 3d nodes for the non extruded part of the mesh
880
881 %Extrude elements
882 elements3d=[];
883 for i=1:numlayers-1,
884 elements3d=[elements3d;[md.mesh.elements+(i-1)*md.mesh.numberofvertices md.mesh.elements+i*md.mesh.numberofvertices]]; %Create the elements of the 3d mesh for the non extruded part
885 end
886 number_el3d=size(elements3d,1); %number of 3d nodes for the non extruded part of the mesh
887
888 %Keep a trace of lower and upper nodes
889 lowervertex=NaN*ones(number_nodes3d,1);
890 uppervertex=NaN*ones(number_nodes3d,1);
891 lowervertex(md.mesh.numberofvertices+1:end)=1:(numlayers-1)*md.mesh.numberofvertices;
892 uppervertex(1:(numlayers-1)*md.mesh.numberofvertices)=md.mesh.numberofvertices+1:number_nodes3d;
893 md.mesh.lowervertex=lowervertex;
894 md.mesh.uppervertex=uppervertex;
895
896 %same for lower and upper elements
897 lowerelements=NaN*ones(number_el3d,1);
898 upperelements=NaN*ones(number_el3d,1);
899 lowerelements(md.mesh.numberofelements+1:end)=1:(numlayers-2)*md.mesh.numberofelements;
900 upperelements(1:(numlayers-2)*md.mesh.numberofelements)=md.mesh.numberofelements+1:(numlayers-1)*md.mesh.numberofelements;
901 md.mesh.lowerelements=lowerelements;
902 md.mesh.upperelements=upperelements;
903
904 %Save old mesh
905 md.mesh.x2d=md.mesh.x;
906 md.mesh.y2d=md.mesh.y;
907 md.mesh.elements2d=md.mesh.elements;
908 md.mesh.numberofelements2d=md.mesh.numberofelements;
909 md.mesh.numberofvertices2d=md.mesh.numberofvertices;
910
911 %Build global 3d mesh
912 md.mesh.elements=elements3d;
913 md.mesh.x=x3d;
914 md.mesh.y=y3d;
915 md.mesh.z=z3d;
916 md.mesh.numberofelements=number_el3d;
917 md.mesh.numberofvertices=number_nodes3d;
918 md.mesh.numberoflayers=numlayers;
919
920 %Ok, now deal with the other fields from the 2d mesh:
921
922 %bedinfo and surface info
923 md.mesh.vertexonbase=project3d(md,'vector',ones(md.mesh.numberofvertices2d,1),'type','node','layer',1);
924 md.mesh.vertexonsurface=project3d(md,'vector',ones(md.mesh.numberofvertices2d,1),'type','node','layer',md.mesh.numberoflayers);
925 md.mesh.vertexonboundary=project3d(md,'vector',md.mesh.vertexonboundary,'type','node');
926
927 %lat long
928 md.mesh.lat=project3d(md,'vector',md.mesh.lat,'type','node');
929 md.mesh.long=project3d(md,'vector',md.mesh.long,'type','node');
930 md.mesh.scale_factor=project3d(md,'vector',md.mesh.scale_factor,'type','node');
931
932 md.geometry=extrude(md.geometry,md);
933 md.friction = extrude(md.friction,md);
934 md.inversion = extrude(md.inversion,md);
935 md.smb = extrude(md.smb,md);
936 md.initialization = extrude(md.initialization,md);
937
938 md.flowequation=md.flowequation.extrude(md);
939 md.stressbalance=extrude(md.stressbalance,md);
940 md.thermal=md.thermal.extrude(md);
941 md.masstransport=md.masstransport.extrude(md);
942 md.levelset=extrude(md.levelset,md);
943 md.calving=extrude(md.calving,md);
944 md.frontalforcings=extrude(md.frontalforcings,md);
945 md.hydrology = extrude(md.hydrology,md);
946 md.solidearth = extrude(md.solidearth,md);
947 md.dsl = extrude(md.dsl,md);
948
949 %connectivity
950 if ~isnan(md.mesh.elementconnectivity)
951 md.mesh.elementconnectivity=repmat(md.mesh.elementconnectivity,numlayers-1,1);
952 md.mesh.elementconnectivity(find(md.mesh.elementconnectivity==0))=NaN;
953 for i=2:numlayers-1,
954 md.mesh.elementconnectivity((i-1)*md.mesh.numberofelements2d+1:(i)*md.mesh.numberofelements2d,:)...
955 =md.mesh.elementconnectivity((i-1)*md.mesh.numberofelements2d+1:(i)*md.mesh.numberofelements2d,:)+md.mesh.numberofelements2d;
956 end
957 md.mesh.elementconnectivity(find(isnan(md.mesh.elementconnectivity)))=0;
958 end
959
960 md.materials=extrude(md.materials,md);
961 md.damage=extrude(md.damage,md);
962 md.mask=extrude(md.mask,md);
963 md.qmu=extrude(md.qmu,md);
964 md.basalforcings=extrude(md.basalforcings,md);
965 md.outputdefinition=extrude(md.outputdefinition,md);
966
967 %increase connectivity if less than 25:
968 if md.mesh.average_vertex_connectivity<=25,
969 md.mesh.average_vertex_connectivity=100;
970 end
971 end % }}}
972 function md = structtomodel(md,structmd) % {{{
973
974 if ~isstruct(structmd) error('input model is not a structure'); end
975
976 %loaded model is a struct, initialize output and recover all fields
977 md = structtoobj(model,structmd);
978
979 %Old field now classes
980 if (isfield(structmd,'timestepping') & isnumeric(md.timestepping)), md.timestepping=timestepping(); end
981 if (isfield(structmd,'mask') & isnumeric(md.mask)),md.mask=mask(); end
982
983 %Field name change
984 if isfield(structmd,'drag'), md.friction.coefficient=structmd.drag; end
985 if isfield(structmd,'p'), md.friction.p=structmd.p; end
986 if isfield(structmd,'q'), md.friction.q=structmd.p; end
987 if isfield(structmd,'melting'), md.basalforcings.floatingice_melting_rate=structmd.melting; end
988 if isfield(structmd,'melting_rate'), md.basalforcings.floatingice_melting_rate=structmd.melting_rate; end
989 if isfield(structmd,'melting_rate'), md.basalforcings.groundedice_melting_rate=structmd.melting_rate; end
990 if isfield(structmd,'accumulation'), md.smb.mass_balance=structmd.accumulation; end
991 if isfield(structmd,'numberofgrids'), md.mesh.numberofvertices=structmd.numberofgrids; end
992 if isfield(structmd,'numberofgrids2d'), md.mesh.numberofvertices2d=structmd.numberofgrids2d; end
993 if isfield(structmd,'uppergrids'), md.mesh.uppervertex=structmd.uppergrids; end
994 if isfield(structmd,'lowergrids'), md.mesh.lowervertex=structmd.lowergrids; end
995 if isfield(structmd,'gridonbase'), md.mesh.vertexonbase=structmd.gridonbase; end
996 if isfield(structmd,'gridonsurface'), md.mesh.vertexonsurface=structmd.gridonsurface; end
997 if isfield(structmd,'extractedgrids'), md.mesh.extractedvertices=structmd.extractedgrids; end
998 if isfield(structmd,'gridonboundary'), md.mesh.vertexonboundary=structmd.gridonboundary; end
999 if isfield(structmd,'petscoptions') & ~isempty(structmd.petscoptions), md.toolkits=structmd.petscoptions; end
1000 if isfield(structmd,'g'), md.constants.g=structmd.g; end
1001 if isfield(structmd,'yts'), md.constants.yts=structmd.yts; end
1002 if isfield(structmd,'surface_mass_balance'), md.smb.mass_balance=structmd.surface_mass_balance; end
1003 if isfield(structmd,'basal_melting_rate'), md.basalforcings.floatingice_melting_rate=structmd.basal_melting_rate; end
1004 if isfield(structmd,'geothermalflux'), md.basalforcings.geothermalflux=structmd.geothermalflux; end
1005 if isfield(structmd,'drag'), md.friction.coefficient=structmd.drag; end
1006 if isfield(structmd,'drag_coefficient'), md.friction.coefficient=structmd.drag_coefficient; end
1007 if isfield(structmd,'drag_p'), md.friction.p=structmd.drag_p; end
1008 if isfield(structmd,'drag_q'), md.friction.q=structmd.drag_q; end
1009 if isfield(structmd,'riftproperties'), %old implementation
1010 md.rifts=rifts();
1011 md.rifts.riftproperties=structmd.riftproperties;
1012 md.rifts.riftstruct=structmd.rifts;
1013 md.rifts.riftproperties=structmd.riftinfo;
1014 end
1015 if isfield(structmd,'bamg'), md.private.bamg=structmd.bamg; end
1016 if isfield(structmd,'lowmem'), md.settings.lowmem=structmd.lowmem; end
1017 if isfield(structmd,'io_gather'), md.settings.io_gather=structmd.io_gather; end
1018 if isfield(structmd,'spcwatercolumn'), md.hydrology.spcwatercolumn=structmd.spcwatercolumn; end
1019 if isfield(structmd,'hydro_n'), md.hydrology.n=structmd.hydro_n; end
1020 if isfield(structmd,'hydro_p'), md.hydrology.p=structmd.hydro_p; end
1021 if isfield(structmd,'hydro_q'), md.hydrology.q=structmd.hydro_q; end
1022 if isfield(structmd,'hydro_CR'), md.hydrology.CR=structmd.hydro_CR; end
1023 if isfield(structmd,'hydro_kn'), md.hydrology.kn=structmd.hydro_kn; end
1024 if isfield(structmd,'spctemperature'), md.thermal.spctemperature=structmd.spctemperature; end
1025 if isfield(structmd,'min_thermal_constraints'), md.thermal.penalty_threshold=structmd.min_thermal_constraints; end
1026 if isfield(structmd,'artificial_diffusivity'), md.thermal.stabilization=structmd.artificial_diffusivity; end
1027 if isfield(structmd,'max_nonlinear_iterations'), md.thermal.maxiter=structmd.max_nonlinear_iterations; end
1028 if isfield(structmd,'stabilize_constraints'), md.thermal.penalty_lock=structmd.stabilize_constraints; end
1029 if isfield(structmd,'penalty_offset'), md.thermal.penalty_factor=structmd.penalty_offset; end
1030 if isfield(structmd,'name'), md.miscellaneous.name=structmd.name; end
1031 if isfield(structmd,'notes'), md.miscellaneous.notes=structmd.notes; end
1032 if isfield(structmd,'dummy'), md.miscellaneous.dummy=structmd.dummy; end
1033 if isfield(structmd,'dt'), md.timestepping.time_step=structmd.dt; end
1034 if isfield(structmd,'ndt'), md.timestepping.final_time=structmd.ndt; end
1035 if isfield(structmd,'time_adapt'), md.timestepping.time_adapt=structmd.time_adapt; end
1036 if isfield(structmd,'cfl_coefficient'), md.timestepping.cfl_coefficient=structmd.cfl_coefficient; end
1037 if isfield(structmd,'spcthickness'), md.masstransport.spcthickness=structmd.spcthickness; end
1038 if isfield(structmd,'artificial_diffusivity'), md.masstransport.stabilization=structmd.artificial_diffusivity; end
1039 if isfield(structmd,'hydrostatic_adjustment'), md.masstransport.hydrostatic_adjustment=structmd.hydrostatic_adjustment; end
1040 if isfield(structmd,'penalties'), md.masstransport.vertex_pairing=structmd.penalties; end
1041 if isfield(structmd,'penalty_offset'), md.masstransport.penalty_factor=structmd.penalty_offset; end
1042 if isfield(structmd,'B'), md.materials.rheology_B=structmd.B; end
1043 if isfield(structmd,'n'), md.materials.rheology_n=structmd.n; end
1044 if isfield(structmd,'rheology_B'), md.materials.rheology_B=structmd.rheology_B; end
1045 if isfield(structmd,'rheology_n'), md.materials.rheology_n=structmd.rheology_n; end
1046 if isfield(structmd,'rheology_Z'), md.damage.D=(1-structmd.rheology_Z); end
1047 if isfield(structmd,'spcthickness'), md.balancethickness.spcthickness=structmd.spcthickness; end
1048 if isfield(structmd,'artificial_diffusivity'), md.balancethickness.stabilization=structmd.artificial_diffusivity; end
1049 if isfield(structmd,'dhdt'), md.balancethickness.thickening_rate=structmd.dhdt; end
1050 if isfield(structmd,'isSIA'), md.flowequation.isSIA=structmd.isSIA; end
1051 if isfield(structmd,'isFS'), md.flowequation.isFS=structmd.isFS; end
1052 if isfield(structmd,'elements_type'), md.flowequation.element_equation=structmd.elements_type; end
1053 if isfield(structmd,'vertices_type'), md.flowequation.vertex_equation=structmd.vertices_type; end
1054 if isfield(structmd,'eps_rel'), md.steadystate.reltol=structmd.eps_rel; end
1055 if isfield(structmd,'max_steadystate_iterations'), md.steadystate.maxiter=structmd.max_steadystate_iterations; end
1056 if isfield(structmd,'isdiagnostic'), md.transient.isstressbalance=structmd.isdiagnostic; end
1057 if isfield(structmd,'isprognostic'), md.transient.ismasstransport=structmd.isprognostic; end
1058 if isfield(structmd,'isthermal'), md.transient.isthermal=structmd.isthermal; end
1059 if isfield(structmd,'control_analysis'), md.inversion.iscontrol=structmd.control_analysis; end
1060 if isfield(structmd,'weights'), md.inversion.cost_functions_coefficients=structmd.weights; end
1061 if isfield(structmd,'nsteps'), md.inversion.nsteps=structmd.nsteps; end
1062 if isfield(structmd,'maxiter_per_step'), md.inversion.maxiter_per_step=structmd.maxiter_per_step; end
1063 if isfield(structmd,'cm_min'), md.inversion.min_parameters=structmd.cm_min; end
1064 if isfield(structmd,'cm_max'), md.inversion.max_parameters=structmd.cm_max; end
1065 if isfield(structmd,'vx_obs'), md.inversion.vx_obs=structmd.vx_obs; end
1066 if isfield(structmd,'vy_obs'), md.inversion.vy_obs=structmd.vy_obs; end
1067 if isfield(structmd,'vel_obs'), md.inversion.vel_obs=structmd.vel_obs; end
1068 if isfield(structmd,'thickness_obs'), md.inversion.thickness_obs=structmd.thickness_obs; end
1069 if isfield(structmd,'vx'), md.initialization.vx=structmd.vx; end
1070 if isfield(structmd,'vy'), md.initialization.vy=structmd.vy; end
1071 if isfield(structmd,'vz'), md.initialization.vz=structmd.vz; end
1072 if isfield(structmd,'vel'), md.initialization.vel=structmd.vel; end
1073 if isfield(structmd,'pressure'), md.initialization.pressure=structmd.pressure; end
1074 if isfield(structmd,'temperature'), md.initialization.temperature=structmd.temperature; end
1075 if isfield(structmd,'waterfraction'), md.initialization.waterfraction=structmd.waterfraction; end
1076 if isfield(structmd,'watercolumn'), md.initialization.watercolumn=structmd.watercolumn; end
1077 if isfield(structmd,'surface'), md.geometry.surface=structmd.surface; end
1078 if isfield(structmd,'bed'), md.geometry.base=structmd.bed; end
1079 if isfield(structmd,'thickness'), md.geometry.thickness=structmd.thickness; end
1080 if isfield(structmd,'bathymetry'), md.geometry.bed=structmd.bathymetry; end
1081 if isfield(structmd,'thickness_coeff'), md.geometry.hydrostatic_ratio=structmd.thickness_coeff; end
1082 if isfield(structmd,'connectivity'), md.mesh.average_vertex_connectivity=structmd.connectivity; end
1083 if isfield(structmd,'extractednodes'), md.mesh.extractedvertices=structmd.extractednodes; end
1084 if isfield(structmd,'extractedelements'), md.mesh.extractedelements=structmd.extractedelements; end
1085 if isfield(structmd,'nodeonboundary'), md.mesh.vertexonboundary=structmd.nodeonboundary; end
1086 if isfield(structmd,'lat'), md.mesh.lat=structmd.lat; end
1087 if isfield(structmd,'long'), md.mesh.long=structmd.long; end
1088 if isfield(structmd,'scale_factor'), md.mesh.scale_factor=structmd.scale_factor; end
1089 if isfield(structmd,'segments'), md.mesh.segments=structmd.segments; end
1090 if isfield(structmd,'segmentmarkers'), md.mesh.segmentmarkers=structmd.segmentmarkers; end
1091 if isfield(structmd,'numlayers'), md.mesh.numberoflayers=structmd.numlayers; end
1092 if isfield(structmd,'numberofelements'), md.mesh.numberofelements=structmd.numberofelements; end
1093 if isfield(structmd,'numberofvertices'), md.mesh.numberofvertices=structmd.numberofvertices; end
1094 if isfield(structmd,'numberofnodes'), md.mesh.numberofvertices=structmd.numberofnodes; end
1095 if isfield(structmd,'numberofedges'), md.mesh.numberofedges=structmd.numberofedges; end
1096 if isfield(structmd,'numberofelements2d'), md.mesh.numberofelements2d=structmd.numberofelements2d; end
1097 if isfield(structmd,'numberofnodes2d'), md.mesh.numberofvertices2d=structmd.numberofnodes2d; end
1098 if isfield(structmd,'nodeconnectivity'), md.mesh.vertexconnectivity=structmd.nodeconnectivity; end
1099 if isfield(structmd,'elementconnectivity'), md.mesh.elementconnectivity=structmd.elementconnectivity; end
1100 if isfield(structmd,'uppernodes'), md.mesh.uppervertex=structmd.uppernodes; end
1101 if isfield(structmd,'lowernodes'), md.mesh.lowervertex=structmd.lowernodes; end
1102 if isfield(structmd,'upperelements'), md.mesh.upperelements=structmd.upperelements; end
1103 if isfield(structmd,'lowerelements'), md.mesh.lowerelements=structmd.lowerelements; end
1104 if isfield(structmd,'nodeonsurface'), md.mesh.vertexonsurface=structmd.nodeonsurface; end
1105 if isfield(structmd,'nodeonbase'), md.mesh.vertexonbase=structmd.nodeonbase; end
1106 if isfield(structmd,'elements2d'), md.mesh.elements2d=structmd.elements2d; end
1107 if isfield(structmd,'y2d'), md.mesh.y2d=structmd.y2d; end
1108 if isfield(structmd,'x2d'), md.mesh.x2d=structmd.x2d; end
1109 if isfield(structmd,'elements'), md.mesh.elements=structmd.elements; end
1110 if isfield(structmd,'edges'),
1111 md.mesh.edges=structmd.edges;
1112 md.mesh.edges(isnan(md.mesh.edges))=-1;
1113 end
1114 if isfield(structmd,'y'), md.mesh.y=structmd.y; end
1115 if isfield(structmd,'x'), md.mesh.x=structmd.x; end
1116 if isfield(structmd,'z'), md.mesh.z=structmd.z; end
1117 if isfield(structmd,'diagnostic_ref'), md.stressbalance.referential=structmd.diagnostic_ref; end
1118 if isfield(structmd,'npart'); md.qmu.numberofpartitions=structmd.npart; end
1119 if isfield(structmd,'part'); md.qmu.partition=structmd.part; end
1120
1121 if isnumeric(md.verbose),
1122 md.verbose=verbose;
1123 end
1124
1125 if isfield(structmd,'spcvelocity'),
1126 md.stressbalance.spcvx=NaN*ones(md.mesh.numberofvertices,1);
1127 md.stressbalance.spcvy=NaN*ones(md.mesh.numberofvertices,1);
1128 md.stressbalance.spcvz=NaN*ones(md.mesh.numberofvertices,1);
1129 pos=find(structmd.spcvelocity(:,1)); md.stressbalance.spcvx(pos)=structmd.spcvelocity(pos,4);
1130 pos=find(structmd.spcvelocity(:,2)); md.stressbalance.spcvy(pos)=structmd.spcvelocity(pos,5);
1131 pos=find(structmd.spcvelocity(:,3)); md.stressbalance.spcvz(pos)=structmd.spcvelocity(pos,6);
1132 end
1133 if isfield(structmd,'spcvx'),
1134 md.stressbalance.spcvx=NaN*ones(md.mesh.numberofvertices,1);
1135 pos=find(~isnan(structmd.spcvx)); md.stressbalance.spcvx(pos)=structmd.spcvx(pos);
1136 end
1137 if isfield(structmd,'spcvy'),
1138 md.stressbalance.spcvy=NaN*ones(md.mesh.numberofvertices,1);
1139 pos=find(~isnan(structmd.spcvy)); md.stressbalance.spcvy(pos)=structmd.spcvy(pos);
1140 end
1141 if isfield(structmd,'spcvz'),
1142 md.stressbalance.spcvz=NaN*ones(md.mesh.numberofvertices,1);
1143 pos=find(~isnan(structmd.spcvz)); md.stressbalance.spcvz(pos)=structmd.spcvz(pos);
1144 end
1145 if isfield(structmd,'pressureload'),
1146 if ~isempty(structmd.pressureload) & ismember(structmd.pressureload(end,end),[118 119 120]),
1147 pos=find(structmd.pressureload(:,end)==120); md.stressbalance.icefront(pos,end)=0;
1148 pos=find(structmd.pressureload(:,end)==118); md.stressbalance.icefront(pos,end)=1;
1149 pos=find(structmd.pressureload(:,end)==119); md.stressbalance.icefront(pos,end)=2;
1150 end
1151 end
1152 if isfield(structmd,'elements_type') & structmd.elements_type(end,end)>50,
1153 pos=find(structmd.elements_type==59); md.flowequation.element_equation(pos,end)=0;
1154 pos=find(structmd.elements_type==55); md.flowequation.element_equation(pos,end)=1;
1155 pos=find(structmd.elements_type==56); md.flowequation.element_equation(pos,end)=2;
1156 pos=find(structmd.elements_type==60); md.flowequation.element_equation(pos,end)=3;
1157 pos=find(structmd.elements_type==62); md.flowequation.element_equation(pos,end)=4;
1158 pos=find(structmd.elements_type==57); md.flowequation.element_equation(pos,end)=5;
1159 pos=find(structmd.elements_type==58); md.flowequation.element_equation(pos,end)=6;
1160 pos=find(structmd.elements_type==61); md.flowequation.element_equation(pos,end)=7;
1161 end
1162 if isfield(structmd,'vertices_type') & structmd.vertices_type(end,end)>50,
1163 pos=find(structmd.vertices_type==59); md.flowequation.vertex_equation(pos,end)=0;
1164 pos=find(structmd.vertices_type==55); md.flowequation.vertex_equation(pos,end)=1;
1165 pos=find(structmd.vertices_type==56); md.flowequation.vertex_equation(pos,end)=2;
1166 pos=find(structmd.vertices_type==60); md.flowequation.vertex_equation(pos,end)=3;
1167 pos=find(structmd.vertices_type==62); md.flowequation.vertex_equation(pos,end)=4;
1168 pos=find(structmd.vertices_type==57); md.flowequation.vertex_equation(pos,end)=5;
1169 pos=find(structmd.vertices_type==58); md.flowequation.vertex_equation(pos,end)=6;
1170 pos=find(structmd.vertices_type==61); md.flowequation.vertex_equation(pos,end)=7;
1171 end
1172 if isfield(structmd,'rheology_law') & isnumeric(structmd.rheology_law),
1173 if (structmd.rheology_law==272), md.materials.rheology_law='None'; end
1174 if (structmd.rheology_law==368), md.materials.rheology_law='Paterson'; end
1175 if (structmd.rheology_law==369), md.materials.rheology_law='Arrhenius'; end
1176 end
1177 if isfield(structmd,'groundingline_migration') & isnumeric(structmd.groundingline_migration),
1178 if (structmd.groundingline_migration==272), md.groundingline.migration='None'; end
1179 if (structmd.groundingline_migration==273), md.groundingline.migration='AggressiveMigration'; end
1180 if (structmd.groundingline_migration==274), md.groundingline.migration='SoftMigration'; end
1181 end
1182 if isfield(structmd,'control_type') & isnumeric(structmd.control_type),
1183 if (structmd.control_type==143), md.inversion.control_parameters={'FrictionCoefficient'}; end
1184 if (structmd.control_type==190), md.inversion.control_parameters={'RheologyBbar'}; end
1185 if (structmd.control_type==147), md.inversion.control_parameters={'Thickeningrate'}; end
1186 end
1187 if isfield(structmd,'cm_responses') & ismember(structmd.cm_responses(end,end),[165:170 383 388 389]),
1188 pos=find(structmd.cm_responses==166); md.inversion.cost_functions(pos)=101;
1189 pos=find(structmd.cm_responses==167); md.inversion.cost_functions(pos)=102;
1190 pos=find(structmd.cm_responses==168); md.inversion.cost_functions(pos)=103;
1191 pos=find(structmd.cm_responses==169); md.inversion.cost_functions(pos)=104;
1192 pos=find(structmd.cm_responses==170); md.inversion.cost_functions(pos)=105;
1193 pos=find(structmd.cm_responses==165); md.inversion.cost_functions(pos)=201;
1194 pos=find(structmd.cm_responses==389); md.inversion.cost_functions(pos)=501;
1195 pos=find(structmd.cm_responses==388); md.inversion.cost_functions(pos)=502;
1196 pos=find(structmd.cm_responses==382); md.inversion.cost_functions(pos)=503;
1197 end
1198
1199 if isfield(structmd,'artificial_diffusivity') & structmd.artificial_diffusivity==2,
1200 md.thermal.stabilization=2;
1201 md.masstransport.stabilization=1;
1202 md.balancethickness.stabilization=1;
1203 end
1204 if isnumeric(md.masstransport.hydrostatic_adjustment)
1205 if md.masstransport.hydrostatic_adjustment==269,
1206 md.masstransport.hydrostatic_adjustment='Incremental';
1207 else
1208 md.masstransport.hydrostatic_adjustment='Absolute';
1209 end
1210 end
1211
1212 %New fields
1213 if ~isfield(structmd,'upperelements') & isa(md.mesh,'mesh3dprisms')
1214 md.mesh.upperelements=transpose(1:md.mesh.numberofelements)+md.mesh.numberofelements2d;
1215 md.mesh.upperelements(end-md.mesh.numberofelements2d+1:end)=NaN;
1216 end
1217 if ~isfield(structmd,'lowerelements') & isa(md.mesh,'mesh3dprisms')
1218 md.mesh.lowerelements=transpose(1:md.mesh.numberofelements)-md.mesh.numberofelements2d;
1219 md.mesh.lowerelements(1:md.mesh.numberofelements2d)=NaN;
1220 end
1221 if ~isfield(structmd,'diagnostic_ref');
1222 md.stressbalance.referential=NaN*ones(md.mesh.numberofvertices,6);
1223 end
1224 if ~isfield(structmd,'loadingforce');
1225 md.stressbalance.loadingforce=0*ones(md.mesh.numberofvertices,3);
1226 end
1227
1228 %2013 August 9
1229 if isfield(structmd,'prognostic') & isa(structmd.prognostic,'prognostic'),
1230 disp('Recovering old prognostic class');
1231 md.masstransport=masstransport(structmd.prognostic);
1232 end
1233 %2013 August 9
1234 if isfield(structmd,'diagnostic') & (isa(structmd.diagnostic,'diagnostic') || isa(structmd.diagnostic,'stressbalance')),
1235 disp('Recovering old diagnostic class');
1236 md.stressbalance=stressbalance(structmd.diagnostic);
1237 end
1238 %2014 January 9th
1239 if isfield(structmd,'surfaceforcings') & isa(md.smb,'surfaceforcings'),
1240 disp('Recovering old surfaceforcings class');
1241 mass_balance=structmd.surfaceforcings.mass_balance;
1242 md.smb=SMB();
1243 md.smb.mass_balance=mass_balance;
1244 end
1245 %2015 September 10
1246 if isfield(structmd,'surfaceforcings') & isa(structmd.surfaceforcings,'SMB'),
1247 disp('Recovering old SMB class');
1248 md.smb=SMBforcing(structmd.surfaceforcings);
1249 end
1250 if isfield(structmd,'surfaceforcings') & isa(structmd.surfaceforcings,'SMBhenning'),
1251 disp('Recovering old SMBhenning class');
1252 md.smb=SMBhenning(structmd.surfaceforcings);
1253 end
1254 if isfield(structmd,'slr'),
1255 disp('Recovering old slr class');
1256 md.solidearth.sealevel=structmd.slr.sealevel;
1257 md.solidearth.planetradius=structmd.slr.planetradius;
1258 md.solidearth.requested_outputs=structmd.slr.requested_outputs;
1259 md.solidearth.transitions=structmd.slr.transitions;
1260
1261 md.solidearth.transitions=structmd.slr.transitions;
1262 md.solidearth.settings.reltol=structmd.slr.reltol;
1263 md.solidearth.settings.abstol=structmd.slr.abstol;
1264 md.solidearth.settings.maxiter=structmd.slr.maxiter;
1265 md.solidearth.settings.rigid=structmd.slr.rigid;
1266 md.solidearth.settings.elastic=structmd.slr.elastic;
1267 md.solidearth.settings.rotation=structmd.slr.rotation;
1268 md.solidearth.settings.runfrequency=structmd.slr.geodetic_run_frequency;
1269 md.solidearth.settings.computesealevelchange=structmd.slr.geodetic;
1270 md.solidearth.settings.degacc=structmd.slr.degacc;
1271 md.solidearth.settings.horiz=structmd.slr.horiz;
1272 md.solidearth.settings.ocean_area_scaling=structmd.slr.ocean_area_scaling;
1273
1274 md.solidearth.surfaceload.icethicknesschange=structmd.slr.deltathickness;
1275 md.solidearth.surfaceload.waterheightchange=structmd.slr.hydro_rate;
1276
1277 md.solidearth.lovenumbers.h=structmd.slr.love_h;
1278 md.solidearth.lovenumbers.k=structmd.slr.love_k;
1279 md.solidearth.lovenumbers.l=structmd.slr.love_l;
1280 md.solidearth.lovenumbers.th=structmd.slr.tide_love_h;
1281 md.solidearth.lovenumbers.tk=structmd.slr.tide_love_k;
1282 md.solidearth.lovenumbers.tk2secular=structmd.slr.fluid_love;
1283
1284 md.solidearth.rotational.equatorialmoi=structmd.slr.equatorial_moi;
1285 md.solidearth.rotational.polarmoi=structmd.slr.polar_moi;
1286 md.solidearth.rotational.angularvelocity=structmd.slr.angular_velocity;
1287 end
1288 end% }}}
1289 function md = setdefaultparameters(md) % {{{
1290
1291 %initialize subclasses
1292 md.mesh = mesh2d();
1293 md.mask = mask();
1294 md.constants = constants();
1295 md.geometry = geometry();
1296 md.initialization = initialization();
1297 md.smb = SMBforcing();
1298 md.basalforcings = basalforcings();
1299 md.friction = friction();
1300 md.rifts = rifts();
1301 md.solidearth = solidearth();
1302 md.dsl = dsl();
1303 md.timestepping = timestepping();
1304 md.groundingline = groundingline();
1305 md.materials = matice();
1306 md.damage = damage();
1307 md.flowequation = flowequation();
1308 md.debug = debug();
1309 md.verbose = verbose();
1310 md.settings = issmsettings();
1311 md.toolkits = toolkits();
1312 md.cluster = generic();
1313 md.balancethickness = balancethickness();
1314 md.stressbalance = stressbalance();
1315 md.hydrology = hydrologyshreve();
1316 md.masstransport = masstransport();
1317 md.thermal = thermal();
1318 md.steadystate = steadystate();
1319 md.transient = transient();
1320 md.levelset = levelset();
1321 md.calving = calving();
1322 md.frontalforcings = frontalforcings();
1323 md.gia = giamme();
1324 md.love = fourierlove();
1325 md.esa = esa();
1326 md.autodiff = autodiff();
1327 md.inversion = inversion();
1328 md.qmu = qmu();
1329 md.amr = amr();
1330 md.radaroverlay = radaroverlay();
1331 md.results = struct();
1332 md.outputdefinition = outputdefinition();
1333 md.miscellaneous = miscellaneous();
1334 md.private = private();
1335 end
1336 %}}}
1337 function md = tetras(md,varargin) % {{{
1338 %TETRAS - split 3d prismatic mesh into 3 tetrahedrons
1339 %
1340 % Usage:
1341 % md=tetra(md)
1342
1343 if ~isa(md.mesh,'mesh3dprisms')
1344 error('mesh is not a 3d prismatic mesh');
1345 end
1346
1347 %Initialize tetra mesh
1348 md.mesh=mesh3dtetras(md.mesh);
1349
1350 %Subdivision from Philipp Furnstahl (http://studierstube.icg.tugraz.at/thesis/fuernstahl_thesis.pdf)
1351 steiner = 0;
1352 nbv = md.mesh.numberofvertices;
1353 nbt = 3*md.mesh.numberofelements;
1354 elements = zeros(nbt,4);
1355 for i=1:md.mesh.numberofelements
1356 v1=md.mesh.elements(i,1); v2=md.mesh.elements(i,2); v3=md.mesh.elements(i,3);
1357 v4=md.mesh.elements(i,4); v5=md.mesh.elements(i,5); v6=md.mesh.elements(i,6);
1358 if(min(v2,v4)<min(v1,v5) & min(v1,v6)<min(v3,v4) & min(v3,v5)<min(v2,v6)),
1359 steiner = steiner+1; nbv = nbv+1; nbt = nbt+5; v7 = nbv;
1360 md.mesh.x=[md.mesh.x; mean(md.mesh.x(md.mesh.elements(i,:)))];
1361 md.mesh.y=[md.mesh.y; mean(md.mesh.y(md.mesh.elements(i,:)))];
1362 md.mesh.z=[md.mesh.z; mean(md.mesh.z(md.mesh.elements(i,:)))];
1363 elements(3*(i-1)+1,:) = [v1 v2 v3 v7];
1364 elements(3*(i-1)+2,:) = [v1 v2 v4 v7];
1365 elements(3*(i-1)+3,:) = [v2 v4 v5 v7];
1366 elements(end+1,:) = [v2 v3 v5 v7];
1367 elements(end+1,:) = [v3 v5 v6 v7];
1368 elements(end+1,:) = [v1 v3 v6 v7];
1369 elements(end+1,:) = [v1 v4 v6 v7];
1370 elements(end+1,:) = [v4 v5 v6 v7];
1371 elseif(min(v2,v4)<min(v1,v5) & min(v1,v6)<min(v3,v4) & min(v3,v5)>min(v2,v6)),
1372 elements(3*(i-1)+1,:) = [v1 v2 v4 v6];
1373 elements(3*(i-1)+2,:) = [v2 v4 v5 v6];
1374 elements(3*(i-1)+3,:) = [v1 v2 v3 v6];
1375 elseif(min(v2,v4)<min(v1,v5) & min(v1,v6)>min(v3,v4) & min(v3,v5)<min(v2,v6)),
1376 elements(3*(i-1)+1,:) = [v1 v2 v3 v4];
1377 elements(3*(i-1)+2,:) = [v2 v3 v4 v5];
1378 elements(3*(i-1)+3,:) = [v3 v4 v5 v6];
1379 elseif(min(v2,v4)<min(v1,v5) & min(v1,v6)>min(v3,v4) & min(v3,v5)>min(v2,v6)),
1380 elements(3*(i-1)+1,:) = [v1 v2 v3 v4];
1381 elements(3*(i-1)+2,:) = [v2 v4 v5 v6];
1382 elements(3*(i-1)+3,:) = [v2 v3 v4 v6];
1383 elseif(min(v2,v4)>min(v1,v5) & min(v1,v6)<min(v3,v4) & min(v3,v5)<min(v2,v6)),
1384 elements(3*(i-1)+1,:) = [v1 v4 v5 v6];
1385 elements(3*(i-1)+2,:) = [v1 v2 v3 v5];
1386 elements(3*(i-1)+3,:) = [v1 v3 v5 v6];
1387 elseif(min(v2,v4)>min(v1,v5) & min(v1,v6)<min(v3,v4) & min(v3,v5)>min(v2,v6)),
1388 elements(3*(i-1)+1,:) = [v1 v4 v5 v6];
1389 elements(3*(i-1)+2,:) = [v1 v2 v5 v6];
1390 elements(3*(i-1)+3,:) = [v1 v2 v3 v6];
1391 elseif(min(v2,v4)>min(v1,v5) & min(v1,v6)>min(v3,v4) & min(v3,v5)<min(v2,v6)),
1392 elements(3*(i-1)+1,:) = [v1 v3 v4 v5];
1393 elements(3*(i-1)+2,:) = [v1 v2 v3 v5];
1394 elements(3*(i-1)+3,:) = [v3 v4 v5 v6];
1395 elseif(min(v2,v4)>min(v1,v5) & min(v1,v6)<min(v3,v4) & min(v3,v5)<min(v2,v6)),
1396 elements(3*(i-1)+1,:) = [v1 v5 v6 v4];
1397 elements(3*(i-1)+2,:) = [v1 v2 v3 v5];
1398 elements(3*(i-1)+3,:) = [v5 v6 v3 v1];
1399 elseif(min(v2,v4)>min(v1,v5) & min(v1,v6)>min(v3,v4) & min(v3,v5)>min(v2,v6)),
1400 steiner = steiner+1; nbv = nbv+1; nbt = nbt+5; v7 = nbv;
1401 md.mesh.x=[md.mesh.x; mean(md.mesh.x(md.mesh.elements(i,:)))];
1402 md.mesh.y=[md.mesh.y; mean(md.mesh.y(md.mesh.elements(i,:)))];
1403 md.mesh.z=[md.mesh.z; mean(md.mesh.z(md.mesh.elements(i,:)))];
1404 elements(3*(i-1)+1,:) = [v1 v2 v3 v7];
1405 elements(3*(i-1)+2,:) = [v1 v4 v5 v7];
1406 elements(3*(i-1)+3,:) = [v1 v2 v5 v7];
1407 elements(end+1,:) = [v2 v5 v6 v7];
1408 elements(end+1,:) = [v2 v3 v6 v7];
1409 elements(end+1,:) = [v3 v4 v6 v7];
1410 elements(end+1,:) = [v1 v3 v4 v7];
1411 elements(end+1,:) = [v4 v5 v6 v7];
1412 else
1413 error('Case not supported'); %not supposed to happen!
1414 end
1415 %Reorder elements to make sure they are direct
1416 for j=1:3
1417 element = elements(3*(i-1)+j,:);
1418 matrix = [md.mesh.x(element), md.mesh.y(element), md.mesh.z(element), ones(4,1)];
1419 if det(matrix)>0,
1420 elements(3*(i-1)+j,1)=element(2);
1421 elements(3*(i-1)+j,2)=element(1);
1422 end
1423 end
1424 end
1425 %%Split in 3 tetras
1426 %subelement1 = [1 2 3 5];
1427 %subelement2 = [4 6 5 1];
1428 %subelement3 = [5 6 3 1];
1429 %elements=[md.mesh.elements(:,subelement1);md.mesh.elements(:,subelement2);md.mesh.elements(:,subelement3)];
1430 if steiner==0,
1431 disp('No Steiner point required to split prismatic mesh into tets');
1432 else
1433 disp([num2str(steiner) ' Steiner points had to be included'])
1434 error('Steiner point not supported yet');
1435 end
1436
1437 pos_elements = repmat([1:md.mesh.numberofelements]',3,1);
1438
1439 md.mesh.elements=elements;
1440 md.mesh.numberofelements=size(elements,1);
1441
1442 %p and q (same deal, except for element that are on the bedrock: )
1443 if ~isnan(md.friction.p),
1444 md.friction.p=md.friction.p(pos_elements);
1445 md.friction.q=md.friction.q(pos_elements);
1446 end
1447
1448 %elementstype
1449 if ~isnan(md.flowequation.element_equation)
1450 oldelements_type=md.flowequation.element_equation;
1451 md.flowequation.element_equation=md.flowequation.element_equation(pos_elements);
1452 end
1453
1454 %connectivity
1455 md.mesh.elementconnectivity=NaN;
1456
1457 %materials
1458 if ~isnan(md.materials.rheology_n),
1459 md.materials.rheology_n=md.materials.rheology_n(pos_elements);
1460 end
1461
1462 %increase connectivity if less than 25:
1463 if md.mesh.average_vertex_connectivity<=25,
1464 md.mesh.average_vertex_connectivity=100;
1465 end
1466 end % }}}
1467 function disp(self) % {{{
1468 disp(sprintf('%19s: %-22s -- %s','mesh' ,['[1x1 ' class(self.mesh) ']'],'mesh properties'));
1469 disp(sprintf('%19s: %-22s -- %s','mask' ,['[1x1 ' class(self.mask) ']'],'defines grounded and floating elements'));
1470 disp(sprintf('%19s: %-22s -- %s','geometry' ,['[1x1 ' class(self.geometry) ']'],'surface elevation, bedrock topography, ice thickness,...'));
1471 disp(sprintf('%19s: %-22s -- %s','constants' ,['[1x1 ' class(self.constants) ']'],'physical constants'));
1472 disp(sprintf('%19s: %-22s -- %s','smb' ,['[1x1 ' class(self.smb) ']'],'surface mass balance'));
1473 disp(sprintf('%19s: %-22s -- %s','basalforcings' ,['[1x1 ' class(self.basalforcings) ']'],'bed forcings'));
1474 disp(sprintf('%19s: %-22s -- %s','materials' ,['[1x1 ' class(self.materials) ']'],'material properties'));
1475 disp(sprintf('%19s: %-22s -- %s','damage' ,['[1x1 ' class(self.damage) ']'],'parameters for damage evolution solution'));
1476 disp(sprintf('%19s: %-22s -- %s','friction' ,['[1x1 ' class(self.friction) ']'],'basal friction/drag properties'));
1477 disp(sprintf('%19s: %-22s -- %s','flowequation' ,['[1x1 ' class(self.flowequation) ']'],'flow equations'));
1478 disp(sprintf('%19s: %-22s -- %s','timestepping' ,['[1x1 ' class(self.timestepping) ']'],'time stepping for transient models'));
1479 disp(sprintf('%19s: %-22s -- %s','initialization' ,['[1x1 ' class(self.initialization) ']'],'initial guess/state'));
1480 disp(sprintf('%19s: %-22s -- %s','rifts' ,['[1x1 ' class(self.rifts) ']'],'rifts properties'));
1481 disp(sprintf('%19s: %-22s -- %s','solidearth' ,['[1x1 ' class(self.solidearth) ']'],'solidearth inputs and settings'));
1482 disp(sprintf('%19s: %-22s -- %s','dsl' ,['[1x1 ' class(self.dsl) ']'],'dynamic sea-level '));
1483 disp(sprintf('%19s: %-22s -- %s','debug' ,['[1x1 ' class(self.debug) ']'],'debugging tools (valgrind, gprof)'));
1484 disp(sprintf('%19s: %-22s -- %s','verbose' ,['[1x1 ' class(self.verbose) ']'],'verbosity level in solve'));
1485 disp(sprintf('%19s: %-22s -- %s','settings' ,['[1x1 ' class(self.settings) ']'],'settings properties'));
1486 disp(sprintf('%19s: %-22s -- %s','toolkits' ,['[1x1 ' class(self.toolkits) ']'],'PETSc options for each solution'));
1487 disp(sprintf('%19s: %-22s -- %s','cluster' ,['[1x1 ' class(self.cluster) ']'],'cluster parameters (number of cpus...)'));
1488 disp(sprintf('%19s: %-22s -- %s','balancethickness',['[1x1 ' class(self.balancethickness) ']'],'parameters for balancethickness solution'));
1489 disp(sprintf('%19s: %-22s -- %s','stressbalance' ,['[1x1 ' class(self.stressbalance) ']'],'parameters for stressbalance solution'));
1490 disp(sprintf('%19s: %-22s -- %s','groundingline' ,['[1x1 ' class(self.groundingline) ']'],'parameters for groundingline solution'));
1491 disp(sprintf('%19s: %-22s -- %s','hydrology' ,['[1x1 ' class(self.hydrology) ']'],'parameters for hydrology solution'));
1492 disp(sprintf('%19s: %-22s -- %s','masstransport' ,['[1x1 ' class(self.masstransport) ']'],'parameters for masstransport solution'));
1493 disp(sprintf('%19s: %-22s -- %s','thermal' ,['[1x1 ' class(self.thermal) ']'],'parameters for thermal solution'));
1494 disp(sprintf('%19s: %-22s -- %s','steadystate' ,['[1x1 ' class(self.steadystate) ']'],'parameters for steadystate solution'));
1495 disp(sprintf('%19s: %-22s -- %s','transient' ,['[1x1 ' class(self.transient) ']'],'parameters for transient solution'));
1496 disp(sprintf('%19s: %-22s -- %s','levelset' ,['[1x1 ' class(self.levelset) ']'],'parameters for moving boundaries (level-set method)'));
1497 disp(sprintf('%19s: %-22s -- %s','calving' ,['[1x1 ' class(self.calving) ']'],'parameters for calving'));
1498 disp(sprintf('%19s: %-22s -- %s','frontalforcings' ,['[1x1 ' class(self.frontalforcings) ']'],'parameters for frontalforcings'));
1499 disp(sprintf('%19s: %-22s -- %s','gia' ,['[1x1 ' class(self.gia) ']'],'parameters for gia solution'));
1500 disp(sprintf('%19s: %-22s -- %s','esa' ,['[1x1 ' class(self.esa) ']'],'parameters for elastic adjustment solution'));
1501 disp(sprintf('%19s: %-22s -- %s','love' ,['[1x1 ' class(self.love) ']'],'parameters for love solution'));
1502 disp(sprintf('%19s: %-22s -- %s','autodiff' ,['[1x1 ' class(self.autodiff) ']'],'automatic differentiation parameters'));
1503 disp(sprintf('%19s: %-22s -- %s','inversion' ,['[1x1 ' class(self.inversion) ']'],'parameters for inverse methods'));
1504 disp(sprintf('%19s: %-22s -- %s','qmu' ,['[1x1 ' class(self.qmu) ']'],'dakota properties'));
1505 disp(sprintf('%19s: %-22s -- %s','amr' ,['[1x1 ' class(self.amr) ']'],'adaptive mesh refinement properties'));
1506 disp(sprintf('%19s: %-22s -- %s','outputdefinition',['[1x1 ' class(self.outputdefinition) ']'],'output definition'));
1507 disp(sprintf('%19s: %-22s -- %s','results' ,['[1x1 ' class(self.results) ']'],'model results'));
1508 disp(sprintf('%19s: %-22s -- %s','radaroverlay' ,['[1x1 ' class(self.radaroverlay) ']'],'radar image for plot overlay'));
1509 disp(sprintf('%19s: %-22s -- %s','miscellaneous' ,['[1x1 ' class(self.miscellaneous) ']'],'miscellaneous fields'));
1510 end % }}}
1511 function memory(self) % {{{
1512
1513 disp(sprintf('\nMemory imprint:\n'));
1514
1515 fields=properties('model');
1516 mem=0;
1517
1518 for i=1:length(fields),
1519 field=self.(fields{i});
1520 s=whos('field');
1521 mem=mem+s.bytes/1e6;
1522 disp(sprintf('%19s: %6.2f Mb',fields{i},s.bytes/1e6));
1523 end
1524 disp(sprintf('%19s--%10s','--------------','--------------'));
1525 disp(sprintf('%19s: %g Mb','Total',mem));
1526 end % }}}
1527 function netcdf(self,filename) % {{{
1528 %NETCDF - save model as netcdf
1529 %
1530 % Usage:
1531 % netcdf(md,filename)
1532 %
1533 % Example:
1534 % netcdf(md,'model.nc');
1535
1536 disp('Saving model as NetCDF');
1537 %1. Create NetCDF file
1538 ncid=netcdf.create(filename,'CLOBBER');
1539 netcdf.putAtt(ncid,netcdf.getConstant('NC_GLOBAL'),'Conventions','CF-1.4');
1540 netcdf.putAtt(ncid,netcdf.getConstant('NC_GLOBAL'),'Title',['ISSM model (' self.miscellaneous.name ')']);
1541 netcdf.putAtt(ncid,netcdf.getConstant('NC_GLOBAL'),'Author',getenv('USER'));
1542 netcdf.putAtt(ncid,netcdf.getConstant('NC_GLOBAL'),'Date',datestr(now));
1543
1544 %Preallocate variable id, needed to write variables in netcdf file
1545 var_id=zeros(1000,1);%preallocate
1546
1547 for step=1:2,
1548 counter=0;
1549 [var_id,counter]=structtonc(ncid,'md',self,0,var_id,counter,step);
1550 if step==1, netcdf.endDef(ncid); end
1551 end
1552
1553 if counter>1000,
1554 warning(['preallocation of var_id need to be updated from ' num2str(1000) ' to ' num2str(counter)]);
1555 end
1556
1557 netcdf.close(ncid)
1558 end % }}}
1559 function xylim(self) % {{{
1560
1561 xlim([min(self.mesh.x) max(self.mesh.x)]);
1562 ylim([min(self.mesh.y) max(self.mesh.y)])
1563 end % }}}
1564 function md=upload(md) % {{{
1565 %the goal of this routine is to upload the model onto a server, and to empty it.
1566 %So first, save the model with a unique name and upload the file to the server:
1567 random_part=fix(rand(1)*10000);
1568 id=[md.miscellaneous.name '-' regexprep(datestr(now),'[^\w'']','') '-' num2str(random_part) '-' getenv('USER') '-' oshostname() '.upload'];
1569 eval(['save ' id ' md']);
1570
1571 %Now, upload the file:
1572 issmscpout(md.settings.upload_server,md.settings.upload_path,md.settings.upload_login,md.settings.upload_port,{id},1);
1573
1574 %Now, empty this model of everything except settings, and record name of file we just uploaded!
1575 settings_back=md.settings;
1576 md=model();
1577 md.settings=settings_back;
1578 md.settings.upload_filename=id;
1579
1580 %get locally rid of file that was uploaded
1581 eval(['delete ' id]);
1582
1583 end % }}}
1584 function md=download(md) % {{{
1585
1586 %the goal of this routine is to download the internals of the current model from a server, because
1587 %this model is empty, except for the settings which tell us where to go and find this model!
1588
1589 %Download the file:
1590 issmscpin(md.settings.upload_server, md.settings.upload_login, md.settings.upload_port, md.settings.upload_path, {md.settings.upload_filename});
1591
1592 name=md.settings.upload_filename;
1593
1594 %Now, load this model:
1595 md=loadmodel(md.settings.upload_filename);
1596
1597 %get locally rid of file that was downloaded
1598 eval(['delete ' name]);
1599
1600 end % }}}
1601 function savemodeljs(md,modelname,websiteroot,varargin) % {{{
1602
1603 %the goal of this routine is to save the model as a javascript array that can be included in any html
1604 %file:
1605
1606 options=pairoptions(varargin{:});
1607 optimization=getfieldvalue(options,'optimize',0);
1608
1609
1610 %disp:
1611 disp(['saving model ''' modelname ''' in file ' websiteroot '/js/' modelname '.js']);
1612
1613 %open file for writing and declare the model:
1614 fid=fopen([websiteroot '/js/' modelname '.js'],'w');
1615 fprintf(fid,'var %s=new model();\n',modelname);
1616
1617 %now go through all the classes and fwrite all the corresponding fields:
1618
1619 fields=properties('model');
1620 for i=1:length(fields),
1621 field=fields{i};
1622
1623 %Some properties do not need to be saved
1624 if ismember(field,{'results','cluster' }),
1625 continue;
1626 end
1627
1628 %some optimization:
1629 if optimization==1,
1630 %optimize for plotting only:
1631 if ~ismember(field,{'geometry','mesh','mask'}),
1632 continue;
1633 end
1634 end
1635
1636 %Check that current field is an object
1637 if ~isobject(md.(field))
1638 error(['field ''' char(field) ''' is not an object']);
1639 end
1640
1641 %savemodeljs for current object
1642 %disp(['javascript saving ' field '...']);
1643 savemodeljs(md.(field),fid,modelname);
1644 end
1645
1646 %done, close file:
1647 fclose(fid);
1648 end
1649 end
1650 end
Note: See TracBrowser for help on using the repository browser.