source: issm/trunk-jpl/src/m/classes/model.m@ 19124

Last change on this file since 19124 was 19124, checked in by Mathieu Morlighem, 10 years ago

CHG: upperelements and lowerelements are only for 3d prisms

File size: 61.9 KB
Line 
1%MODEL class definition
2%
3% Usage:
4% md = model(varargin)
5
6classdef model
7 properties (SetAccess=public) %Model fields
8 % {{{
9 %Careful here: no other class should be used as default value this is a bug of matlab
10 mesh = 0;
11 mask = 0;
12
13 geometry = 0;
14 constants = 0;
15 surfaceforcings = 0;
16 basalforcings = 0;
17 materials = 0;
18 damage = 0;
19 friction = 0;
20 flowequation = 0;
21 timestepping = 0;
22 initialization = 0;
23 rifts = 0;
24
25 debug = 0;
26 verbose = 0;
27 settings = 0;
28 toolkits = 0;
29 cluster = 0;
30
31 balancethickness = 0;
32 stressbalance = 0;
33 groundingline = 0;
34 hydrology = 0;
35 masstransport = 0;
36 thermal = 0;
37 steadystate = 0;
38 transient = 0;
39 calving = 0;
40 gia = 0;
41
42 autodiff = 0;
43 flaim = 0;
44 inversion = 0;
45 qmu = 0;
46
47 results = 0;
48 outputdefinition = 0;
49 radaroverlay = 0;
50 miscellaneous = 0;
51 private = 0;
52
53 %}}}
54 end
55 methods (Static)
56 function md = loadobj(md) % {{{
57 % This function is directly called by matlab when a model object is
58 % loaded. If the input is a struct it is an old version of model and
59 % old fields must be recovered (make sure they are in the deprecated
60 % model properties)
61
62 if verLessThan('matlab','7.9'),
63 disp('Warning: your matlab version is old and there is a risk that load does not work correctly');
64 disp(' if the model is not loaded correctly, rename temporarily loadobj so that matlab does not use it');
65
66 % This is a Matlab bug: all the fields of md have their default value
67 % Example of error message:
68 % Warning: Error loading an object of class 'model':
69 % Undefined function or method 'exist' for input arguments of type 'cell'
70 %
71 % This has been fixed in MATLAB 7.9 (R2009b) and later versions
72 end
73
74 if isstruct(md)
75 disp('Recovering model object from a previous version');
76 md = structtomodel(model,md);
77 end
78
79 %2012 August 4th
80 if isa(md.materials,'materials'),
81 disp('Recovering old materials');
82 if numel(md.materials.rheology_Z)==1 & isnan(md.materials.rheology_Z),
83 md.materials=matice(md.materials);
84 else
85 md.materials=matdamageice(md.materials);
86 end
87 end
88 %2013 April 12
89 if numel(md.stressbalance.loadingforce==1)
90 md.stressbalance.loadingforce=0*ones(md.mesh.numberofvertices,3);
91 end
92 %2013 April 17
93 if isa(md.hydrology,'hydrology'),
94 disp('Recovering old hydrology class');
95 md.hydrology=hydrologyshreve(md.materials);
96 end
97 %2013 October 9
98 if ~isa(md.damage,'damage'),
99 md.damage=damage();
100 md.damage.D=zeros(md.mesh.numberofvertices,1);
101 md.damage.spcdamage=NaN*ones(md.mesh.numberofvertices,1);
102 end
103 %2013 November 18
104 if ~isa(md.outputdefinition,'outputdefinition'),
105 md.outputdefinition=outputdefinition();
106 end
107 %2014 January 9th
108 if isa(md.surfaceforcings,'surfaceforcings'),
109 disp('Recovering old surfaceforcings class');
110 mass_balance=md.surfaceforcings.mass_balance;
111 md.surfaceforcings=SMB();
112 md.surfaceforcings.mass_balance=mass_balance;
113 end
114 %2014 March 26th
115 if isa(md.mesh,'mesh'),
116 disp('Recovering old mesh class');
117 if isprop(md.mesh,'dimension'),
118 if md.mesh.dimension==2,
119 md.mesh=mesh2d(md.mesh);
120 else
121 md.mesh=mesh3dprisms(md.mesh);
122 end
123 else
124 md.mesh=mesh2dvertical(md.mesh);
125 end
126 end
127 %2014 November 12
128 if isa(md.calving,'double');
129 md.calving=calving();
130 end
131 end% }}}
132 end
133 methods
134 function md = model(varargin) % {{{
135
136 switch nargin
137 case 0
138 md=setdefaultparameters(md);
139 case 1
140 error('model constructor not supported yet');
141
142 otherwise
143 error('model constructor error message: 0 of 1 argument only in input.');
144 end
145 end
146 %}}}
147 function md = checkmessage(md,string) % {{{
148 if(nargout~=1) error('wrong usage, model must be an output'); end
149 disp(['model not consistent: ' string]);
150 md.private.isconsistent=false;
151 end
152 %}}}
153 function md = collapse(md)% {{{
154 %COLLAPSE - collapses a 3d mesh into a 2d mesh
155 %
156 % This routine collapses a 3d model into a 2d model
157 % and collapses all the fileds of the 3d model by
158 % taking their depth-averaged values
159 %
160 % Usage:
161 % md=collapse(md)
162 %
163 % See also: EXTRUDE, MODELEXTRACT
164
165 %Check that the model is really a 3d model
166 if ~strcmp(md.mesh.elementtype(),'Penta'),
167 error('collapse error message: only 3d mesh can be collapsed')
168 end
169
170 %Start with changing all the fields from the 3d mesh
171
172 %dealing with the friciton law
173 %drag is limited to nodes that are on the bedrock.
174 if isa(md.friction,'friction'),
175 md.friction.coefficient=project2d(md,md.friction.coefficient,1);
176 md.friction.p=project2d(md,md.friction.p,1);
177 md.friction.q=project2d(md,md.friction.q,1);
178 elseif isa(md.friction,'frictionhydro'),
179 md.friction.q=project2d(md,md.friction.q,1);
180 md.friction.C=project2d(md,md.friction.C,1);
181 md.friction.As=project2d(md,md.friction.As,1);
182 md.friction.effective_pressure=project2d(md,md.friction.effective_pressure,1);
183 elseif isa(md.friction,'frictionwaterlayer'),
184 md.friction.coefficient=project2d(md,md.friction.coefficient,1);
185 md.friction.p=project2d(md,md.friction.p,1);
186 md.friction.q=project2d(md,md.friction.q,1);
187 md.friction.water_layer=project2d(md,md.friction.water_layer,1);
188 elseif isa(md.friction,'frictionweertman'),
189 md.friction.C=project2d(md,md.friction.C,1);
190 md.friction.m=project2d(md,md.friction.m,1);
191 end
192
193 %observations
194 if ~isnan(md.inversion.vx_obs), md.inversion.vx_obs=project2d(md,md.inversion.vx_obs,md.mesh.numberoflayers); end;
195 if ~isnan(md.inversion.vy_obs), md.inversion.vy_obs=project2d(md,md.inversion.vy_obs,md.mesh.numberoflayers); end;
196 if ~isnan(md.inversion.vel_obs), md.inversion.vel_obs=project2d(md,md.inversion.vel_obs,md.mesh.numberoflayers); end;
197 if ~isnan(md.inversion.cost_functions_coefficients), md.inversion.cost_functions_coefficients=project2d(md,md.inversion.cost_functions_coefficients,md.mesh.numberoflayers); end;
198 if numel(md.inversion.min_parameters)>1, md.inversion.min_parameters=project2d(md,md.inversion.min_parameters,md.mesh.numberoflayers); end;
199 if numel(md.inversion.max_parameters)>1, md.inversion.max_parameters=project2d(md,md.inversion.max_parameters,md.mesh.numberoflayers); end;
200 if isa(md.surfaceforcings,'SMB') & ~isnan(md.surfaceforcings.mass_balance),
201 md.surfaceforcings.mass_balance=project2d(md,md.surfaceforcings.mass_balance,md.mesh.numberoflayers);
202 elseif isa(md.surfaceforcings,'SMBhenning') & ~isnan(md.surfaceforcings.smbref),
203 md.surfaceforcings.smbref=project2d(md,md.surfaceforcings.smbref,md.mesh.numberoflayers);
204 end;
205 if ~isnan(md.balancethickness.thickening_rate), md.balancethickness.thickening_rate=project2d(md,md.balancethickness.thickening_rate,md.mesh.numberoflayers); end;
206
207 %results
208 if ~isnan(md.initialization.vx),md.initialization.vx=DepthAverage(md,md.initialization.vx);end;
209 if ~isnan(md.initialization.vy),md.initialization.vy=DepthAverage(md,md.initialization.vy);end;
210 if ~isnan(md.initialization.vz),md.initialization.vz=DepthAverage(md,md.initialization.vz);end;
211 if ~isnan(md.initialization.vel),md.initialization.vel=DepthAverage(md,md.initialization.vel);end;
212 if ~isnan(md.initialization.temperature),md.initialization.temperature=DepthAverage(md,md.initialization.temperature);end;
213 if ~isnan(md.initialization.pressure),md.initialization.pressure=project2d(md,md.initialization.pressure,1);end;
214 if ~isnan(md.initialization.sediment_head),md.initialization.sediment_head=project2d(md,md.initialization.sediment_head,1);end;
215 if ~isnan(md.initialization.epl_head),md.initialization.epl_head=project2d(md,md.initialization.epl_head,1);end;
216 if ~isnan(md.initialization.epl_thickness),md.initialization.epl_thickness=project2d(md,md.initialization.epl_thickness,1);end;
217 %gia
218 if ~isnan(md.gia.mantle_viscosity), md.gia.mantle_viscosity=project2d(md,md.gia.mantle_viscosity,1); end
219 if ~isnan(md.gia.lithosphere_thickness), md.gia.lithosphere_thickness=project2d(md,md.gia.lithosphere_thickness,1); end
220
221 %elementstype
222 if ~isnan(md.flowequation.element_equation)
223 md.flowequation.element_equation=project2d(md,md.flowequation.element_equation,1);
224 md.flowequation.vertex_equation=project2d(md,md.flowequation.vertex_equation,1);
225 md.flowequation.borderSSA=project2d(md,md.flowequation.borderSSA,1);
226 md.flowequation.borderHO=project2d(md,md.flowequation.borderHO,1);
227 md.flowequation.borderFS=project2d(md,md.flowequation.borderFS,1);
228 end
229
230 %boundary conditions
231 md.stressbalance.spcvx=project2d(md,md.stressbalance.spcvx,md.mesh.numberoflayers);
232 md.stressbalance.spcvy=project2d(md,md.stressbalance.spcvy,md.mesh.numberoflayers);
233 md.stressbalance.spcvz=project2d(md,md.stressbalance.spcvz,md.mesh.numberoflayers);
234 md.stressbalance.referential=project2d(md,md.stressbalance.referential,md.mesh.numberoflayers);
235 md.stressbalance.loadingforce=project2d(md,md.stressbalance.loadingforce,md.mesh.numberoflayers);
236 md.masstransport.spcthickness=project2d(md,md.masstransport.spcthickness,md.mesh.numberoflayers);
237 if ~isnan(md.damage.spcdamage), md.damage.spcdamage=project2d(md,md.damage.spcdamage,md.mesh.numberoflayers); end
238 md.thermal.spctemperature=project2d(md,md.thermal.spctemperature,md.mesh.numberoflayers);
239
240 % Hydrologydc variables
241 if isa(md.hydrology,'hydrologydc');
242 md.hydrology.spcsediment_head=project2d(md,md.hydrology.spcsediment_head,1);
243 md.hydrology.mask_eplactive_node=project2d(md,md.hydrology.mask_eplactive_node,1);
244 md.hydrology.sediment_transmitivity=project2d(md,md.hydrology.sediment_transmitivity,1);
245 md.hydrology.basal_moulin_input=project2d(md,md.hydrology.basal_moulin_input,1);
246 if(md.hydrology.isefficientlayer==1)
247 md.hydrology.spcepl_head=project2d(md,md.hydrology.spcepl_head,1);
248 end
249 end
250
251 %materials
252 md.materials.rheology_B=DepthAverage(md,md.materials.rheology_B);
253 md.materials.rheology_n=project2d(md,md.materials.rheology_n,1);
254
255 %damage:
256 if md.damage.isdamage,
257 md.damage.D=DepthAverage(md,md.damage.D);
258 end
259
260 %special for thermal modeling:
261 if ~isnan(md.basalforcings.groundedice_melting_rate),
262 md.basalforcings.groundedice_melting_rate=project2d(md,md.basalforcings.groundedice_melting_rate,1);
263 end
264 if ~isnan(md.basalforcings.floatingice_melting_rate),
265 md.basalforcings.floatingice_melting_rate=project2d(md,md.basalforcings.floatingice_melting_rate,1);
266 end
267 md.basalforcings.geothermalflux=project2d(md,md.basalforcings.geothermalflux,1); %bedrock only gets geothermal flux
268
269 %update of connectivity matrix
270 md.mesh.average_vertex_connectivity=25;
271
272 %Collapse the mesh
273 nodes2d=md.mesh.numberofvertices2d;
274 elements2d=md.mesh.numberofelements2d;
275
276 %parameters
277 md.geometry.surface=project2d(md,md.geometry.surface,1);
278 md.geometry.thickness=project2d(md,md.geometry.thickness,1);
279 md.geometry.base=project2d(md,md.geometry.base,1);
280 if ~isnan(md.geometry.bed),
281 md.geometry.bed=project2d(md,md.geometry.bed,1);
282 end
283
284 if ~isnan(md.mask.groundedice_levelset),
285 md.mask.groundedice_levelset=project2d(md,md.mask.groundedice_levelset,1);
286 end
287 if ~isnan(md.mask.ice_levelset),
288 md.mask.ice_levelset=project2d(md,md.mask.ice_levelset,1);
289 end
290
291 %lat long
292 if numel(md.mesh.lat) ==md.mesh.numberofvertices, md.mesh.lat=project2d(md,md.mesh.lat,1); end
293 if numel(md.mesh.long)==md.mesh.numberofvertices, md.mesh.long=project2d(md,md.mesh.long,1); end
294
295 %Initialize with the 2d mesh
296 mesh=mesh2d();
297 mesh.x=md.mesh.x2d;
298 mesh.y=md.mesh.y2d;
299 mesh.numberofvertices=md.mesh.numberofvertices2d;
300 mesh.numberofelements=md.mesh.numberofelements2d;
301 mesh.elements=md.mesh.elements2d;
302 if ~isnan(md.mesh.vertexonboundary), mesh.vertexonboundary=project2d(md,md.mesh.vertexonboundary,1); end
303 if ~isnan(md.mesh.elementconnectivity), mesh.elementconnectivity=project2d(md,md.mesh.elementconnectivity,1); end
304 md.mesh=mesh;
305 md.mesh.vertexconnectivity=NodeConnectivity(md.mesh.elements,md.mesh.numberofvertices);
306 md.mesh.elementconnectivity=ElementConnectivity(md.mesh.elements,md.mesh.vertexconnectivity);
307 md.mesh.segments=contourenvelope(md);
308
309 end % }}}
310 function md2 = extract(md,area) % {{{
311 %extract - extract a model according to an Argus contour or flag list
312 %
313 % This routine extracts a submodel from a bigger model with respect to a given contour
314 % md must be followed by the corresponding exp file or flags list
315 % It can either be a domain file (argus type, .exp extension), or an array of element flags.
316 % If user wants every element outside the domain to be
317 % extract2d, add '~' to the name of the domain file (ex: '~HO.exp');
318 % an empty string '' will be considered as an empty domain
319 % a string 'all' will be considered as the entire domain
320 %
321 % Usage:
322 % md2=extract(md,area);
323 %
324 % Examples:
325 % md2=extract(md,'Domain.exp');
326 %
327 % See also: EXTRUDE, COLLAPSE
328
329 %copy model
330 md1=md;
331
332 %some checks
333 if ((nargin~=2) | (nargout~=1)),
334 help extract
335 error('extract error message: bad usage');
336 end
337
338 %get elements that are inside area
339 flag_elem=FlagElements(md1,area);
340 if ~any(flag_elem),
341 error('extracted model is empty');
342 end
343
344 %kick out all elements with 3 dirichlets
345 spc_elem=find(~flag_elem);
346 spc_node=sort(unique(md1.mesh.elements(spc_elem,:)));
347 flag=ones(md1.mesh.numberofvertices,1);
348 flag(spc_node)=0;
349 pos=find(sum(flag(md1.mesh.elements),2)==0);
350 flag_elem(pos)=0;
351
352 %extracted elements and nodes lists
353 pos_elem=find(flag_elem);
354 pos_node=sort(unique(md1.mesh.elements(pos_elem,:)));
355
356 %keep track of some fields
357 numberofvertices1=md1.mesh.numberofvertices;
358 numberofelements1=md1.mesh.numberofelements;
359 numberofvertices2=length(pos_node);
360 numberofelements2=length(pos_elem);
361 flag_node=zeros(numberofvertices1,1);
362 flag_node(pos_node)=1;
363
364 %Create Pelem and Pnode (transform old nodes in new nodes and same thing for the elements)
365 Pelem=zeros(numberofelements1,1);
366 Pelem(pos_elem)=[1:numberofelements2]';
367 Pnode=zeros(numberofvertices1,1);
368 Pnode(pos_node)=[1:numberofvertices2]';
369
370 %renumber the elements (some nodes won't exist anymore)
371 elements_1=md1.mesh.elements;
372 elements_2=elements_1(pos_elem,:);
373 elements_2(:,1)=Pnode(elements_2(:,1));
374 elements_2(:,2)=Pnode(elements_2(:,2));
375 elements_2(:,3)=Pnode(elements_2(:,3));
376 if isa(md1.mesh,'mesh3dprisms'),
377 elements_2(:,4)=Pnode(elements_2(:,4));
378 elements_2(:,5)=Pnode(elements_2(:,5));
379 elements_2(:,6)=Pnode(elements_2(:,6));
380 end
381
382 %OK, now create the new model!
383
384 %take every field from model
385 md2=md1;
386
387 %automatically modify fields
388
389 %loop over model fields
390 model_fields=fields(md1);
391 for i=1:length(model_fields),
392 %get field
393 field=md1.(model_fields{i});
394 fieldsize=size(field);
395 if isobject(field), %recursive call
396 object_fields=fields(md1.(model_fields{i}));
397 for j=1:length(object_fields),
398 %get field
399 field=md1.(model_fields{i}).(object_fields{j});
400 fieldsize=size(field);
401 %size = number of nodes * n
402 if fieldsize(1)==numberofvertices1
403 md2.(model_fields{i}).(object_fields{j})=field(pos_node,:);
404 elseif (fieldsize(1)==numberofvertices1+1)
405 md2.(model_fields{i}).(object_fields{j})=[field(pos_node,:); field(end,:)];
406 %size = number of elements * n
407 elseif fieldsize(1)==numberofelements1
408 md2.(model_fields{i}).(object_fields{j})=field(pos_elem,:);
409 end
410 end
411 else
412 %size = number of nodes * n
413 if fieldsize(1)==numberofvertices1
414 md2.(model_fields{i})=field(pos_node,:);
415 elseif (fieldsize(1)==numberofvertices1+1)
416 md2.(model_fields{i})=[field(pos_node,:); field(end,:)];
417 %size = number of elements * n
418 elseif fieldsize(1)==numberofelements1
419 md2.(model_fields{i})=field(pos_elem,:);
420 end
421 end
422 end
423
424 %modify some specific fields
425
426 %Mesh
427 md2.mesh.numberofelements=numberofelements2;
428 md2.mesh.numberofvertices=numberofvertices2;
429 md2.mesh.elements=elements_2;
430
431 %mesh.uppervertex mesh.lowervertex
432 if isa(md1.mesh,'mesh3dprisms'),
433 md2.mesh.uppervertex=md1.mesh.uppervertex(pos_node);
434 pos=find(~isnan(md2.mesh.uppervertex));
435 md2.mesh.uppervertex(pos)=Pnode(md2.mesh.uppervertex(pos));
436
437 md2.mesh.lowervertex=md1.mesh.lowervertex(pos_node);
438 pos=find(~isnan(md2.mesh.lowervertex));
439 md2.mesh.lowervertex(pos)=Pnode(md2.mesh.lowervertex(pos));
440
441 md2.mesh.upperelements=md1.mesh.upperelements(pos_elem);
442 pos=find(~isnan(md2.mesh.upperelements));
443 md2.mesh.upperelements(pos)=Pelem(md2.mesh.upperelements(pos));
444
445 md2.mesh.lowerelements=md1.mesh.lowerelements(pos_elem);
446 pos=find(~isnan(md2.mesh.lowerelements));
447 md2.mesh.lowerelements(pos)=Pelem(md2.mesh.lowerelements(pos));
448 end
449
450 %Initial 2d mesh
451 if isa(md1.mesh,'mesh3dprisms'),
452 flag_elem_2d=flag_elem(1:md1.mesh.numberofelements2d);
453 pos_elem_2d=find(flag_elem_2d);
454 flag_node_2d=flag_node(1:md1.mesh.numberofvertices2d);
455 pos_node_2d=find(flag_node_2d);
456
457 md2.mesh.numberofelements2d=length(pos_elem_2d);
458 md2.mesh.numberofvertices2d=length(pos_node_2d);
459 md2.mesh.elements2d=md1.mesh.elements2d(pos_elem_2d,:);
460 md2.mesh.elements2d(:,1)=Pnode(md2.mesh.elements2d(:,1));
461 md2.mesh.elements2d(:,2)=Pnode(md2.mesh.elements2d(:,2));
462 md2.mesh.elements2d(:,3)=Pnode(md2.mesh.elements2d(:,3));
463
464 md2.mesh.x2d=md1.mesh.x(pos_node_2d);
465 md2.mesh.y2d=md1.mesh.y(pos_node_2d);
466 end
467
468 %Edges
469 if(dimension(md.mesh)==2),
470 if size(md2.mesh.edges,2)>1, %do not use ~isnan because there are some NaNs...
471 %renumber first two columns
472 pos=find(md2.mesh.edges(:,4)~=-1);
473 md2.mesh.edges(: ,1)=Pnode(md2.mesh.edges(:,1));
474 md2.mesh.edges(: ,2)=Pnode(md2.mesh.edges(:,2));
475 md2.mesh.edges(: ,3)=Pelem(md2.mesh.edges(:,3));
476 md2.mesh.edges(pos,4)=Pelem(md2.mesh.edges(pos,4));
477 %remove edges when the 2 vertices are not in the domain.
478 md2.mesh.edges=md2.mesh.edges(find(md2.mesh.edges(:,1) & md2.mesh.edges(:,2)),:);
479 %Replace all zeros by -1 in the last two columns
480 pos=find(md2.mesh.edges(:,3)==0);
481 md2.mesh.edges(pos,3)=-1;
482 pos=find(md2.mesh.edges(:,4)==0);
483 md2.mesh.edges(pos,4)=-1;
484 %Invert -1 on the third column with last column (Also invert first two columns!!)
485 pos=find(md2.mesh.edges(:,3)==-1);
486 md2.mesh.edges(pos,3)=md2.mesh.edges(pos,4);
487 md2.mesh.edges(pos,4)=-1;
488 values=md2.mesh.edges(pos,2);
489 md2.mesh.edges(pos,2)=md2.mesh.edges(pos,1);
490 md2.mesh.edges(pos,1)=values;
491 %Finally remove edges that do not belong to any element
492 pos=find(md2.mesh.edges(:,3)==-1 & md2.mesh.edges(:,4)==-1);
493 md2.mesh.edges(pos,:)=[];
494 end
495 end
496
497 %Penalties
498 if ~isnan(md2.stressbalance.vertex_pairing),
499 for i=1:size(md1.stressbalance.vertex_pairing,1);
500 md2.stressbalance.vertex_pairing(i,:)=Pnode(md1.stressbalance.vertex_pairing(i,:));
501 end
502 md2.stressbalance.vertex_pairing=md2.stressbalance.vertex_pairing(find(md2.stressbalance.vertex_pairing(:,1)),:);
503 end
504 if ~isnan(md2.masstransport.vertex_pairing),
505 for i=1:size(md1.masstransport.vertex_pairing,1);
506 md2.masstransport.vertex_pairing(i,:)=Pnode(md1.masstransport.vertex_pairing(i,:));
507 end
508 md2.masstransport.vertex_pairing=md2.masstransport.vertex_pairing(find(md2.masstransport.vertex_pairing(:,1)),:);
509 end
510
511 %recreate segments
512 if isa(md1.mesh,'mesh2d'),
513 md2.mesh.vertexconnectivity=NodeConnectivity(md2.mesh.elements,md2.mesh.numberofvertices);
514 md2.mesh.elementconnectivity=ElementConnectivity(md2.mesh.elements,md2.mesh.vertexconnectivity);
515 md2.mesh.segments=contourenvelope(md2);
516 md2.mesh.vertexonboundary=zeros(numberofvertices2,1); md2.mesh.vertexonboundary(md2.mesh.segments(:,1:2))=1;
517 else
518 %First do the connectivity for the contourenvelope in 2d
519 md2.mesh.vertexconnectivity=NodeConnectivity(md2.mesh.elements2d,md2.mesh.numberofvertices2d);
520 md2.mesh.elementconnectivity=ElementConnectivity(md2.mesh.elements2d,md2.mesh.vertexconnectivity);
521 segments=contourenvelope(md2);
522 md2.mesh.vertexonboundary=zeros(numberofvertices2/md2.mesh.numberoflayers,1); md2.mesh.vertexonboundary(segments(:,1:2))=1;
523 md2.mesh.vertexonboundary=repmat(md2.mesh.vertexonboundary,md2.mesh.numberoflayers,1);
524 %Then do it for 3d as usual
525 md2.mesh.vertexconnectivity=NodeConnectivity(md2.mesh.elements,md2.mesh.numberofvertices);
526 md2.mesh.elementconnectivity=ElementConnectivity(md2.mesh.elements,md2.mesh.vertexconnectivity);
527 end
528
529 %Boundary conditions: Dirichlets on new boundary
530 %Catch the elements that have not been extracted
531 orphans_elem=find(~flag_elem);
532 orphans_node=unique(md1.mesh.elements(orphans_elem,:))';
533 %Figure out which node are on the boundary between md2 and md1
534 nodestoflag1=intersect(orphans_node,pos_node);
535 nodestoflag2=Pnode(nodestoflag1);
536 if numel(md1.stressbalance.spcvx)>1 & numel(md1.stressbalance.spcvy)>2 & numel(md1.stressbalance.spcvz)>2,
537 if numel(md1.inversion.vx_obs)>1 & numel(md1.inversion.vy_obs)>1
538 md2.stressbalance.spcvx(nodestoflag2)=md2.inversion.vx_obs(nodestoflag2);
539 md2.stressbalance.spcvy(nodestoflag2)=md2.inversion.vy_obs(nodestoflag2);
540 else
541 md2.stressbalance.spcvx(nodestoflag2)=NaN;
542 md2.stressbalance.spcvy(nodestoflag2)=NaN;
543 disp(' ')
544 disp('!! extract warning: spc values should be checked !!')
545 disp(' ')
546 end
547 %put 0 for vz
548 md2.stressbalance.spcvz(nodestoflag2)=0;
549 end
550 if ~isnan(md1.thermal.spctemperature),
551 md2.thermal.spctemperature(nodestoflag2,1)=1;
552 end
553
554 %Results fields
555 if isstruct(md1.results),
556 md2.results=struct();
557 solutionfields=fields(md1.results);
558 for i=1:length(solutionfields),
559 if isstruct(md1.results.(solutionfields{i}))
560 %get subfields
561 solutionsubfields=fields(md1.results.(solutionfields{i}));
562 for j=1:length(solutionsubfields),
563 field=md1.results.(solutionfields{i}).(solutionsubfields{j});
564 if length(field)==numberofvertices1,
565 md2.results.(solutionfields{i}).(solutionsubfields{j})=field(pos_node);
566 elseif length(field)==numberofelements1,
567 md2.results.(solutionfields{i}).(solutionsubfields{j})=field(pos_elem);
568 else
569 md2.results.(solutionfields{i}).(solutionsubfields{j})=field;
570 end
571 end
572 else
573 field=md1.results.(solutionfields{i});
574 if length(field)==numberofvertices1,
575 md2.results.(solutionfields{i})=field(pos_node);
576 elseif length(field)==numberofelements1,
577 md2.results.(solutionfields{i})=field(pos_elem);
578 else
579 md2.results.(solutionfields{i})=field;
580 end
581 end
582 end
583 end
584
585 %Keep track of pos_node and pos_elem
586 md2.mesh.extractedvertices=pos_node;
587 md2.mesh.extractedelements=pos_elem;
588 end % }}}
589 function md = extrude(md,varargin) % {{{
590 %EXTRUDE - vertically extrude a 2d mesh
591 %
592 % vertically extrude a 2d mesh and create corresponding 3d mesh.
593 % The vertical distribution can:
594 % - follow a polynomial law
595 % - follow two polynomial laws, one for the lower part and one for the upper part of the mesh
596 % - be discribed by a list of coefficients (between 0 and 1)
597 %
598 %
599 % Usage:
600 % md=extrude(md,numlayers,extrusionexponent);
601 % md=extrude(md,numlayers,lowerexponent,upperexponent);
602 % md=extrude(md,listofcoefficients);
603 %
604 % Example:
605 % md=extrude(md,15,1.3);
606 % md=extrude(md,15,1.3,1.2);
607 % md=extrude(md,[0 0.2 0.5 0.7 0.9 0.95 1]);
608 %
609 % See also: MODELEXTRACT, COLLAPSE
610
611 %some checks on list of arguments
612 if ((nargin>4) | (nargin<2) | (nargout~=1)),
613 help extrude;
614 error('extrude error message');
615 end
616
617 %Extrude the mesh
618 if nargin==2, %list of coefficients
619 clist=varargin{1};
620 if any(clist<0) | any(clist>1),
621 error('extrusioncoefficients must be between 0 and 1');
622 end
623 extrusionlist=sort(unique([clist(:);0;1]));
624 numlayers=length(extrusionlist);
625 elseif nargin==3, %one polynomial law
626 if varargin{2}<=0,
627 help extrude;
628 error('extrusionexponent must be >=0');
629 end
630 numlayers=varargin{1};
631 extrusionlist=((0:1:numlayers-1)/(numlayers-1)).^varargin{2};
632 elseif nargin==4, %two polynomial laws
633 numlayers=varargin{1};
634 lowerexp=varargin{2};
635 upperexp=varargin{3};
636
637 if varargin{2}<=0 | varargin{3}<=0,
638 help extrude;
639 error('lower and upper extrusionexponents must be >=0');
640 end
641
642 lowerextrusionlist=[(0:2/(numlayers-1):1).^lowerexp]/2;
643 upperextrusionlist=[(0:2/(numlayers-1):1).^upperexp]/2;
644 extrusionlist=sort(unique([lowerextrusionlist 1-upperextrusionlist]));
645
646 end
647
648 if numlayers<2,
649 error('number of layers should be at least 2');
650 end
651 if strcmp(md.mesh.domaintype(),'3D')
652 error('Cannot extrude a 3d mesh (extrude cannot be called more than once)');
653 end
654
655 %Initialize with the 2d mesh
656 mesh2d = md.mesh;
657 md.mesh=mesh3dprisms();
658 md.mesh.x = mesh2d.x;
659 md.mesh.y = mesh2d.y;
660 md.mesh.elements = mesh2d.elements;
661 md.mesh.numberofelements = mesh2d.numberofelements;
662 md.mesh.numberofvertices = mesh2d.numberofvertices;
663
664 md.mesh.lat = mesh2d.lat;
665 md.mesh.long = mesh2d.long;
666 md.mesh.epsg = mesh2d.epsg;
667
668 md.mesh.vertexonboundary = mesh2d.vertexonboundary;
669 md.mesh.vertexconnectivity = mesh2d.vertexconnectivity;
670 md.mesh.elementconnectivity = mesh2d.elementconnectivity;
671 md.mesh.average_vertex_connectivity = mesh2d.average_vertex_connectivity;
672
673 md.mesh.extractedvertices = mesh2d.extractedvertices;
674 md.mesh.extractedelements = mesh2d.extractedelements;
675
676 x3d=[];
677 y3d=[];
678 z3d=[]; %the lower node is on the bed
679 thickness3d=md.geometry.thickness; %thickness and bed for these nodes
680 bed3d=md.geometry.base;
681
682 %Create the new layers
683 for i=1:numlayers,
684 x3d=[x3d; md.mesh.x];
685 y3d=[y3d; md.mesh.y];
686 %nodes are distributed between bed and surface accordingly to the given exponent
687 z3d=[z3d; bed3d+thickness3d*extrusionlist(i)];
688 end
689 number_nodes3d=size(x3d,1); %number of 3d nodes for the non extruded part of the mesh
690
691 %Extrude elements
692 elements3d=[];
693 for i=1:numlayers-1,
694 elements3d=[elements3d;[md.mesh.elements+(i-1)*md.mesh.numberofvertices md.mesh.elements+i*md.mesh.numberofvertices]]; %Create the elements of the 3d mesh for the non extruded part
695 end
696 number_el3d=size(elements3d,1); %number of 3d nodes for the non extruded part of the mesh
697
698 %Keep a trace of lower and upper nodes
699 lowervertex=NaN*ones(number_nodes3d,1);
700 uppervertex=NaN*ones(number_nodes3d,1);
701 lowervertex(md.mesh.numberofvertices+1:end)=1:(numlayers-1)*md.mesh.numberofvertices;
702 uppervertex(1:(numlayers-1)*md.mesh.numberofvertices)=md.mesh.numberofvertices+1:number_nodes3d;
703 md.mesh.lowervertex=lowervertex;
704 md.mesh.uppervertex=uppervertex;
705
706 %same for lower and upper elements
707 lowerelements=NaN*ones(number_el3d,1);
708 upperelements=NaN*ones(number_el3d,1);
709 lowerelements(md.mesh.numberofelements+1:end)=1:(numlayers-2)*md.mesh.numberofelements;
710 upperelements(1:(numlayers-2)*md.mesh.numberofelements)=md.mesh.numberofelements+1:(numlayers-1)*md.mesh.numberofelements;
711 md.mesh.lowerelements=lowerelements;
712 md.mesh.upperelements=upperelements;
713
714 %Save old mesh
715 md.mesh.x2d=md.mesh.x;
716 md.mesh.y2d=md.mesh.y;
717 md.mesh.elements2d=md.mesh.elements;
718 md.mesh.numberofelements2d=md.mesh.numberofelements;
719 md.mesh.numberofvertices2d=md.mesh.numberofvertices;
720
721 %Build global 3d mesh
722 md.mesh.elements=elements3d;
723 md.mesh.x=x3d;
724 md.mesh.y=y3d;
725 md.mesh.z=z3d;
726 md.mesh.numberofelements=number_el3d;
727 md.mesh.numberofvertices=number_nodes3d;
728 md.mesh.numberoflayers=numlayers;
729
730 %Ok, now deal with the other fields from the 2d mesh:
731
732 %bedinfo and surface info
733 md.mesh.vertexonbase=project3d(md,'vector',ones(md.mesh.numberofvertices2d,1),'type','node','layer',1);
734 md.mesh.vertexonsurface=project3d(md,'vector',ones(md.mesh.numberofvertices2d,1),'type','node','layer',md.mesh.numberoflayers);
735 md.mesh.vertexonboundary=project3d(md,'vector',md.mesh.vertexonboundary,'type','node');
736
737 %lat long
738 md.mesh.lat=project3d(md,'vector',md.mesh.lat,'type','node');
739 md.mesh.long=project3d(md,'vector',md.mesh.long,'type','node');
740
741 md.geometry=extrude(md.geometry,md);
742 md.friction = extrude(md.friction,md);
743 md.inversion = extrude(md.inversion,md);
744 md.surfaceforcings = extrude(md.surfaceforcings,md);
745 md.initialization = extrude(md.initialization,md);
746
747 md.flowequation=md.flowequation.extrude(md);
748 md.stressbalance=extrude(md.stressbalance,md);
749 md.thermal=md.thermal.extrude(md);
750 md.masstransport=md.masstransport.extrude(md);
751 md.calving=extrude(md.calving,md);
752 md.hydrology = extrude(md.hydrology,md);
753
754 %connectivity
755 if ~isnan(md.mesh.elementconnectivity)
756 md.mesh.elementconnectivity=repmat(md.mesh.elementconnectivity,numlayers-1,1);
757 md.mesh.elementconnectivity(find(md.mesh.elementconnectivity==0))=NaN;
758 for i=2:numlayers-1,
759 md.mesh.elementconnectivity((i-1)*md.mesh.numberofelements2d+1:(i)*md.mesh.numberofelements2d,:)...
760 =md.mesh.elementconnectivity((i-1)*md.mesh.numberofelements2d+1:(i)*md.mesh.numberofelements2d,:)+md.mesh.numberofelements2d;
761 end
762 md.mesh.elementconnectivity(find(isnan(md.mesh.elementconnectivity)))=0;
763 end
764
765 md.materials=extrude(md.materials,md);
766 md.damage=extrude(md.damage,md);
767 md.mask=extrude(md.mask,md);
768 md.qmu=extrude(md.qmu,md);
769 md.basalforcings=extrude(md.basalforcings,md);
770
771 %increase connectivity if less than 25:
772 if md.mesh.average_vertex_connectivity<=25,
773 md.mesh.average_vertex_connectivity=100;
774 end
775 end % }}}
776 function md = structtomodel(md,structmd) % {{{
777
778 if ~isstruct(structmd) error('input model is not a structure'); end
779
780 %loaded model is a struct, initialize output and recover all fields
781 md = structtoobj(model,structmd);
782
783 %Old field now classes
784 if (isfield(structmd,'timestepping') & isnumeric(md.timestepping)), md.timestepping=timestepping(); end
785 if (isfield(structmd,'mask') & isnumeric(md.mask)),md.mask=mask(); end
786
787 %Field name change
788 if isfield(structmd,'drag'), md.friction.coefficient=structmd.drag; end
789 if isfield(structmd,'p'), md.friction.p=structmd.p; end
790 if isfield(structmd,'q'), md.friction.q=structmd.p; end
791 if isfield(structmd,'melting'), md.basalforcings.floatingice_melting_rate=structmd.melting; end
792 if isfield(structmd,'melting_rate'), md.basalforcings.floatingice_melting_rate=structmd.melting_rate; end
793 if isfield(structmd,'melting_rate'), md.basalforcings.groundedice_melting_rate=structmd.melting_rate; end
794 if isfield(structmd,'accumulation'), md.surfaceforcings.mass_balance=structmd.accumulation; end
795 if isfield(structmd,'numberofgrids'), md.mesh.numberofvertices=structmd.numberofgrids; end
796 if isfield(structmd,'numberofgrids2d'), md.mesh.numberofvertices2d=structmd.numberofgrids2d; end
797 if isfield(structmd,'uppergrids'), md.mesh.uppervertex=structmd.uppergrids; end
798 if isfield(structmd,'lowergrids'), md.mesh.lowervertex=structmd.lowergrids; end
799 if isfield(structmd,'gridonbase'), md.mesh.vertexonbase=structmd.gridonbase; end
800 if isfield(structmd,'gridonsurface'), md.mesh.vertexonsurface=structmd.gridonsurface; end
801 if isfield(structmd,'extractedgrids'), md.mesh.extractedvertices=structmd.extractedgrids; end
802 if isfield(structmd,'gridonboundary'), md.mesh.vertexonboundary=structmd.gridonboundary; end
803 if isfield(structmd,'petscoptions') & ~isempty(structmd.petscoptions), md.toolkits=structmd.petscoptions; end
804 if isfield(structmd,'g'), md.constants.g=structmd.g; end
805 if isfield(structmd,'yts'), md.constants.yts=structmd.yts; end
806 if isfield(structmd,'surface_mass_balance'), md.surfaceforcings.mass_balance=structmd.surface_mass_balance; end
807 if isfield(structmd,'basal_melting_rate'), md.basalforcings.floatingice_melting_rate=structmd.basal_melting_rate; end
808 if isfield(structmd,'geothermalflux'), md.basalforcings.geothermalflux=structmd.geothermalflux; end
809 if isfield(structmd,'drag'), md.friction.coefficient=structmd.drag; end
810 if isfield(structmd,'drag_coefficient'), md.friction.coefficient=structmd.drag_coefficient; end
811 if isfield(structmd,'drag_p'), md.friction.p=structmd.drag_p; end
812 if isfield(structmd,'drag_q'), md.friction.q=structmd.drag_q; end
813 if isfield(structmd,'riftproperties'), %old implementation
814 md.rifts=rifts();
815 md.rifts.riftproperties=structmd.riftproperties;
816 md.rifts.riftstruct=structmd.rifts;
817 md.rifts.riftproperties=structmd.riftinfo;
818 end
819 if isfield(structmd,'bamg'), md.private.bamg=structmd.bamg; end
820 if isfield(structmd,'lowmem'), md.settings.lowmem=structmd.lowmem; end
821 if isfield(structmd,'io_gather'), md.settings.io_gather=structmd.io_gather; end
822 if isfield(structmd,'spcwatercolumn'), md.hydrology.spcwatercolumn=structmd.spcwatercolumn; end
823 if isfield(structmd,'hydro_n'), md.hydrology.n=structmd.hydro_n; end
824 if isfield(structmd,'hydro_p'), md.hydrology.p=structmd.hydro_p; end
825 if isfield(structmd,'hydro_q'), md.hydrology.q=structmd.hydro_q; end
826 if isfield(structmd,'hydro_CR'), md.hydrology.CR=structmd.hydro_CR; end
827 if isfield(structmd,'hydro_kn'), md.hydrology.kn=structmd.hydro_kn; end
828 if isfield(structmd,'spctemperature'), md.thermal.spctemperature=structmd.spctemperature; end
829 if isfield(structmd,'min_thermal_constraints'), md.thermal.penalty_threshold=structmd.min_thermal_constraints; end
830 if isfield(structmd,'artificial_diffusivity'), md.thermal.stabilization=structmd.artificial_diffusivity; end
831 if isfield(structmd,'max_nonlinear_iterations'), md.thermal.maxiter=structmd.max_nonlinear_iterations; end
832 if isfield(structmd,'stabilize_constraints'), md.thermal.penalty_lock=structmd.stabilize_constraints; end
833 if isfield(structmd,'penalty_offset'), md.thermal.penalty_factor=structmd.penalty_offset; end
834 if isfield(structmd,'name'), md.miscellaneous.name=structmd.name; end
835 if isfield(structmd,'notes'), md.miscellaneous.notes=structmd.notes; end
836 if isfield(structmd,'dummy'), md.miscellaneous.dummy=structmd.dummy; end
837 if isfield(structmd,'dt'), md.timestepping.time_step=structmd.dt; end
838 if isfield(structmd,'ndt'), md.timestepping.final_time=structmd.ndt; end
839 if isfield(structmd,'time_adapt'), md.timestepping.time_adapt=structmd.time_adapt; end
840 if isfield(structmd,'cfl_coefficient'), md.timestepping.cfl_coefficient=structmd.cfl_coefficient; end
841 if isfield(structmd,'spcthickness'), md.masstransport.spcthickness=structmd.spcthickness; end
842 if isfield(structmd,'artificial_diffusivity'), md.masstransport.stabilization=structmd.artificial_diffusivity; end
843 if isfield(structmd,'hydrostatic_adjustment'), md.masstransport.hydrostatic_adjustment=structmd.hydrostatic_adjustment; end
844 if isfield(structmd,'penalties'), md.masstransport.vertex_pairing=structmd.penalties; end
845 if isfield(structmd,'penalty_offset'), md.masstransport.penalty_factor=structmd.penalty_offset; end
846 if isfield(structmd,'B'), md.materials.rheology_B=structmd.B; end
847 if isfield(structmd,'n'), md.materials.rheology_n=structmd.n; end
848 if isfield(structmd,'rheology_B'), md.materials.rheology_B=structmd.rheology_B; end
849 if isfield(structmd,'rheology_n'), md.materials.rheology_n=structmd.rheology_n; end
850 if isfield(structmd,'rheology_Z'), md.damage.D=(1-structmd.rheology_Z); end
851 if isfield(structmd,'spcthickness'), md.balancethickness.spcthickness=structmd.spcthickness; end
852 if isfield(structmd,'artificial_diffusivity'), md.balancethickness.stabilization=structmd.artificial_diffusivity; end
853 if isfield(structmd,'dhdt'), md.balancethickness.thickening_rate=structmd.dhdt; end
854 if isfield(structmd,'isSIA'), md.flowequation.isSIA=structmd.isSIA; end
855 if isfield(structmd,'isFS'), md.flowequation.isFS=structmd.isFS; end
856 if isfield(structmd,'elements_type'), md.flowequation.element_equation=structmd.elements_type; end
857 if isfield(structmd,'vertices_type'), md.flowequation.vertex_equation=structmd.vertices_type; end
858 if isfield(structmd,'eps_rel'), md.steadystate.reltol=structmd.eps_rel; end
859 if isfield(structmd,'max_steadystate_iterations'), md.steadystate.maxiter=structmd.max_steadystate_iterations; end
860 if isfield(structmd,'isdiagnostic'), md.transient.isstressbalance=structmd.isdiagnostic; end
861 if isfield(structmd,'isprognostic'), md.transient.ismasstransport=structmd.isprognostic; end
862 if isfield(structmd,'isthermal'), md.transient.isthermal=structmd.isthermal; end
863 if isfield(structmd,'control_analysis'), md.inversion.iscontrol=structmd.control_analysis; end
864 if isfield(structmd,'weights'), md.inversion.cost_functions_coefficients=structmd.weights; end
865 if isfield(structmd,'nsteps'), md.inversion.nsteps=structmd.nsteps; end
866 if isfield(structmd,'maxiter_per_step'), md.inversion.maxiter_per_step=structmd.maxiter_per_step; end
867 if isfield(structmd,'cm_min'), md.inversion.min_parameters=structmd.cm_min; end
868 if isfield(structmd,'cm_max'), md.inversion.max_parameters=structmd.cm_max; end
869 if isfield(structmd,'vx_obs'), md.inversion.vx_obs=structmd.vx_obs; end
870 if isfield(structmd,'vy_obs'), md.inversion.vy_obs=structmd.vy_obs; end
871 if isfield(structmd,'vel_obs'), md.inversion.vel_obs=structmd.vel_obs; end
872 if isfield(structmd,'thickness_obs'), md.inversion.thickness_obs=structmd.thickness_obs; end
873 if isfield(structmd,'vx'), md.initialization.vx=structmd.vx; end
874 if isfield(structmd,'vy'), md.initialization.vy=structmd.vy; end
875 if isfield(structmd,'vz'), md.initialization.vz=structmd.vz; end
876 if isfield(structmd,'vel'), md.initialization.vel=structmd.vel; end
877 if isfield(structmd,'pressure'), md.initialization.pressure=structmd.pressure; end
878 if isfield(structmd,'temperature'), md.initialization.temperature=structmd.temperature; end
879 if isfield(structmd,'waterfraction'), md.initialization.waterfraction=structmd.waterfraction; end
880 if isfield(structmd,'watercolumn'), md.initialization.watercolumn=structmd.watercolumn; end
881 if isfield(structmd,'surface'), md.geometry.surface=structmd.surface; end
882 if isfield(structmd,'bed'), md.geometry.base=structmd.bed; end
883 if isfield(structmd,'thickness'), md.geometry.thickness=structmd.thickness; end
884 if isfield(structmd,'bathymetry'), md.geometry.bed=structmd.bathymetry; end
885 if isfield(structmd,'thickness_coeff'), md.geometry.hydrostatic_ratio=structmd.thickness_coeff; end
886 if isfield(structmd,'connectivity'), md.mesh.average_vertex_connectivity=structmd.connectivity; end
887 if isfield(structmd,'extractednodes'), md.mesh.extractedvertices=structmd.extractednodes; end
888 if isfield(structmd,'extractedelements'), md.mesh.extractedelements=structmd.extractedelements; end
889 if isfield(structmd,'nodeonboundary'), md.mesh.vertexonboundary=structmd.nodeonboundary; end
890 if isfield(structmd,'lat'), md.mesh.lat=structmd.lat; end
891 if isfield(structmd,'long'), md.mesh.long=structmd.long; end
892 if isfield(structmd,'segments'), md.mesh.segments=structmd.segments; end
893 if isfield(structmd,'segmentmarkers'), md.mesh.segmentmarkers=structmd.segmentmarkers; end
894 if isfield(structmd,'numlayers'), md.mesh.numberoflayers=structmd.numlayers; end
895 if isfield(structmd,'numberofelements'), md.mesh.numberofelements=structmd.numberofelements; end
896 if isfield(structmd,'numberofvertices'), md.mesh.numberofvertices=structmd.numberofvertices; end
897 if isfield(structmd,'numberofnodes'), md.mesh.numberofvertices=structmd.numberofnodes; end
898 if isfield(structmd,'numberofedges'), md.mesh.numberofedges=structmd.numberofedges; end
899 if isfield(structmd,'numberofelements2d'), md.mesh.numberofelements2d=structmd.numberofelements2d; end
900 if isfield(structmd,'numberofnodes2d'), md.mesh.numberofvertices2d=structmd.numberofnodes2d; end
901 if isfield(structmd,'nodeconnectivity'), md.mesh.vertexconnectivity=structmd.nodeconnectivity; end
902 if isfield(structmd,'elementconnectivity'), md.mesh.elementconnectivity=structmd.elementconnectivity; end
903 if isfield(structmd,'uppernodes'), md.mesh.uppervertex=structmd.uppernodes; end
904 if isfield(structmd,'lowernodes'), md.mesh.lowervertex=structmd.lowernodes; end
905 if isfield(structmd,'upperelements'), md.mesh.upperelements=structmd.upperelements; end
906 if isfield(structmd,'lowerelements'), md.mesh.lowerelements=structmd.lowerelements; end
907 if isfield(structmd,'nodeonsurface'), md.mesh.vertexonsurface=structmd.nodeonsurface; end
908 if isfield(structmd,'nodeonbase'), md.mesh.vertexonbase=structmd.nodeonbase; end
909 if isfield(structmd,'elements2d'), md.mesh.elements2d=structmd.elements2d; end
910 if isfield(structmd,'y2d'), md.mesh.y2d=structmd.y2d; end
911 if isfield(structmd,'x2d'), md.mesh.x2d=structmd.x2d; end
912 if isfield(structmd,'elements'), md.mesh.elements=structmd.elements; end
913 if isfield(structmd,'edges'),
914 md.mesh.edges=structmd.edges;
915 md.mesh.edges(isnan(md.mesh.edges))=-1;
916 end
917 if isfield(structmd,'y'), md.mesh.y=structmd.y; end
918 if isfield(structmd,'x'), md.mesh.x=structmd.x; end
919 if isfield(structmd,'z'), md.mesh.z=structmd.z; end
920 if isfield(structmd,'mask'), md.flaim.criterion=structmd.mask; end
921 if isfield(structmd,'diagnostic_ref'), md.stressbalance.referential=structmd.diagnostic_ref; end
922 if isfield(structmd,'npart'); md.qmu.numberofpartitions=structmd.npart; end
923 if isfield(structmd,'part'); md.qmu.partition=structmd.part; end
924
925 if isnumeric(md.verbose),
926 md.verbose=verbose;
927 end
928
929 if isfield(structmd,'spcvelocity'),
930 md.stressbalance.spcvx=NaN*ones(md.mesh.numberofvertices,1);
931 md.stressbalance.spcvy=NaN*ones(md.mesh.numberofvertices,1);
932 md.stressbalance.spcvz=NaN*ones(md.mesh.numberofvertices,1);
933 pos=find(structmd.spcvelocity(:,1)); md.stressbalance.spcvx(pos)=structmd.spcvelocity(pos,4);
934 pos=find(structmd.spcvelocity(:,2)); md.stressbalance.spcvy(pos)=structmd.spcvelocity(pos,5);
935 pos=find(structmd.spcvelocity(:,3)); md.stressbalance.spcvz(pos)=structmd.spcvelocity(pos,6);
936 end
937 if isfield(structmd,'spcvx'),
938 md.stressbalance.spcvx=NaN*ones(md.mesh.numberofvertices,1);
939 pos=find(~isnan(structmd.spcvx)); md.stressbalance.spcvx(pos)=structmd.spcvx(pos);
940 end
941 if isfield(structmd,'spcvy'),
942 md.stressbalance.spcvy=NaN*ones(md.mesh.numberofvertices,1);
943 pos=find(~isnan(structmd.spcvy)); md.stressbalance.spcvy(pos)=structmd.spcvy(pos);
944 end
945 if isfield(structmd,'spcvz'),
946 md.stressbalance.spcvz=NaN*ones(md.mesh.numberofvertices,1);
947 pos=find(~isnan(structmd.spcvz)); md.stressbalance.spcvz(pos)=structmd.spcvz(pos);
948 end
949 if isfield(structmd,'pressureload'),
950 if ~isempty(structmd.pressureload) & ismember(structmd.pressureload(end,end),[118 119 120]),
951 pos=find(structmd.pressureload(:,end)==120); md.stressbalance.icefront(pos,end)=0;
952 pos=find(structmd.pressureload(:,end)==118); md.stressbalance.icefront(pos,end)=1;
953 pos=find(structmd.pressureload(:,end)==119); md.stressbalance.icefront(pos,end)=2;
954 end
955 end
956 if isfield(structmd,'elements_type') & structmd.elements_type(end,end)>50,
957 pos=find(structmd.elements_type==59); md.flowequation.element_equation(pos,end)=0;
958 pos=find(structmd.elements_type==55); md.flowequation.element_equation(pos,end)=1;
959 pos=find(structmd.elements_type==56); md.flowequation.element_equation(pos,end)=2;
960 pos=find(structmd.elements_type==60); md.flowequation.element_equation(pos,end)=3;
961 pos=find(structmd.elements_type==62); md.flowequation.element_equation(pos,end)=4;
962 pos=find(structmd.elements_type==57); md.flowequation.element_equation(pos,end)=5;
963 pos=find(structmd.elements_type==58); md.flowequation.element_equation(pos,end)=6;
964 pos=find(structmd.elements_type==61); md.flowequation.element_equation(pos,end)=7;
965 end
966 if isfield(structmd,'vertices_type') & structmd.vertices_type(end,end)>50,
967 pos=find(structmd.vertices_type==59); md.flowequation.vertex_equation(pos,end)=0;
968 pos=find(structmd.vertices_type==55); md.flowequation.vertex_equation(pos,end)=1;
969 pos=find(structmd.vertices_type==56); md.flowequation.vertex_equation(pos,end)=2;
970 pos=find(structmd.vertices_type==60); md.flowequation.vertex_equation(pos,end)=3;
971 pos=find(structmd.vertices_type==62); md.flowequation.vertex_equation(pos,end)=4;
972 pos=find(structmd.vertices_type==57); md.flowequation.vertex_equation(pos,end)=5;
973 pos=find(structmd.vertices_type==58); md.flowequation.vertex_equation(pos,end)=6;
974 pos=find(structmd.vertices_type==61); md.flowequation.vertex_equation(pos,end)=7;
975 end
976 if isfield(structmd,'rheology_law') & isnumeric(structmd.rheology_law),
977 if (structmd.rheology_law==272), md.materials.rheology_law='None'; end
978 if (structmd.rheology_law==368), md.materials.rheology_law='Paterson'; end
979 if (structmd.rheology_law==369), md.materials.rheology_law='Arrhenius'; end
980 end
981 if isfield(structmd,'groundingline_migration') & isnumeric(structmd.groundingline_migration),
982 if (structmd.groundingline_migration==272), md.groundingline.migration='None'; end
983 if (structmd.groundingline_migration==273), md.groundingline.migration='AggressiveMigration'; end
984 if (structmd.groundingline_migration==274), md.groundingline.migration='SoftMigration'; end
985 end
986 if isfield(structmd,'control_type') & isnumeric(structmd.control_type),
987 if (structmd.control_type==143), md.inversion.control_parameters={'FrictionCoefficient'}; end
988 if (structmd.control_type==190), md.inversion.control_parameters={'RheologyBbar'}; end
989 if (structmd.control_type==147), md.inversion.control_parameters={'Thickeningrate'}; end
990 end
991 if isfield(structmd,'cm_responses') & ismember(structmd.cm_responses(end,end),[165:170 383 388 389]),
992 pos=find(structmd.cm_responses==166); md.inversion.cost_functions(pos)=101;
993 pos=find(structmd.cm_responses==167); md.inversion.cost_functions(pos)=102;
994 pos=find(structmd.cm_responses==168); md.inversion.cost_functions(pos)=103;
995 pos=find(structmd.cm_responses==169); md.inversion.cost_functions(pos)=104;
996 pos=find(structmd.cm_responses==170); md.inversion.cost_functions(pos)=105;
997 pos=find(structmd.cm_responses==165); md.inversion.cost_functions(pos)=201;
998 pos=find(structmd.cm_responses==389); md.inversion.cost_functions(pos)=501;
999 pos=find(structmd.cm_responses==388); md.inversion.cost_functions(pos)=502;
1000 pos=find(structmd.cm_responses==382); md.inversion.cost_functions(pos)=503;
1001 end
1002
1003 if isfield(structmd,'artificial_diffusivity') & structmd.artificial_diffusivity==2,
1004 md.thermal.stabilization=2;
1005 md.masstransport.stabilization=1;
1006 md.balancethickness.stabilization=1;
1007 end
1008 if isnumeric(md.masstransport.hydrostatic_adjustment)
1009 if md.masstransport.hydrostatic_adjustment==269,
1010 md.masstransport.hydrostatic_adjustment='Incremental';
1011 else
1012 md.masstransport.hydrostatic_adjustment='Absolute';
1013 end
1014 end
1015
1016 %New fields
1017 if ~isfield(structmd,'upperelements') & isa(md.mesh,'mesh3dprisms')
1018 md.mesh.upperelements=transpose(1:md.mesh.numberofelements)+md.mesh.numberofelements2d;
1019 md.mesh.upperelements(end-md.mesh.numberofelements2d+1:end)=NaN;
1020 end
1021 if ~isfield(structmd,'lowerelements') & isa(md.mesh,'mesh3dprisms')
1022 md.mesh.lowerelements=transpose(1:md.mesh.numberofelements)-md.mesh.numberofelements2d;
1023 md.mesh.lowerelements(1:md.mesh.numberofelements2d)=NaN;
1024 end
1025 if ~isfield(structmd,'diagnostic_ref');
1026 md.stressbalance.referential=NaN*ones(md.mesh.numberofvertices,6);
1027 end
1028 if ~isfield(structmd,'loadingforce');
1029 md.stressbalance.loadingforce=0*ones(md.mesh.numberofvertices,3);
1030 end
1031
1032 %2013 August 9
1033 if isfield(structmd,'prognostic') & isa(structmd.prognostic,'prognostic'),
1034 disp('Recovering old prognostic class');
1035 md.masstransport=masstransport(structmd.prognostic);
1036 end
1037 %2013 August 9
1038 if isfield(structmd,'diagnostic') & (isa(structmd.diagnostic,'diagnostic') || isa(structmd.diagnostic,'stressbalance')),
1039 disp('Recovering old diagnostic class');
1040 md.stressbalance=stressbalance(structmd.diagnostic);
1041 end
1042 end% }}}
1043 function md = setdefaultparameters(md) % {{{
1044
1045 %initialize subclasses
1046 md.mesh = mesh2d();
1047 md.mask = mask();
1048 md.constants = constants();
1049 md.geometry = geometry();
1050 md.initialization = initialization();
1051 md.surfaceforcings = SMB();
1052 md.basalforcings = basalforcings();
1053 md.friction = friction();
1054 md.rifts = rifts();
1055 md.timestepping = timestepping();
1056 md.groundingline = groundingline();
1057 md.materials = matice();
1058 md.damage = damage();
1059 md.flowequation = flowequation();
1060 md.debug = debug();
1061 md.verbose = verbose();
1062 md.settings = settings();
1063 md.toolkits = toolkits();
1064 md.cluster = generic();
1065 md.balancethickness = balancethickness();
1066 md.stressbalance = stressbalance();
1067 md.hydrology = hydrologyshreve();
1068 md.masstransport = masstransport();
1069 md.thermal = thermal();
1070 md.steadystate = steadystate();
1071 md.transient = transient();
1072 md.calving = calving();
1073 md.gia = gia();
1074 md.autodiff = autodiff();
1075 md.flaim = flaim();
1076 md.inversion = inversion();
1077 md.qmu = qmu();
1078 md.radaroverlay = radaroverlay();
1079 md.results = struct();
1080 md.outputdefinition = outputdefinition();
1081 md.miscellaneous = miscellaneous();
1082 md.private = private();
1083 end
1084 %}}}
1085 function md = tetras(md,varargin) % {{{
1086 %TETRAS - split 3d prismatic mesh into 3 tetrahedrons
1087 %
1088 % Usage:
1089 % md=tetra(md)
1090
1091 if ~isa(md.mesh,'mesh3dprisms')
1092 error('mesh is not a 3d prismatic mesh');
1093 end
1094
1095 %Initialize tetra mesh
1096 md.mesh=mesh3dtetras(md.mesh);
1097
1098 %Subdivision from Philipp Furnstahl (http://studierstube.icg.tugraz.at/thesis/fuernstahl_thesis.pdf)
1099 steiner = 0;
1100 nbv = md.mesh.numberofvertices;
1101 nbt = 3*md.mesh.numberofelements;
1102 elements = zeros(nbt,4);
1103 for i=1:md.mesh.numberofelements
1104 v1=md.mesh.elements(i,1); v2=md.mesh.elements(i,2); v3=md.mesh.elements(i,3);
1105 v4=md.mesh.elements(i,4); v5=md.mesh.elements(i,5); v6=md.mesh.elements(i,6);
1106 if(min(v2,v4)<min(v1,v5) & min(v1,v6)<min(v3,v4) & min(v3,v5)<min(v2,v6)),
1107 steiner = steiner+1; nbv = nbv+1; nbt = nbt+5; v7 = nbv;
1108 md.mesh.x=[md.mesh.x; mean(md.mesh.x(md.mesh.elements(i,:)))];
1109 md.mesh.y=[md.mesh.y; mean(md.mesh.y(md.mesh.elements(i,:)))];
1110 md.mesh.z=[md.mesh.z; mean(md.mesh.z(md.mesh.elements(i,:)))];
1111 elements(3*(i-1)+1,:) = [v1 v2 v3 v7];
1112 elements(3*(i-1)+2,:) = [v1 v2 v4 v7];
1113 elements(3*(i-1)+3,:) = [v2 v4 v5 v7];
1114 elements(end+1,:) = [v2 v3 v5 v7];
1115 elements(end+1,:) = [v3 v5 v6 v7];
1116 elements(end+1,:) = [v1 v3 v6 v7];
1117 elements(end+1,:) = [v1 v4 v6 v7];
1118 elements(end+1,:) = [v4 v5 v6 v7];
1119 elseif(min(v2,v4)<min(v1,v5) & min(v1,v6)<min(v3,v4) & min(v3,v5)>min(v2,v6)),
1120 elements(3*(i-1)+1,:) = [v1 v2 v4 v6];
1121 elements(3*(i-1)+2,:) = [v2 v4 v5 v6];
1122 elements(3*(i-1)+3,:) = [v1 v2 v3 v6];
1123 elseif(min(v2,v4)<min(v1,v5) & min(v1,v6)>min(v3,v4) & min(v3,v5)<min(v2,v6)),
1124 elements(3*(i-1)+1,:) = [v1 v2 v3 v4];
1125 elements(3*(i-1)+2,:) = [v2 v3 v4 v5];
1126 elements(3*(i-1)+3,:) = [v3 v4 v5 v6];
1127 elseif(min(v2,v4)<min(v1,v5) & min(v1,v6)>min(v3,v4) & min(v3,v5)>min(v2,v6)),
1128 elements(3*(i-1)+1,:) = [v1 v2 v3 v4];
1129 elements(3*(i-1)+2,:) = [v2 v4 v5 v6];
1130 elements(3*(i-1)+3,:) = [v2 v3 v4 v6];
1131 elseif(min(v2,v4)>min(v1,v5) & min(v1,v6)<min(v3,v4) & min(v3,v5)<min(v2,v6)),
1132 elements(3*(i-1)+1,:) = [v1 v4 v5 v6];
1133 elements(3*(i-1)+2,:) = [v1 v2 v3 v5];
1134 elements(3*(i-1)+3,:) = [v1 v3 v5 v6];
1135 elseif(min(v2,v4)>min(v1,v5) & min(v1,v6)<min(v3,v4) & min(v3,v5)>min(v2,v6)),
1136 elements(3*(i-1)+1,:) = [v1 v4 v5 v6];
1137 elements(3*(i-1)+2,:) = [v1 v2 v5 v6];
1138 elements(3*(i-1)+3,:) = [v1 v2 v3 v6];
1139 elseif(min(v2,v4)>min(v1,v5) & min(v1,v6)>min(v3,v4) & min(v3,v5)<min(v2,v6)),
1140 elements(3*(i-1)+1,:) = [v1 v3 v4 v5];
1141 elements(3*(i-1)+2,:) = [v1 v2 v3 v5];
1142 elements(3*(i-1)+3,:) = [v3 v4 v5 v6];
1143 elseif(min(v2,v4)>min(v1,v5) & min(v1,v6)<min(v3,v4) & min(v3,v5)<min(v2,v6)),
1144 elements(3*(i-1)+1,:) = [v1 v5 v6 v4];
1145 elements(3*(i-1)+2,:) = [v1 v2 v3 v5];
1146 elements(3*(i-1)+3,:) = [v5 v6 v3 v1];
1147 elseif(min(v2,v4)>min(v1,v5) & min(v1,v6)>min(v3,v4) & min(v3,v5)>min(v2,v6)),
1148 steiner = steiner+1; nbv = nbv+1; nbt = nbt+5; v7 = nbv;
1149 md.mesh.x=[md.mesh.x; mean(md.mesh.x(md.mesh.elements(i,:)))];
1150 md.mesh.y=[md.mesh.y; mean(md.mesh.y(md.mesh.elements(i,:)))];
1151 md.mesh.z=[md.mesh.z; mean(md.mesh.z(md.mesh.elements(i,:)))];
1152 elements(3*(i-1)+1,:) = [v1 v2 v3 v7];
1153 elements(3*(i-1)+2,:) = [v1 v4 v5 v7];
1154 elements(3*(i-1)+3,:) = [v1 v2 v5 v7];
1155 elements(end+1,:) = [v2 v5 v6 v7];
1156 elements(end+1,:) = [v2 v3 v6 v7];
1157 elements(end+1,:) = [v3 v4 v6 v7];
1158 elements(end+1,:) = [v1 v3 v4 v7];
1159 elements(end+1,:) = [v4 v5 v6 v7];
1160 else
1161 error('Case not supported'); %not supposed to happen!
1162 end
1163 %Reorder elements to make sure they are direct
1164 for j=1:3
1165 element = elements(3*(i-1)+j,:);
1166 matrix = [md.mesh.x(element), md.mesh.y(element), md.mesh.z(element), ones(4,1)];
1167 if det(matrix)>0,
1168 elements(3*(i-1)+j,1)=element(2);
1169 elements(3*(i-1)+j,2)=element(1);
1170 end
1171 end
1172 end
1173 %%Split in 3 tetras
1174 %subelement1 = [1 2 3 5];
1175 %subelement2 = [4 6 5 1];
1176 %subelement3 = [5 6 3 1];
1177 %elements=[md.mesh.elements(:,subelement1);md.mesh.elements(:,subelement2);md.mesh.elements(:,subelement3)];
1178 if steiner==0,
1179 disp('No Steiner point required to split prismatic mesh into tets');
1180 else
1181 disp([num2str(steiner) ' Steiner points had to be included'])
1182 error('Steiner point not supported yet');
1183 end
1184
1185 pos_elements = repmat([1:md.mesh.numberofelements]',3,1);
1186
1187 md.mesh.elements=elements;
1188 md.mesh.numberofelements=size(elements,1);
1189
1190 %p and q (same deal, except for element that are on the bedrock: )
1191 if ~isnan(md.friction.p),
1192 md.friction.p=md.friction.p(pos_elements);
1193 md.friction.q=md.friction.q(pos_elements);
1194 end
1195
1196 %elementstype
1197 if ~isnan(md.flowequation.element_equation)
1198 oldelements_type=md.flowequation.element_equation;
1199 md.flowequation.element_equation=md.flowequation.element_equation(pos_elements);
1200 end
1201
1202 %connectivity
1203 md.mesh.elementconnectivity=NaN;
1204
1205 %materials
1206 if ~isnan(md.materials.rheology_n),
1207 md.materials.rheology_n=md.materials.rheology_n(pos_elements);
1208 end
1209
1210 %increase connectivity if less than 25:
1211 if md.mesh.average_vertex_connectivity<=25,
1212 md.mesh.average_vertex_connectivity=100;
1213 end
1214 end % }}}
1215 function disp(self) % {{{
1216 disp(sprintf('%19s: %-22s -- %s','mesh' ,['[1x1 ' class(self.mesh) ']'],'mesh properties'));
1217 disp(sprintf('%19s: %-22s -- %s','mask' ,['[1x1 ' class(self.mask) ']'],'defines grounded and floating elements'));
1218 disp(sprintf('%19s: %-22s -- %s','geometry' ,['[1x1 ' class(self.geometry) ']'],'surface elevation, bedrock topography, ice thickness,...'));
1219 disp(sprintf('%19s: %-22s -- %s','constants' ,['[1x1 ' class(self.constants) ']'],'physical constants'));
1220 disp(sprintf('%19s: %-22s -- %s','surfaceforcings' ,['[1x1 ' class(self.surfaceforcings) ']'],'surface forcings'));
1221 disp(sprintf('%19s: %-22s -- %s','basalforcings' ,['[1x1 ' class(self.basalforcings) ']'],'bed forcings'));
1222 disp(sprintf('%19s: %-22s -- %s','materials' ,['[1x1 ' class(self.materials) ']'],'material properties'));
1223 disp(sprintf('%19s: %-22s -- %s','damage' ,['[1x1 ' class(self.damage) ']'],'parameters for damage evolution solution'));
1224 disp(sprintf('%19s: %-22s -- %s','friction' ,['[1x1 ' class(self.friction) ']'],'basal friction/drag properties'));
1225 disp(sprintf('%19s: %-22s -- %s','flowequation' ,['[1x1 ' class(self.flowequation) ']'],'flow equations'));
1226 disp(sprintf('%19s: %-22s -- %s','timestepping' ,['[1x1 ' class(self.timestepping) ']'],'time stepping for transient models'));
1227 disp(sprintf('%19s: %-22s -- %s','initialization' ,['[1x1 ' class(self.initialization) ']'],'initial guess/state'));
1228 disp(sprintf('%19s: %-22s -- %s','rifts' ,['[1x1 ' class(self.rifts) ']'],'rifts properties'));
1229 disp(sprintf('%19s: %-22s -- %s','debug' ,['[1x1 ' class(self.debug) ']'],'debugging tools (valgrind, gprof)'));
1230 disp(sprintf('%19s: %-22s -- %s','verbose' ,['[1x1 ' class(self.verbose) ']'],'verbosity level in solve'));
1231 disp(sprintf('%19s: %-22s -- %s','settings' ,['[1x1 ' class(self.settings) ']'],'settings properties'));
1232 disp(sprintf('%19s: %-22s -- %s','toolkits' ,['[1x1 ' class(self.toolkits) ']'],'PETSc options for each solution'));
1233 disp(sprintf('%19s: %-22s -- %s','cluster' ,['[1x1 ' class(self.cluster) ']'],'cluster parameters (number of cpus...)'));
1234 disp(sprintf('%19s: %-22s -- %s','balancethickness',['[1x1 ' class(self.balancethickness) ']'],'parameters for balancethickness solution'));
1235 disp(sprintf('%19s: %-22s -- %s','stressbalance' ,['[1x1 ' class(self.stressbalance) ']'],'parameters for stressbalance solution'));
1236 disp(sprintf('%19s: %-22s -- %s','groundingline' ,['[1x1 ' class(self.groundingline) ']'],'parameters for groundingline solution'));
1237 disp(sprintf('%19s: %-22s -- %s','hydrology' ,['[1x1 ' class(self.hydrology) ']'],'parameters for hydrology solution'));
1238 disp(sprintf('%19s: %-22s -- %s','masstransport' ,['[1x1 ' class(self.masstransport) ']'],'parameters for masstransport solution'));
1239 disp(sprintf('%19s: %-22s -- %s','thermal' ,['[1x1 ' class(self.thermal) ']'],'parameters for thermal solution'));
1240 disp(sprintf('%19s: %-22s -- %s','steadystate' ,['[1x1 ' class(self.steadystate) ']'],'parameters for steadystate solution'));
1241 disp(sprintf('%19s: %-22s -- %s','transient' ,['[1x1 ' class(self.transient) ']'],'parameters for transient solution'));
1242 disp(sprintf('%19s: %-22s -- %s','calving' ,['[1x1 ' class(self.calving) ']'],'parameters for calving'));
1243 disp(sprintf('%19s: %-22s -- %s','gia' ,['[1x1 ' class(self.gia) ']'],'parameters for gia solution'));
1244 disp(sprintf('%19s: %-22s -- %s','autodiff' ,['[1x1 ' class(self.autodiff) ']'],'automatic differentiation parameters'));
1245 disp(sprintf('%19s: %-22s -- %s','flaim' ,['[1x1 ' class(self.flaim) ']'],'flaim parameters'));
1246 disp(sprintf('%19s: %-22s -- %s','inversion' ,['[1x1 ' class(self.inversion) ']'],'parameters for inverse methods'));
1247 disp(sprintf('%19s: %-22s -- %s','qmu' ,['[1x1 ' class(self.qmu) ']'],'dakota properties'));
1248 disp(sprintf('%19s: %-22s -- %s','outputdefinition',['[1x1 ' class(self.outputdefinition) ']'],'output definition'));
1249 disp(sprintf('%19s: %-22s -- %s','results' ,['[1x1 ' class(self.results) ']'],'model results'));
1250 disp(sprintf('%19s: %-22s -- %s','radaroverlay' ,['[1x1 ' class(self.radaroverlay) ']'],'radar image for plot overlay'));
1251 disp(sprintf('%19s: %-22s -- %s','miscellaneous' ,['[1x1 ' class(self.miscellaneous) ']'],'miscellaneous fields'));
1252 end % }}}
1253 function memory(self) % {{{
1254
1255 disp(sprintf('\nMemory imprint:\n'));
1256
1257 fields=properties('model');
1258 mem=0;
1259
1260 for i=1:length(fields),
1261 field=self.(fields{i});
1262 s=whos('field');
1263 mem=mem+s.bytes/1e6;
1264 disp(sprintf('%19s: %6.2f Mb',fields{i},s.bytes/1e6));
1265 end
1266 disp(sprintf('%19s--%10s','--------------','--------------'));
1267 disp(sprintf('%19s: %g Mb','Total',mem));
1268 end % }}}
1269 function netcdf(self,filename) % {{{
1270 %NETCDF - save model as netcdf
1271 %
1272 % Usage:
1273 % netcdf(md,filename)
1274 %
1275 % Example:
1276 % netcdf(md,'model.nc');
1277
1278 disp('Saving model as NetCDF');
1279 %1. Create NetCDF file
1280 ncid=netcdf.create(filename,'CLOBBER');
1281 netcdf.putAtt(ncid,netcdf.getConstant('NC_GLOBAL'),'Conventions','CF-1.4');
1282 netcdf.putAtt(ncid,netcdf.getConstant('NC_GLOBAL'),'Title',['ISSM model (' self.miscellaneous.name ')']);
1283 netcdf.putAtt(ncid,netcdf.getConstant('NC_GLOBAL'),'Author',getenv('USER'));
1284 netcdf.putAtt(ncid,netcdf.getConstant('NC_GLOBAL'),'Date',datestr(now));
1285
1286 %Preallocate variable id, needed to write variables in netcdf file
1287 var_id=zeros(1000,1);%preallocate
1288
1289 for step=1:2,
1290 counter=0;
1291 [var_id,counter]=structtonc(ncid,'md',self,0,var_id,counter,step);
1292 if step==1, netcdf.endDef(ncid); end
1293 end
1294
1295 if counter>1000,
1296 warning(['preallocation of var_id need to be updated from ' num2str(1000) ' to ' num2str(counter)]);
1297 end
1298
1299 netcdf.close(ncid)
1300 end % }}}
1301 function xylim(self) % {{{
1302
1303 xlim([min(self.mesh.x) max(self.mesh.x)]);
1304 ylim([min(self.mesh.y) max(self.mesh.y)])
1305 end % }}}
1306 function md=upload(md) % {{{
1307 %the goal of this routine is to upload the model onto a server, and to empty it.
1308 %So first, save the model with a unique name and upload the file to the server:
1309 random_part=fix(rand(1)*10000);
1310 id=[md.miscellaneous.name '-' regexprep(datestr(now),'[^\w'']','') '-' num2str(random_part) '-' getenv('USER') '-' oshostname() '.upload'];
1311 eval(['save ' id ' md']);
1312
1313 %Now, upload the file:
1314 issmscpout(md.settings.upload_server,md.settings.upload_path,md.settings.upload_login,md.settings.upload_port,{id},1);
1315
1316 %Now, empty this model of everything except settings, and record name of file we just uploaded!
1317 settings_back=md.settings;
1318 md=model();
1319 md.settings=settings_back;
1320 md.settings.upload_filename=id;
1321
1322 %get locally rid of file that was uploaded
1323 eval(['delete ' id]);
1324
1325 end % }}}
1326 function md=download(md) % {{{
1327
1328 %the goal of this routine is to download the internals of the current model from a server, because
1329 %this model is empty, except for the settings which tell us where to go and find this model!
1330
1331 %Download the file:
1332 issmscpin(md.settings.upload_server, md.settings.upload_login, md.settings.upload_port, md.settings.upload_path, {md.settings.upload_filename});
1333
1334 name=md.settings.upload_filename;
1335
1336 %Now, load this model:
1337 md=loadmodel(md.settings.upload_filename);
1338
1339 %get locally rid of file that was downloaded
1340 eval(['delete ' name]);
1341
1342 end % }}}
1343 end
1344 end
Note: See TracBrowser for help on using the repository browser.