source: issm/trunk-jpl/src/m/classes/model.m@ 17022

Last change on this file since 17022 was 17022, checked in by bdef, 11 years ago

CHG:the sediment transmitivity is now a mat and no more a constant

File size: 60.1 KB
Line 
1%MODEL class definition
2%
3% Usage:
4% md = model(varargin)
5
6classdef model
7 properties (SetAccess=public) %Model fields
8 % {{{
9 %Careful here: no other class should be used as default value this is a bug of matlab
10 mesh = 0;
11 mask = 0;
12
13 geometry = 0;
14 constants = 0;
15 surfaceforcings = 0;
16 basalforcings = 0;
17 materials = 0;
18 damage = 0;
19 friction = 0;
20 flowequation = 0;
21 timestepping = 0;
22 initialization = 0;
23 rifts = 0;
24
25 debug = 0;
26 verbose = 0;
27 settings = 0;
28 toolkits = 0;
29 cluster = 0;
30
31 balancethickness = 0;
32 stressbalance = 0;
33 groundingline = 0;
34 hydrology = 0;
35 masstransport = 0;
36 thermal = 0;
37 steadystate = 0;
38 transient = 0;
39 gia = 0;
40
41 autodiff = 0;
42 flaim = 0;
43 inversion = 0;
44 qmu = 0;
45
46 results = 0;
47 outputdefinition = 0;
48 radaroverlay = 0;
49 miscellaneous = 0;
50 private = 0;
51
52 %}}}
53 end
54 methods (Static)
55 function md = loadobj(md) % {{{
56 % This function is directly called by matlab when a model object is
57 % loaded. If the input is a struct it is an old version of model and
58 % old fields must be recovered (make sure they are in the deprecated
59 % model properties)
60
61 if verLessThan('matlab','7.9'),
62 disp('Warning: your matlab version is old and there is a risk that load does not work correctly');
63 disp(' if the model is not loaded correctly, rename temporarily loadobj so that matlab does not use it');
64
65 % This is a Matlab bug: all the fields of md have their default value
66 % Example of error message:
67 % Warning: Error loading an object of class 'model':
68 % Undefined function or method 'exist' for input arguments of type 'cell'
69 %
70 % This has been fixed in MATLAB 7.9 (R2009b) and later versions
71 end
72
73 if isstruct(md)
74 disp('Recovering model object from a previous version');
75 md = structtomodel(model,md);
76 end
77
78 %2012 August 4th
79 if isa(md.materials,'materials'),
80 disp('Recovering old materials');
81 if numel(md.materials.rheology_Z)==1 & isnan(md.materials.rheology_Z),
82 md.materials=matice(md.materials);
83 else
84 md.materials=matdamageice(md.materials);
85 end
86 end
87 %2013 April 12
88 if numel(md.stressbalance.loadingforce==1)
89 md.stressbalance.loadingforce=0*ones(md.mesh.numberofvertices,3);
90 end
91 %2013 April 17
92 if isa(md.hydrology,'hydrology'),
93 disp('Recovering old hydrology class');
94 md.hydrology=hydrologyshreve(md.materials);
95 end
96 %2013 October 9
97 if ~isa(md.damage,'damage'),
98 md.damage=damage();
99 md.damage.D=zeros(md.mesh.numberofvertices,1);
100 md.damage.spcdamage=NaN*ones(md.mesh.numberofvertices,1);
101 end
102 %2013 November 18
103 if ~isa(md.outputdefinition,'outputdefinition'),
104 md.outputdefinition=outputdefinition();
105 end
106 end% }}}
107 end
108 methods
109 function md = model(varargin) % {{{
110
111 switch nargin
112 case 0
113 md=setdefaultparameters(md);
114 otherwise
115 error('model constructor error message: 0 of 1 argument only in input.');
116 end
117 end
118 %}}}
119 function md = checkmessage(md,string) % {{{
120 if(nargout~=1) error('wrong usage, model must be an output'); end
121 disp(['model not consistent: ' string]);
122 md.private.isconsistent=false;
123 end
124 %}}}
125 function md = collapse(md)% {{{
126 %COLLAPSE - collapses a 3d mesh into a 2d mesh
127 %
128 % This routine collapses a 3d model into a 2d model
129 % and collapses all the fileds of the 3d model by
130 % taking their depth-averaged values
131 %
132 % Usage:
133 % md=collapse(md)
134 %
135 % See also: EXTRUDE, MODELEXTRACT
136
137 %Check that the model is really a 3d model
138 if ~md.mesh.dimension==3,
139 error('collapse error message: only 3d mesh can be collapsed')
140 end
141
142 %Start with changing alle the fields from the 3d mesh
143
144 %drag is limited to nodes that are on the bedrock.
145 md.friction.coefficient=project2d(md,md.friction.coefficient,1);
146
147 %p and q (same deal, except for element that are on the bedrock: )
148 md.friction.p=project2d(md,md.friction.p,1);
149 md.friction.q=project2d(md,md.friction.q,1);
150
151 %observations
152 if ~isnan(md.inversion.vx_obs), md.inversion.vx_obs=project2d(md,md.inversion.vx_obs,md.mesh.numberoflayers); end;
153 if ~isnan(md.inversion.vy_obs), md.inversion.vy_obs=project2d(md,md.inversion.vy_obs,md.mesh.numberoflayers); end;
154 if ~isnan(md.inversion.vel_obs), md.inversion.vel_obs=project2d(md,md.inversion.vel_obs,md.mesh.numberoflayers); end;
155 if ~isnan(md.inversion.cost_functions_coefficients), md.inversion.cost_functions_coefficients=project2d(md,md.inversion.cost_functions_coefficients,md.mesh.numberoflayers); end;
156 if numel(md.inversion.min_parameters)>1, md.inversion.min_parameters=project2d(md,md.inversion.min_parameters,md.mesh.numberoflayers); end;
157 if numel(md.inversion.max_parameters)>1, md.inversion.max_parameters=project2d(md,md.inversion.max_parameters,md.mesh.numberoflayers); end;
158 if ~isnan(md.surfaceforcings.mass_balance),
159 md.surfaceforcings.mass_balance=project2d(md,md.surfaceforcings.mass_balance,md.mesh.numberoflayers);
160 end;
161 if ~isnan(md.balancethickness.thickening_rate), md.balancethickness.thickening_rate=project2d(md,md.balancethickness.thickening_rate,md.mesh.numberoflayers); end;
162
163 %results
164 if ~isnan(md.initialization.vx),md.initialization.vx=DepthAverage(md,md.initialization.vx);end;
165 if ~isnan(md.initialization.vy),md.initialization.vy=DepthAverage(md,md.initialization.vy);end;
166 if ~isnan(md.initialization.vz),md.initialization.vz=DepthAverage(md,md.initialization.vz);end;
167 if ~isnan(md.initialization.vel),md.initialization.vel=DepthAverage(md,md.initialization.vel);end;
168 if ~isnan(md.initialization.temperature),md.initialization.temperature=DepthAverage(md,md.initialization.temperature);end;
169
170 %gia
171 if ~isnan(md.gia.mantle_viscosity), md.gia.mantle_viscosity=project2d(md,md.gia.mantle_viscosity,1); end
172 if ~isnan(md.gia.lithosphere_thickness), md.gia.lithosphere_thickness=project2d(md,md.gia.lithosphere_thickness,1); end
173
174 %bedinfo and surface info
175 md.mesh.elementonbed=ones(md.mesh.numberofelements2d,1);
176 md.mesh.elementonsurface=ones(md.mesh.numberofelements2d,1);
177 md.mesh.vertexonbed=ones(md.mesh.numberofvertices2d,1);
178 md.mesh.vertexonsurface=ones(md.mesh.numberofvertices2d,1);
179
180 %elementstype
181 if ~isnan(md.flowequation.element_equation)
182 md.flowequation.element_equation=project2d(md,md.flowequation.element_equation,1);
183 md.flowequation.vertex_equation=project2d(md,md.flowequation.vertex_equation,1);
184 md.flowequation.borderSSA=project2d(md,md.flowequation.borderSSA,1);
185 md.flowequation.borderHO=project2d(md,md.flowequation.borderHO,1);
186 md.flowequation.borderFS=project2d(md,md.flowequation.borderFS,1);
187 end
188
189 %boundary conditions
190 md.stressbalance.spcvx=project2d(md,md.stressbalance.spcvx,md.mesh.numberoflayers);
191 md.stressbalance.spcvy=project2d(md,md.stressbalance.spcvy,md.mesh.numberoflayers);
192 md.stressbalance.spcvz=project2d(md,md.stressbalance.spcvz,md.mesh.numberoflayers);
193 md.stressbalance.referential=project2d(md,md.stressbalance.referential,md.mesh.numberoflayers);
194 md.stressbalance.loadingforce=project2d(md,md.stressbalance.loadingforce,md.mesh.numberoflayers);
195 md.masstransport.spcthickness=project2d(md,md.masstransport.spcthickness,md.mesh.numberoflayers);
196 md.damage.spcdamage=project2d(md,md.damage.spcdamage,md.mesh.numberoflayers)
197 md.thermal.spctemperature=project2d(md,md.thermal.spctemperature,md.mesh.numberoflayers);
198
199 %materials
200 md.materials.rheology_B=DepthAverage(md,md.materials.rheology_B);
201 md.materials.rheology_n=project2d(md,md.materials.rheology_n,1);
202
203 %damage:
204 md.damage.D=DepthAverage(md,md.damage.D);
205
206 %special for thermal modeling:
207 md.basalforcings.melting_rate=project2d(md,md.basalforcings.melting_rate,1);
208 md.basalforcings.geothermalflux=project2d(md,md.basalforcings.geothermalflux,1); %bedrock only gets geothermal flux
209
210 %update of connectivity matrix
211 md.mesh.average_vertex_connectivity=25;
212
213 %Collapse the mesh
214 nodes2d=md.mesh.numberofvertices2d;
215 elements2d=md.mesh.numberofelements2d;
216
217 %parameters
218 md.geometry.surface=project2d(md,md.geometry.surface,1);
219 md.geometry.thickness=project2d(md,md.geometry.thickness,1);
220 md.geometry.bed=project2d(md,md.geometry.bed,1);
221 md.geometry.bathymetry=project2d(md,md.geometry.bathymetry,1);
222 md.mesh.vertexonboundary=project2d(md,md.mesh.vertexonboundary,1);
223 md.mesh.elementconnectivity=project2d(md,md.mesh.elementconnectivity,1);
224 md.mask.groundedice_levelset=project2d(md,md.mask.groundedice_levelset,1);
225 md.mask.ice_levelset=project2d(md,md.mask.ice_levelset,1);
226
227 %lat long
228 if numel(md.mesh.lat) ==md.mesh.numberofvertices, md.mesh.lat=project2d(md,md.mesh.lat,1); end
229 if numel(md.mesh.long)==md.mesh.numberofvertices, md.mesh.long=project2d(md,md.mesh.long,1); end
230
231 %Initialize with the 2d mesh
232 md.mesh.x=md.mesh.x2d;
233 md.mesh.y=md.mesh.y2d;
234 md.mesh.z=zeros(size(md.mesh.x2d));
235 md.mesh.numberofvertices=md.mesh.numberofvertices2d;
236 md.mesh.numberofelements=md.mesh.numberofelements2d;
237 md.mesh.elements=md.mesh.elements2d;
238
239 %Keep a trace of lower and upper nodes
240 md.mesh.lowervertex=NaN;
241 md.mesh.uppervertex=NaN;
242 md.mesh.lowerelements=NaN;
243 md.mesh.upperelements=NaN;
244
245 %Remove old mesh
246 md.mesh.x2d=NaN;
247 md.mesh.y2d=NaN;
248 md.mesh.elements2d=NaN;
249 md.mesh.numberofelements2d=md.mesh.numberofelements;
250 md.mesh.numberofvertices2d=md.mesh.numberofvertices;
251 md.mesh.numberoflayers=0;
252
253 %Update mesh type
254 md.mesh.dimension=2;
255 end % }}}
256 function md2 = extract(md,area) % {{{
257 %extract - extract a model according to an Argus contour or flag list
258 %
259 % This routine extracts a submodel from a bigger model with respect to a given contour
260 % md must be followed by the corresponding exp file or flags list
261 % It can either be a domain file (argus type, .exp extension), or an array of element flags.
262 % If user wants every element outside the domain to be
263 % extract2d, add '~' to the name of the domain file (ex: '~HO.exp');
264 % an empty string '' will be considered as an empty domain
265 % a string 'all' will be considered as the entire domain
266 %
267 % Usage:
268 % md2=extract(md,area);
269 %
270 % Examples:
271 % md2=extract(md,'Domain.exp');
272 %
273 % See also: EXTRUDE, COLLAPSE
274
275 %copy model
276 md1=md;
277
278 %some checks
279 if ((nargin~=2) | (nargout~=1)),
280 help extract
281 error('extract error message: bad usage');
282 end
283
284 %get elements that are inside area
285 flag_elem=FlagElements(md1,area);
286 if ~any(flag_elem),
287 error('extracted model is empty');
288 end
289
290 %kick out all elements with 3 dirichlets
291 spc_elem=find(~flag_elem);
292 spc_node=sort(unique(md1.mesh.elements(spc_elem,:)));
293 flag=ones(md1.mesh.numberofvertices,1);
294 flag(spc_node)=0;
295 pos=find(sum(flag(md1.mesh.elements),2)==0);
296 flag_elem(pos)=0;
297
298 %extracted elements and nodes lists
299 pos_elem=find(flag_elem);
300 pos_node=sort(unique(md1.mesh.elements(pos_elem,:)));
301
302 %keep track of some fields
303 numberofvertices1=md1.mesh.numberofvertices;
304 numberofelements1=md1.mesh.numberofelements;
305 numberofvertices2=length(pos_node);
306 numberofelements2=length(pos_elem);
307 flag_node=zeros(numberofvertices1,1);
308 flag_node(pos_node)=1;
309
310 %Create Pelem and Pnode (transform old nodes in new nodes and same thing for the elements)
311 Pelem=zeros(numberofelements1,1);
312 Pelem(pos_elem)=[1:numberofelements2]';
313 Pnode=zeros(numberofvertices1,1);
314 Pnode(pos_node)=[1:numberofvertices2]';
315
316 %renumber the elements (some nodes won't exist anymore)
317 elements_1=md1.mesh.elements;
318 elements_2=elements_1(pos_elem,:);
319 elements_2(:,1)=Pnode(elements_2(:,1));
320 elements_2(:,2)=Pnode(elements_2(:,2));
321 elements_2(:,3)=Pnode(elements_2(:,3));
322 if md1.mesh.dimension==3,
323 elements_2(:,4)=Pnode(elements_2(:,4));
324 elements_2(:,5)=Pnode(elements_2(:,5));
325 elements_2(:,6)=Pnode(elements_2(:,6));
326 end
327
328 %OK, now create the new model!
329
330 %take every field from model
331 md2=md1;
332
333 %automatically modify fields
334
335 %loop over model fields
336 model_fields=fields(md1);
337 for i=1:length(model_fields),
338 %get field
339 field=md1.(model_fields{i});
340 fieldsize=size(field);
341 if isobject(field), %recursive call
342 object_fields=fields(md1.(model_fields{i}));
343 for j=1:length(object_fields),
344 %get field
345 field=md1.(model_fields{i}).(object_fields{j});
346 fieldsize=size(field);
347 %size = number of nodes * n
348 if fieldsize(1)==numberofvertices1
349 md2.(model_fields{i}).(object_fields{j})=field(pos_node,:);
350 elseif (fieldsize(1)==numberofvertices1+1)
351 md2.(model_fields{i}).(object_fields{j})=[field(pos_node,:); field(end,:)];
352 %size = number of elements * n
353 elseif fieldsize(1)==numberofelements1
354 md2.(model_fields{i}).(object_fields{j})=field(pos_elem,:);
355 end
356 end
357 else
358 %size = number of nodes * n
359 if fieldsize(1)==numberofvertices1
360 md2.(model_fields{i})=field(pos_node,:);
361 elseif (fieldsize(1)==numberofvertices1+1)
362 md2.(model_fields{i})=[field(pos_node,:); field(end,:)];
363 %size = number of elements * n
364 elseif fieldsize(1)==numberofelements1
365 md2.(model_fields{i})=field(pos_elem,:);
366 end
367 end
368 end
369
370 %modify some specific fields
371
372 %Mesh
373 md2.mesh.numberofelements=numberofelements2;
374 md2.mesh.numberofvertices=numberofvertices2;
375 md2.mesh.elements=elements_2;
376
377 %mesh.uppervertex mesh.lowervertex
378 if md1.mesh.dimension==3
379 md2.mesh.uppervertex=md1.mesh.uppervertex(pos_node);
380 pos=find(~isnan(md2.mesh.uppervertex));
381 md2.mesh.uppervertex(pos)=Pnode(md2.mesh.uppervertex(pos));
382
383 md2.mesh.lowervertex=md1.mesh.lowervertex(pos_node);
384 pos=find(~isnan(md2.mesh.lowervertex));
385 md2.mesh.lowervertex(pos)=Pnode(md2.mesh.lowervertex(pos));
386
387 md2.mesh.upperelements=md1.mesh.upperelements(pos_elem);
388 pos=find(~isnan(md2.mesh.upperelements));
389 md2.mesh.upperelements(pos)=Pelem(md2.mesh.upperelements(pos));
390
391 md2.mesh.lowerelements=md1.mesh.lowerelements(pos_elem);
392 pos=find(~isnan(md2.mesh.lowerelements));
393 md2.mesh.lowerelements(pos)=Pelem(md2.mesh.lowerelements(pos));
394 end
395
396 %Initial 2d mesh
397 if md1.mesh.dimension==3
398 flag_elem_2d=flag_elem(1:md1.mesh.numberofelements2d);
399 pos_elem_2d=find(flag_elem_2d);
400 flag_node_2d=flag_node(1:md1.mesh.numberofvertices2d);
401 pos_node_2d=find(flag_node_2d);
402
403 md2.mesh.numberofelements2d=length(pos_elem_2d);
404 md2.mesh.numberofvertices2d=length(pos_node_2d);
405 md2.mesh.elements2d=md1.mesh.elements2d(pos_elem_2d,:);
406 md2.mesh.elements2d(:,1)=Pnode(md2.mesh.elements2d(:,1));
407 md2.mesh.elements2d(:,2)=Pnode(md2.mesh.elements2d(:,2));
408 md2.mesh.elements2d(:,3)=Pnode(md2.mesh.elements2d(:,3));
409
410 md2.mesh.x2d=md1.mesh.x(pos_node_2d);
411 md2.mesh.y2d=md1.mesh.y(pos_node_2d);
412 end
413
414 %Edges
415 if size(md2.mesh.edges,2)>1, %do not use ~isnan because there are some NaNs...
416 %renumber first two columns
417 pos=find(md2.mesh.edges(:,4)~=-1);
418 md2.mesh.edges(: ,1)=Pnode(md2.mesh.edges(:,1));
419 md2.mesh.edges(: ,2)=Pnode(md2.mesh.edges(:,2));
420 md2.mesh.edges(: ,3)=Pelem(md2.mesh.edges(:,3));
421 md2.mesh.edges(pos,4)=Pelem(md2.mesh.edges(pos,4));
422 %remove edges when the 2 vertices are not in the domain.
423 md2.mesh.edges=md2.mesh.edges(find(md2.mesh.edges(:,1) & md2.mesh.edges(:,2)),:);
424 %Replace all zeros by -1 in the last two columns
425 pos=find(md2.mesh.edges(:,3)==0);
426 md2.mesh.edges(pos,3)=-1;
427 pos=find(md2.mesh.edges(:,4)==0);
428 md2.mesh.edges(pos,4)=-1;
429 %Invert -1 on the third column with last column (Also invert first two columns!!)
430 pos=find(md2.mesh.edges(:,3)==-1);
431 md2.mesh.edges(pos,3)=md2.mesh.edges(pos,4);
432 md2.mesh.edges(pos,4)=-1;
433 values=md2.mesh.edges(pos,2);
434 md2.mesh.edges(pos,2)=md2.mesh.edges(pos,1);
435 md2.mesh.edges(pos,1)=values;
436 %Finally remove edges that do not belong to any element
437 pos=find(md2.mesh.edges(:,3)==-1 & md2.mesh.edges(:,4)==-1);
438 md2.mesh.edges(pos,:)=[];
439 end
440
441 %Penalties
442 if ~isnan(md2.stressbalance.vertex_pairing),
443 for i=1:size(md1.stressbalance.vertex_pairing,1);
444 md2.stressbalance.vertex_pairing(i,:)=Pnode(md1.stressbalance.vertex_pairing(i,:));
445 end
446 md2.stressbalance.vertex_pairing=md2.stressbalance.vertex_pairing(find(md2.stressbalance.vertex_pairing(:,1)),:);
447 end
448 if ~isnan(md2.masstransport.vertex_pairing),
449 for i=1:size(md1.masstransport.vertex_pairing,1);
450 md2.masstransport.vertex_pairing(i,:)=Pnode(md1.masstransport.vertex_pairing(i,:));
451 end
452 md2.masstransport.vertex_pairing=md2.masstransport.vertex_pairing(find(md2.masstransport.vertex_pairing(:,1)),:);
453 end
454
455 %recreate segments
456 if md1.mesh.dimension==2
457 md2.mesh.vertexconnectivity=NodeConnectivity(md2.mesh.elements,md2.mesh.numberofvertices);
458 md2.mesh.elementconnectivity=ElementConnectivity(md2.mesh.elements,md2.mesh.vertexconnectivity);
459 md2.mesh.segments=contourenvelope(md2);
460 md2.mesh.vertexonboundary=zeros(numberofvertices2,1); md2.mesh.vertexonboundary(md2.mesh.segments(:,1:2))=1;
461 else
462 %First do the connectivity for the contourenvelope in 2d
463 md2.mesh.vertexconnectivity=NodeConnectivity(md2.mesh.elements2d,md2.mesh.numberofvertices2d);
464 md2.mesh.elementconnectivity=ElementConnectivity(md2.mesh.elements2d,md2.mesh.vertexconnectivity);
465 md2.mesh.segments=contourenvelope(md2);
466 md2.mesh.vertexonboundary=zeros(numberofvertices2/md2.mesh.numberoflayers,1); md2.mesh.vertexonboundary(md2.mesh.segments(:,1:2))=1;
467 md2.mesh.vertexonboundary=repmat(md2.mesh.vertexonboundary,md2.mesh.numberoflayers,1);
468 %Then do it for 3d as usual
469 md2.mesh.vertexconnectivity=NodeConnectivity(md2.mesh.elements,md2.mesh.numberofvertices);
470 md2.mesh.elementconnectivity=ElementConnectivity(md2.mesh.elements,md2.mesh.vertexconnectivity);
471 end
472
473 %Boundary conditions: Dirichlets on new boundary
474 %Catch the elements that have not been extracted
475 orphans_elem=find(~flag_elem);
476 orphans_node=unique(md1.mesh.elements(orphans_elem,:))';
477 %Figure out which node are on the boundary between md2 and md1
478 nodestoflag1=intersect(orphans_node,pos_node);
479 nodestoflag2=Pnode(nodestoflag1);
480 if numel(md1.stressbalance.spcvx)>1 & numel(md1.stressbalance.spcvy)>2 & numel(md1.stressbalance.spcvz)>2,
481 if numel(md1.inversion.vx_obs)>1 & numel(md1.inversion.vy_obs)>1
482 md2.stressbalance.spcvx(nodestoflag2)=md2.inversion.vx_obs(nodestoflag2);
483 md2.stressbalance.spcvy(nodestoflag2)=md2.inversion.vy_obs(nodestoflag2);
484 else
485 md2.stressbalance.spcvx(nodestoflag2)=NaN;
486 md2.stressbalance.spcvy(nodestoflag2)=NaN;
487 disp(' ')
488 disp('!! extract warning: spc values should be checked !!')
489 disp(' ')
490 end
491 %put 0 for vz
492 md2.stressbalance.spcvz(nodestoflag2)=0;
493 end
494 if ~isnan(md1.thermal.spctemperature),
495 md2.thermal.spctemperature(nodestoflag2,1)=1;
496 end
497
498 %Results fields
499 if isstruct(md1.results),
500 md2.results=struct();
501 solutionfields=fields(md1.results);
502 for i=1:length(solutionfields),
503 if isstruct(md1.results.(solutionfields{i}))
504 %get subfields
505 solutionsubfields=fields(md1.results.(solutionfields{i}));
506 for j=1:length(solutionsubfields),
507 field=md1.results.(solutionfields{i}).(solutionsubfields{j});
508 if length(field)==numberofvertices1,
509 md2.results.(solutionfields{i}).(solutionsubfields{j})=field(pos_node);
510 elseif length(field)==numberofelements1,
511 md2.results.(solutionfields{i}).(solutionsubfields{j})=field(pos_elem);
512 else
513 md2.results.(solutionfields{i}).(solutionsubfields{j})=field;
514 end
515 end
516 else
517 field=md1.results.(solutionfields{i});
518 if length(field)==numberofvertices1,
519 md2.results.(solutionfields{i})=field(pos_node);
520 elseif length(field)==numberofelements1,
521 md2.results.(solutionfields{i})=field(pos_elem);
522 else
523 md2.results.(solutionfields{i})=field;
524 end
525 end
526 end
527 end
528
529 %Keep track of pos_node and pos_elem
530 md2.mesh.extractedvertices=pos_node;
531 md2.mesh.extractedelements=pos_elem;
532 end % }}}
533 function md = extrude(md,varargin) % {{{
534 %EXTRUDE - vertically extrude a 2d mesh
535 %
536 % vertically extrude a 2d mesh and create corresponding 3d mesh.
537 % The vertical distribution can:
538 % - follow a polynomial law
539 % - follow two polynomial laws, one for the lower part and one for the upper part of the mesh
540 % - be discribed by a list of coefficients (between 0 and 1)
541 %
542 %
543 % Usage:
544 % md=extrude(md,numlayers,extrusionexponent);
545 % md=extrude(md,numlayers,lowerexponent,upperexponent);
546 % md=extrude(md,listofcoefficients);
547 %
548 % Example:
549 % md=extrude(md,8,3);
550 % md=extrude(md,8,3,2);
551 % md=extrude(md,[0 0.2 0.5 0.7 0.9 0.95 1]);
552 %
553 % See also: MODELEXTRACT, COLLAPSE
554
555 %some checks on list of arguments
556 if ((nargin>4) | (nargin<2) | (nargout~=1)),
557 help extrude;
558 error('extrude error message');
559 end
560
561 %Extrude the mesh
562 if nargin==2, %list of coefficients
563 clist=varargin{1};
564 if any(clist<0) | any(clist>1),
565 error('extrusioncoefficients must be between 0 and 1');
566 end
567 extrusionlist=sort(unique([clist(:);0;1]));
568 numlayers=length(extrusionlist);
569 elseif nargin==3, %one polynomial law
570 if varargin{2}<=0,
571 help extrude;
572 error('extrusionexponent must be >=0');
573 end
574 numlayers=varargin{1};
575 extrusionlist=((0:1:numlayers-1)/(numlayers-1)).^varargin{2};
576 elseif nargin==4, %two polynomial laws
577 numlayers=varargin{1};
578 lowerexp=varargin{2};
579 upperexp=varargin{3};
580
581 if varargin{2}<=0 | varargin{3}<=0,
582 help extrude;
583 error('lower and upper extrusionexponents must be >=0');
584 end
585
586 lowerextrusionlist=[(0:2/(numlayers-1):1).^lowerexp]/2;
587 upperextrusionlist=[(0:2/(numlayers-1):1).^upperexp]/2;
588 extrusionlist=sort(unique([lowerextrusionlist 1-upperextrusionlist]));
589
590 end
591
592 if numlayers<2,
593 error('number of layers should be at least 2');
594 end
595 if md.mesh.dimension==3,
596 error('Cannot extrude a 3d mesh (extrude cannot be called more than once)');
597 end
598
599 %Initialize with the 2d mesh
600 x3d=[];
601 y3d=[];
602 z3d=[]; %the lower node is on the bed
603 thickness3d=md.geometry.thickness; %thickness and bed for these nodes
604 bed3d=md.geometry.bed;
605
606 %Create the new layers
607 for i=1:numlayers,
608 x3d=[x3d; md.mesh.x];
609 y3d=[y3d; md.mesh.y];
610 %nodes are distributed between bed and surface accordingly to the given exponent
611 z3d=[z3d; bed3d+thickness3d*extrusionlist(i)];
612 end
613 number_nodes3d=size(x3d,1); %number of 3d nodes for the non extruded part of the mesh
614
615 %Extrude elements
616 elements3d=[];
617 for i=1:numlayers-1,
618 elements3d=[elements3d;[md.mesh.elements+(i-1)*md.mesh.numberofvertices md.mesh.elements+i*md.mesh.numberofvertices]]; %Create the elements of the 3d mesh for the non extruded part
619 end
620 number_el3d=size(elements3d,1); %number of 3d nodes for the non extruded part of the mesh
621
622 %Keep a trace of lower and upper nodes
623 mesh.lowervertex=NaN*ones(number_nodes3d,1);
624 mesh.uppervertex=NaN*ones(number_nodes3d,1);
625 mesh.lowervertex(md.mesh.numberofvertices+1:end)=1:(numlayers-1)*md.mesh.numberofvertices;
626 mesh.uppervertex(1:(numlayers-1)*md.mesh.numberofvertices)=md.mesh.numberofvertices+1:number_nodes3d;
627 md.mesh.lowervertex=mesh.lowervertex;
628 md.mesh.uppervertex=mesh.uppervertex;
629
630 %same for lower and upper elements
631 mesh.lowerelements=NaN*ones(number_el3d,1);
632 mesh.upperelements=NaN*ones(number_el3d,1);
633 mesh.lowerelements(md.mesh.numberofelements+1:end)=1:(numlayers-2)*md.mesh.numberofelements;
634 mesh.upperelements(1:(numlayers-2)*md.mesh.numberofelements)=md.mesh.numberofelements+1:(numlayers-1)*md.mesh.numberofelements;
635 md.mesh.lowerelements=mesh.lowerelements;
636 md.mesh.upperelements=mesh.upperelements;
637
638 %Save old mesh
639 md.mesh.x2d=md.mesh.x;
640 md.mesh.y2d=md.mesh.y;
641 md.mesh.elements2d=md.mesh.elements;
642 md.mesh.numberofelements2d=md.mesh.numberofelements;
643 md.mesh.numberofvertices2d=md.mesh.numberofvertices;
644
645 %Update mesh type
646 md.mesh.dimension=3;
647
648 %Build global 3d mesh
649 md.mesh.elements=elements3d;
650 md.mesh.x=x3d;
651 md.mesh.y=y3d;
652 md.mesh.z=z3d;
653 md.mesh.numberofelements=number_el3d;
654 md.mesh.numberofvertices=number_nodes3d;
655 md.mesh.numberoflayers=numlayers;
656
657 %Ok, now deal with the other fields from the 2d mesh:
658
659 %lat long
660 md.mesh.lat=project3d(md,'vector',md.mesh.lat,'type','node');
661 md.mesh.long=project3d(md,'vector',md.mesh.long,'type','node');
662
663 %drag coefficient is limited to nodes that are on the bedrock.
664 md.friction.coefficient=project3d(md,'vector',md.friction.coefficient,'type','node','layer',1);
665
666 %p and q (same deal, except for element that are on the bedrock: )
667 md.friction.p=project3d(md,'vector',md.friction.p,'type','element');
668 md.friction.q=project3d(md,'vector',md.friction.q,'type','element');
669
670 %observations
671 md.inversion.vx_obs=project3d(md,'vector',md.inversion.vx_obs,'type','node');
672 md.inversion.vy_obs=project3d(md,'vector',md.inversion.vy_obs,'type','node');
673 md.inversion.vel_obs=project3d(md,'vector',md.inversion.vel_obs,'type','node');
674 md.inversion.thickness_obs=project3d(md,'vector',md.inversion.thickness_obs,'type','node');
675 md.surfaceforcings.mass_balance=project3d(md,'vector',md.surfaceforcings.mass_balance,'type','node');
676 md.surfaceforcings.precipitation=project3d(md,'vector',md.surfaceforcings.precipitation,'type','node');
677 md.balancethickness.thickening_rate=project3d(md,'vector',md.balancethickness.thickening_rate,'type','node');
678 md.surfaceforcings.monthlytemperatures=project3d(md,'vector',md.surfaceforcings.monthlytemperatures,'type','node');
679
680 %results
681 if ~isnan(md.initialization.vx),md.initialization.vx=project3d(md,'vector',md.initialization.vx,'type','node');end;
682 if ~isnan(md.initialization.vy),md.initialization.vy=project3d(md,'vector',md.initialization.vy,'type','node');end;
683 if ~isnan(md.initialization.vz),md.initialization.vz=project3d(md,'vector',md.initialization.vz,'type','node');end;
684 if ~isnan(md.initialization.vel),md.initialization.vel=project3d(md,'vector',md.initialization.vel,'type','node');end;
685 if ~isnan(md.initialization.temperature),md.initialization.temperature=project3d(md,'vector',md.initialization.temperature,'type','node');end;
686 if ~isnan(md.initialization.waterfraction),md.initialization.waterfraction=project3d(md,'vector',md.initialization.waterfraction,'type','node');end;
687 if ~isnan(md.initialization.watercolumn),md.initialization.watercolumn=project3d(md,'vector',md.initialization.watercolumn,'type','node','layer',1);end;
688 if ~isnan(md.initialization.sediment_head),md.initialization.sediment_head=project3d(md,'vector',md.initialization.sediment_head,'type','node','layer',1);end;
689 if ~isnan(md.initialization.epl_head),md.initialization.epl_head=project3d(md,'vector',md.initialization.epl_head,'type','node','layer',1);end;
690
691 %bedinfo and surface info
692 md.mesh.elementonbed=project3d(md,'vector',ones(md.mesh.numberofelements2d,1),'type','element','layer',1);
693 md.mesh.elementonsurface=project3d(md,'vector',ones(md.mesh.numberofelements2d,1),'type','element','layer',md.mesh.numberoflayers-1);
694 md.mesh.vertexonbed=project3d(md,'vector',ones(md.mesh.numberofvertices2d,1),'type','node','layer',1);
695 md.mesh.vertexonsurface=project3d(md,'vector',ones(md.mesh.numberofvertices2d,1),'type','node','layer',md.mesh.numberoflayers);
696
697 %elementstype
698 if ~isnan(md.flowequation.element_equation)
699 oldelements_type=md.flowequation.element_equation;
700 md.flowequation.element_equation=zeros(number_el3d,1);
701 md.flowequation.element_equation=project3d(md,'vector',oldelements_type,'type','element');
702 end
703
704 %verticestype
705 if ~isnan(md.flowequation.vertex_equation)
706 oldvertices_type=md.flowequation.vertex_equation;
707 md.flowequation.vertex_equation=zeros(number_nodes3d,1);
708 md.flowequation.vertex_equation=project3d(md,'vector',oldvertices_type,'type','node');
709 end
710 md.flowequation.borderSSA=project3d(md,'vector',md.flowequation.borderSSA,'type','node');
711 md.flowequation.borderHO=project3d(md,'vector',md.flowequation.borderHO,'type','node');
712 md.flowequation.borderFS=project3d(md,'vector',md.flowequation.borderFS,'type','node');
713
714 %boundary conditions
715 md.stressbalance.spcvx=project3d(md,'vector',md.stressbalance.spcvx,'type','node');
716 md.stressbalance.spcvy=project3d(md,'vector',md.stressbalance.spcvy,'type','node');
717 md.stressbalance.spcvz=project3d(md,'vector',md.stressbalance.spcvz,'type','node');
718 md.thermal.spctemperature=project3d(md,'vector',md.thermal.spctemperature,'type','node','layer',md.mesh.numberoflayers,'padding',NaN);
719 md.masstransport.spcthickness=project3d(md,'vector',md.masstransport.spcthickness,'type','node');
720 md.balancethickness.spcthickness=project3d(md,'vector',md.balancethickness.spcthickness,'type','node');
721 md.damage.spcdamage=project3d(md,'vector',md.damage.spcdamage,'type','node');
722 md.stressbalance.referential=project3d(md,'vector',md.stressbalance.referential,'type','node');
723 md.stressbalance.loadingforce=project3d(md,'vector',md.stressbalance.loadingforce,'type','node');
724 if isa(md.hydrology,'hydrologydc');
725 md.hydrology.spcsediment_head=project3d(md,'vector',md.hydrology.spcsediment_head,'type','node','layer',1);
726 md.hydrology.spcepl_head=project3d(md,'vector',md.hydrology.spcepl_head,'type','node','layer',1);
727 md.hydrology.mask_eplactive_node=project3d(md,'vector',md.hydrology.mask_eplactive_node,'type','node','layer',1);
728 md.hydrology.sediment_transmitivity=project3d(md,'vector',md.hydrology.sediment_transmitivity,'type','node','layer',1);
729 end
730
731 %connectivity
732 md.mesh.elementconnectivity=repmat(md.mesh.elementconnectivity,numlayers-1,1);
733 md.mesh.elementconnectivity(find(md.mesh.elementconnectivity==0))=NaN;
734 for i=2:numlayers-1,
735 md.mesh.elementconnectivity((i-1)*md.mesh.numberofelements2d+1:(i)*md.mesh.numberofelements2d,:)...
736 =md.mesh.elementconnectivity((i-1)*md.mesh.numberofelements2d+1:(i)*md.mesh.numberofelements2d,:)+md.mesh.numberofelements2d;
737 end
738 md.mesh.elementconnectivity(find(isnan(md.mesh.elementconnectivity)))=0;
739
740 %materials
741 md.materials.rheology_B=project3d(md,'vector',md.materials.rheology_B,'type','node');
742 md.materials.rheology_n=project3d(md,'vector',md.materials.rheology_n,'type','element');
743
744 %damage
745 md.damage.D=project3d(md,'vector',md.damage.D,'type','node');
746
747 %parameters
748 md.geometry.surface=project3d(md,'vector',md.geometry.surface,'type','node');
749 md.geometry.thickness=project3d(md,'vector',md.geometry.thickness,'type','node');
750 md.gia.mantle_viscosity=project3d(md,'vector',md.gia.mantle_viscosity,'type','node');
751 md.gia.lithosphere_thickness=project3d(md,'vector',md.gia.lithosphere_thickness,'type','node');
752 md.geometry.hydrostatic_ratio=project3d(md,'vector',md.geometry.hydrostatic_ratio,'type','node');
753 md.geometry.bed=project3d(md,'vector',md.geometry.bed,'type','node');
754 md.geometry.bathymetry=project3d(md,'vector',md.geometry.bathymetry,'type','node');
755 md.mesh.vertexonboundary=project3d(md,'vector',md.mesh.vertexonboundary,'type','node');
756 md.mask.groundedice_levelset=project3d(md,'vector',md.mask.groundedice_levelset,'type','node');
757 md.mask.ice_levelset=project3d(md,'vector',md.mask.ice_levelset,'type','node');
758 if ~isnan(md.inversion.cost_functions_coefficients),md.inversion.cost_functions_coefficients=project3d(md,'vector',md.inversion.cost_functions_coefficients,'type','node');end;
759 if ~isnan(md.inversion.min_parameters),md.inversion.min_parameters=project3d(md,'vector',md.inversion.min_parameters,'type','node');end;
760 if ~isnan(md.inversion.max_parameters),md.inversion.max_parameters=project3d(md,'vector',md.inversion.max_parameters,'type','node');end;
761 if ~isnan(md.qmu.partition),md.qmu.partition=project3d(md,'vector',md.qmu.partition','type','node');end
762 if(md.surfaceforcings.isdelta18o),md.surfaceforcings.temperatures_lgm=project3d(md,'vector',md.surfaceforcings.temperatures_lgm,'type','node');end
763 if(md.surfaceforcings.isdelta18o),md.surfaceforcings.temperatures_presentday=project3d(md,'vector',md.surfaceforcings.temperatures_presentday,'type','node');end
764 if(md.surfaceforcings.isdelta18o),md.surfaceforcings.precipitations_presentday=project3d(md,'vector',md.surfaceforcings.precipitations_presentday,'type','node');end
765
766 %Put lithostatic pressure if there is an existing pressure
767 if ~isnan(md.initialization.pressure),
768 md.initialization.pressure=md.constants.g*md.materials.rho_ice*(md.geometry.surface-md.mesh.z);
769 end
770
771 %special for thermal modeling:
772 md.basalforcings.melting_rate=project3d(md,'vector',md.basalforcings.melting_rate,'type','node','layer',1);
773 if ~isnan(md.basalforcings.geothermalflux)
774 md.basalforcings.geothermalflux=project3d(md,'vector',md.basalforcings.geothermalflux,'type','node','layer',1); %bedrock only gets geothermal flux
775 end
776
777 %increase connectivity if less than 25:
778 if md.mesh.average_vertex_connectivity<=25,
779 md.mesh.average_vertex_connectivity=100;
780 end
781 end % }}}
782 function md = structtomodel(md,structmd) % {{{
783
784 if ~isstruct(structmd) error('input model is not a structure'); end
785
786 %loaded model is a struct, initialize output and recover all fields
787 md = structtoobj(model,structmd);
788
789 %Old field now classes
790 if (isfield(structmd,'timestepping') & isnumeric(md.timestepping)), md.timestepping=timestepping(); end
791 if (isfield(structmd,'mask') & isnumeric(md.mask)),md.mask=mask(); end
792
793 %Field name change
794 if isfield(structmd,'drag'), md.friction.coefficient=structmd.drag; end
795 if isfield(structmd,'p'), md.friction.p=structmd.p; end
796 if isfield(structmd,'q'), md.friction.q=structmd.p; end
797 if isfield(structmd,'melting'), md.basalforcings.melting_rate=structmd.melting; end
798 if isfield(structmd,'melting_rate'), md.basalforcings.melting_rate=structmd.melting_rate; end
799 if isfield(structmd,'accumulation'), md.surfaceforcings.mass_balance=structmd.accumulation; end
800 if isfield(structmd,'numberofgrids'), md.mesh.numberofvertices=structmd.numberofgrids; end
801 if isfield(structmd,'numberofgrids2d'), md.mesh.numberofvertices2d=structmd.numberofgrids2d; end
802 if isfield(structmd,'uppergrids'), md.mesh.uppervertex=structmd.uppergrids; end
803 if isfield(structmd,'lowergrids'), md.mesh.lowervertex=structmd.lowergrids; end
804 if isfield(structmd,'gridonbed'), md.mesh.vertexonbed=structmd.gridonbed; end
805 if isfield(structmd,'gridonsurface'), md.mesh.vertexonsurface=structmd.gridonsurface; end
806 if isfield(structmd,'extractedgrids'), md.mesh.extractedvertices=structmd.extractedgrids; end
807 if isfield(structmd,'gridonboundary'), md.mesh.vertexonboundary=structmd.gridonboundary; end
808 if isfield(structmd,'petscoptions') & ~isempty(structmd.petscoptions), md.toolkits=structmd.petscoptions; end
809 if isfield(structmd,'g'), md.constants.g=structmd.g; end
810 if isfield(structmd,'yts'), md.constants.yts=structmd.yts; end
811 if isfield(structmd,'surface_mass_balance'), md.surfaceforcings.mass_balance=structmd.surface_mass_balance; end
812 if isfield(structmd,'basal_melting_rate'), md.basalforcings.melting_rate=structmd.basal_melting_rate; end
813 if isfield(structmd,'basal_melting_rate_correction'), md.basalforcings.melting_rate_correction=structmd.basal_melting_rate_correction; end
814 if isfield(structmd,'geothermalflux'), md.basalforcings.geothermalflux=structmd.geothermalflux; end
815 if isfield(structmd,'drag'), md.friction.coefficient=structmd.drag; end
816 if isfield(structmd,'drag_coefficient'), md.friction.coefficient=structmd.drag_coefficient; end
817 if isfield(structmd,'drag_p'), md.friction.p=structmd.drag_p; end
818 if isfield(structmd,'drag_q'), md.friction.q=structmd.drag_q; end
819 if isfield(structmd,'riftproperties'), %old implementation
820 md.rifts=rifts();
821 md.rifts.riftproperties=structmd.riftproperties;
822 md.rifts.riftstruct=structmd.rifts;
823 md.rifts.riftproperties=structmd.riftinfo;
824 end
825 if isfield(structmd,'bamg'), md.private.bamg=structmd.bamg; end
826 if isfield(structmd,'lowmem'), md.settings.lowmem=structmd.lowmem; end
827 if isfield(structmd,'io_gather'), md.settings.io_gather=structmd.io_gather; end
828 if isfield(structmd,'spcwatercolumn'), md.hydrology.spcwatercolumn=structmd.spcwatercolumn; end
829 if isfield(structmd,'hydro_n'), md.hydrology.n=structmd.hydro_n; end
830 if isfield(structmd,'hydro_p'), md.hydrology.p=structmd.hydro_p; end
831 if isfield(structmd,'hydro_q'), md.hydrology.q=structmd.hydro_q; end
832 if isfield(structmd,'hydro_CR'), md.hydrology.CR=structmd.hydro_CR; end
833 if isfield(structmd,'hydro_kn'), md.hydrology.kn=structmd.hydro_kn; end
834 if isfield(structmd,'spctemperature'), md.thermal.spctemperature=structmd.spctemperature; end
835 if isfield(structmd,'min_thermal_constraints'), md.thermal.penalty_threshold=structmd.min_thermal_constraints; end
836 if isfield(structmd,'artificial_diffusivity'), md.thermal.stabilization=structmd.artificial_diffusivity; end
837 if isfield(structmd,'max_nonlinear_iterations'), md.thermal.maxiter=structmd.max_nonlinear_iterations; end
838 if isfield(structmd,'stabilize_constraints'), md.thermal.penalty_lock=structmd.stabilize_constraints; end
839 if isfield(structmd,'penalty_offset'), md.thermal.penalty_factor=structmd.penalty_offset; end
840 if isfield(structmd,'name'), md.miscellaneous.name=structmd.name; end
841 if isfield(structmd,'notes'), md.miscellaneous.notes=structmd.notes; end
842 if isfield(structmd,'dummy'), md.miscellaneous.dummy=structmd.dummy; end
843 if isfield(structmd,'dt'), md.timestepping.time_step=structmd.dt; end
844 if isfield(structmd,'ndt'), md.timestepping.final_time=structmd.ndt; end
845 if isfield(structmd,'time_adapt'), md.timestepping.time_adapt=structmd.time_adapt; end
846 if isfield(structmd,'cfl_coefficient'), md.timestepping.cfl_coefficient=structmd.cfl_coefficient; end
847 if isfield(structmd,'spcthickness'), md.masstransport.spcthickness=structmd.spcthickness; end
848 if isfield(structmd,'artificial_diffusivity'), md.masstransport.stabilization=structmd.artificial_diffusivity; end
849 if isfield(structmd,'hydrostatic_adjustment'), md.masstransport.hydrostatic_adjustment=structmd.hydrostatic_adjustment; end
850 if isfield(structmd,'penalties'), md.masstransport.vertex_pairing=structmd.penalties; end
851 if isfield(structmd,'penalty_offset'), md.masstransport.penalty_factor=structmd.penalty_offset; end
852 if isfield(structmd,'B'), md.materials.rheology_B=structmd.B; end
853 if isfield(structmd,'n'), md.materials.rheology_n=structmd.n; end
854 if isfield(structmd,'rheology_B'), md.materials.rheology_B=structmd.rheology_B; end
855 if isfield(structmd,'rheology_n'), md.materials.rheology_n=structmd.rheology_n; end
856 if isfield(structmd,'rheology_Z'), md.damage.D=(1-structmd.rheology_Z); end
857 if isfield(structmd,'spcthickness'), md.balancethickness.spcthickness=structmd.spcthickness; end
858 if isfield(structmd,'artificial_diffusivity'), md.balancethickness.stabilization=structmd.artificial_diffusivity; end
859 if isfield(structmd,'dhdt'), md.balancethickness.thickening_rate=structmd.dhdt; end
860 if isfield(structmd,'isSIA'), md.flowequation.isSIA=structmd.isSIA; end
861 if isfield(structmd,'isFS'), md.flowequation.isFS=structmd.isFS; end
862 if isfield(structmd,'elements_type'), md.flowequation.element_equation=structmd.elements_type; end
863 if isfield(structmd,'vertices_type'), md.flowequation.vertex_equation=structmd.vertices_type; end
864 if isfield(structmd,'eps_rel'), md.steadystate.reltol=structmd.eps_rel; end
865 if isfield(structmd,'max_steadystate_iterations'), md.steadystate.maxiter=structmd.max_steadystate_iterations; end
866 if isfield(structmd,'isdiagnostic'), md.transient.isstressbalance=structmd.isdiagnostic; end
867 if isfield(structmd,'isprognostic'), md.transient.ismasstransport=structmd.isprognostic; end
868 if isfield(structmd,'isthermal'), md.transient.isthermal=structmd.isthermal; end
869 if isfield(structmd,'control_analysis'), md.inversion.iscontrol=structmd.control_analysis; end
870 if isfield(structmd,'weights'), md.inversion.cost_functions_coefficients=structmd.weights; end
871 if isfield(structmd,'nsteps'), md.inversion.nsteps=structmd.nsteps; end
872 if isfield(structmd,'maxiter_per_step'), md.inversion.maxiter_per_step=structmd.maxiter_per_step; end
873 if isfield(structmd,'cm_min'), md.inversion.min_parameters=structmd.cm_min; end
874 if isfield(structmd,'cm_max'), md.inversion.max_parameters=structmd.cm_max; end
875 if isfield(structmd,'vx_obs'), md.inversion.vx_obs=structmd.vx_obs; end
876 if isfield(structmd,'vy_obs'), md.inversion.vy_obs=structmd.vy_obs; end
877 if isfield(structmd,'vel_obs'), md.inversion.vel_obs=structmd.vel_obs; end
878 if isfield(structmd,'thickness_obs'), md.inversion.thickness_obs=structmd.thickness_obs; end
879 if isfield(structmd,'vx'), md.initialization.vx=structmd.vx; end
880 if isfield(structmd,'vy'), md.initialization.vy=structmd.vy; end
881 if isfield(structmd,'vz'), md.initialization.vz=structmd.vz; end
882 if isfield(structmd,'vel'), md.initialization.vel=structmd.vel; end
883 if isfield(structmd,'pressure'), md.initialization.pressure=structmd.pressure; end
884 if isfield(structmd,'temperature'), md.initialization.temperature=structmd.temperature; end
885 if isfield(structmd,'waterfraction'), md.initialization.waterfraction=structmd.waterfraction; end
886 if isfield(structmd,'watercolumn'), md.initialization.watercolumn=structmd.watercolumn; end
887 if isfield(structmd,'surface'), md.geometry.surface=structmd.surface; end
888 if isfield(structmd,'bed'), md.geometry.bed=structmd.bed; end
889 if isfield(structmd,'thickness'), md.geometry.thickness=structmd.thickness; end
890 if isfield(structmd,'bathymetry'), md.geometry.bathymetry=structmd.bathymetry; end
891 if isfield(structmd,'thickness_coeff'), md.geometry.hydrostatic_ratio=structmd.thickness_coeff; end
892 if isfield(structmd,'connectivity'), md.mesh.average_vertex_connectivity=structmd.connectivity; end
893 if isfield(structmd,'extractednodes'), md.mesh.extractedvertices=structmd.extractednodes; end
894 if isfield(structmd,'extractedelements'), md.mesh.extractedelements=structmd.extractedelements; end
895 if isfield(structmd,'nodeonboundary'), md.mesh.vertexonboundary=structmd.nodeonboundary; end
896 if isfield(structmd,'hemisphere'), md.mesh.hemisphere=structmd.hemisphere; end
897 if isfield(structmd,'lat'), md.mesh.lat=structmd.lat; end
898 if isfield(structmd,'long'), md.mesh.long=structmd.long; end
899 if isfield(structmd,'segments'), md.mesh.segments=structmd.segments; end
900 if isfield(structmd,'segmentmarkers'), md.mesh.segmentmarkers=structmd.segmentmarkers; end
901 if isfield(structmd,'dim'), md.mesh.dimension=structmd.dim; end
902 if isfield(structmd,'numlayers'), md.mesh.numberoflayers=structmd.numlayers; end
903 if isfield(structmd,'numberofelements'), md.mesh.numberofelements=structmd.numberofelements; end
904 if isfield(structmd,'numberofvertices'), md.mesh.numberofvertices=structmd.numberofvertices; end
905 if isfield(structmd,'numberofnodes'), md.mesh.numberofvertices=structmd.numberofnodes; end
906 if isfield(structmd,'numberofedges'), md.mesh.numberofedges=structmd.numberofedges; end
907 if isfield(structmd,'numberofelements2d'), md.mesh.numberofelements2d=structmd.numberofelements2d; end
908 if isfield(structmd,'numberofnodes2d'), md.mesh.numberofvertices2d=structmd.numberofnodes2d; end
909 if isfield(structmd,'nodeconnectivity'), md.mesh.vertexconnectivity=structmd.nodeconnectivity; end
910 if isfield(structmd,'elementconnectivity'), md.mesh.elementconnectivity=structmd.elementconnectivity; end
911 if isfield(structmd,'uppernodes'), md.mesh.uppervertex=structmd.uppernodes; end
912 if isfield(structmd,'lowernodes'), md.mesh.lowervertex=structmd.lowernodes; end
913 if isfield(structmd,'upperelements'), md.mesh.upperelements=structmd.upperelements; end
914 if isfield(structmd,'lowerelements'), md.mesh.lowerelements=structmd.lowerelements; end
915 if isfield(structmd,'elementonbed'), md.mesh.elementonbed=structmd.elementonbed; end
916 if isfield(structmd,'elementonsurface'), md.mesh.elementonsurface=structmd.elementonsurface; end
917 if isfield(structmd,'nodeonsurface'), md.mesh.vertexonsurface=structmd.nodeonsurface; end
918 if isfield(structmd,'nodeonbed'), md.mesh.vertexonbed=structmd.nodeonbed; end
919 if isfield(structmd,'elements2d'), md.mesh.elements2d=structmd.elements2d; end
920 if isfield(structmd,'y2d'), md.mesh.y2d=structmd.y2d; end
921 if isfield(structmd,'x2d'), md.mesh.x2d=structmd.x2d; end
922 if isfield(structmd,'elements'), md.mesh.elements=structmd.elements; end
923 if isfield(structmd,'edges'),
924 md.mesh.edges=structmd.edges;
925 md.mesh.edges(isnan(md.mesh.edges))=-1;
926 end
927 if isfield(structmd,'y'), md.mesh.y=structmd.y; end
928 if isfield(structmd,'x'), md.mesh.x=structmd.x; end
929 if isfield(structmd,'z'), md.mesh.z=structmd.z; end
930 if isfield(structmd,'mask'), md.flaim.criterion=structmd.mask; end
931 if isfield(structmd,'diagnostic_ref'), md.stressbalance.referential=structmd.diagnostic_ref; end
932 if isfield(structmd,'npart'); md.qmu.numberofpartitions=structmd.npart; end
933 if isfield(structmd,'part'); md.qmu.partition=structmd.part; end
934
935 %Field changes
936 if (isfield(structmd,'type') & ischar(structmd.type)),
937 if strcmpi(structmd.type,'2d'), md.mesh.dimension=2; end
938 if strcmpi(structmd.type,'3d'), md.mesh.dimension=3; end
939 end
940 if isnumeric(md.verbose),
941 md.verbose=verbose;
942 end
943
944 if isfield(structmd,'spcvelocity'),
945 md.stressbalance.spcvx=NaN*ones(md.mesh.numberofvertices,1);
946 md.stressbalance.spcvy=NaN*ones(md.mesh.numberofvertices,1);
947 md.stressbalance.spcvz=NaN*ones(md.mesh.numberofvertices,1);
948 pos=find(structmd.spcvelocity(:,1)); md.stressbalance.spcvx(pos)=structmd.spcvelocity(pos,4);
949 pos=find(structmd.spcvelocity(:,2)); md.stressbalance.spcvy(pos)=structmd.spcvelocity(pos,5);
950 pos=find(structmd.spcvelocity(:,3)); md.stressbalance.spcvz(pos)=structmd.spcvelocity(pos,6);
951 end
952 if isfield(structmd,'spcvx'),
953 md.stressbalance.spcvx=NaN*ones(md.mesh.numberofvertices,1);
954 pos=find(~isnan(structmd.spcvx)); md.stressbalance.spcvx(pos)=structmd.spcvx(pos);
955 end
956 if isfield(structmd,'spcvy'),
957 md.stressbalance.spcvy=NaN*ones(md.mesh.numberofvertices,1);
958 pos=find(~isnan(structmd.spcvy)); md.stressbalance.spcvy(pos)=structmd.spcvy(pos);
959 end
960 if isfield(structmd,'spcvz'),
961 md.stressbalance.spcvz=NaN*ones(md.mesh.numberofvertices,1);
962 pos=find(~isnan(structmd.spcvz)); md.stressbalance.spcvz(pos)=structmd.spcvz(pos);
963 end
964 if isfield(structmd,'pressureload'),
965 if ~isempty(structmd.pressureload) & ismember(structmd.pressureload(end,end),[118 119 120]),
966 pos=find(structmd.pressureload(:,end)==120); md.stressbalance.icefront(pos,end)=0;
967 pos=find(structmd.pressureload(:,end)==118); md.stressbalance.icefront(pos,end)=1;
968 pos=find(structmd.pressureload(:,end)==119); md.stressbalance.icefront(pos,end)=2;
969 end
970 end
971 if isfield(structmd,'elements_type') & structmd.elements_type(end,end)>50,
972 pos=find(structmd.elements_type==59); md.flowequation.element_equation(pos,end)=0;
973 pos=find(structmd.elements_type==55); md.flowequation.element_equation(pos,end)=1;
974 pos=find(structmd.elements_type==56); md.flowequation.element_equation(pos,end)=2;
975 pos=find(structmd.elements_type==60); md.flowequation.element_equation(pos,end)=3;
976 pos=find(structmd.elements_type==62); md.flowequation.element_equation(pos,end)=4;
977 pos=find(structmd.elements_type==57); md.flowequation.element_equation(pos,end)=5;
978 pos=find(structmd.elements_type==58); md.flowequation.element_equation(pos,end)=6;
979 pos=find(structmd.elements_type==61); md.flowequation.element_equation(pos,end)=7;
980 end
981 if isfield(structmd,'vertices_type') & structmd.vertices_type(end,end)>50,
982 pos=find(structmd.vertices_type==59); md.flowequation.vertex_equation(pos,end)=0;
983 pos=find(structmd.vertices_type==55); md.flowequation.vertex_equation(pos,end)=1;
984 pos=find(structmd.vertices_type==56); md.flowequation.vertex_equation(pos,end)=2;
985 pos=find(structmd.vertices_type==60); md.flowequation.vertex_equation(pos,end)=3;
986 pos=find(structmd.vertices_type==62); md.flowequation.vertex_equation(pos,end)=4;
987 pos=find(structmd.vertices_type==57); md.flowequation.vertex_equation(pos,end)=5;
988 pos=find(structmd.vertices_type==58); md.flowequation.vertex_equation(pos,end)=6;
989 pos=find(structmd.vertices_type==61); md.flowequation.vertex_equation(pos,end)=7;
990 end
991 if isfield(structmd,'rheology_law') & isnumeric(structmd.rheology_law),
992 if (structmd.rheology_law==272), md.materials.rheology_law='None'; end
993 if (structmd.rheology_law==368), md.materials.rheology_law='Paterson'; end
994 if (structmd.rheology_law==369), md.materials.rheology_law='Arrhenius'; end
995 end
996 if isfield(structmd,'groundingline_migration') & isnumeric(structmd.groundingline_migration),
997 if (structmd.groundingline_migration==272), md.groundingline.migration='None'; end
998 if (structmd.groundingline_migration==273), md.groundingline.migration='AgressiveMigration'; end
999 if (structmd.groundingline_migration==274), md.groundingline.migration='SoftMigration'; end
1000 end
1001 if isfield(structmd,'control_type') & isnumeric(structmd.control_type),
1002 if (structmd.control_type==143), md.inversion.control_parameters={'FrictionCoefficient'}; end
1003 if (structmd.control_type==190), md.inversion.control_parameters={'RheologyBbar'}; end
1004 if (structmd.control_type==147), md.inversion.control_parameters={'Thickeningrate'}; end
1005 end
1006 if isfield(structmd,'cm_responses') & ismember(structmd.cm_responses(end,end),[165:170 383 388 389]),
1007 pos=find(structmd.cm_responses==166); md.inversion.cost_functions(pos)=101;
1008 pos=find(structmd.cm_responses==167); md.inversion.cost_functions(pos)=102;
1009 pos=find(structmd.cm_responses==168); md.inversion.cost_functions(pos)=103;
1010 pos=find(structmd.cm_responses==169); md.inversion.cost_functions(pos)=104;
1011 pos=find(structmd.cm_responses==170); md.inversion.cost_functions(pos)=105;
1012 pos=find(structmd.cm_responses==165); md.inversion.cost_functions(pos)=201;
1013 pos=find(structmd.cm_responses==389); md.inversion.cost_functions(pos)=501;
1014 pos=find(structmd.cm_responses==388); md.inversion.cost_functions(pos)=502;
1015 pos=find(structmd.cm_responses==382); md.inversion.cost_functions(pos)=503;
1016 end
1017
1018 if isfield(structmd,'artificial_diffusivity') & structmd.artificial_diffusivity==2,
1019 md.thermal.stabilization=2;
1020 md.masstransport.stabilization=1;
1021 md.balancethickness.stabilization=1;
1022 end
1023 if isnumeric(md.masstransport.hydrostatic_adjustment)
1024 if md.masstransport.hydrostatic_adjustment==269,
1025 md.masstransport.hydrostatic_adjustment='Incremental';
1026 else
1027 md.masstransport.hydrostatic_adjustment='Absolute';
1028 end
1029 end
1030
1031 %New fields
1032 if ~isfield(structmd,'upperelements');
1033 md.mesh.upperelements=transpose(1:md.mesh.numberofelements)+md.mesh.numberofelements2d;
1034 md.mesh.upperelements(end-md.mesh.numberofelements2d+1:end)=NaN;
1035 end
1036 if ~isfield(structmd,'lowerelements');
1037 md.mesh.lowerelements=transpose(1:md.mesh.numberofelements)-md.mesh.numberofelements2d;
1038 md.mesh.lowerelements(1:md.mesh.numberofelements2d)=NaN;
1039 end
1040 if ~isfield(structmd,'diagnostic_ref');
1041 md.stressbalance.referential=NaN*ones(md.mesh.numberofvertices,6);
1042 end
1043 if ~isfield(structmd,'loadingforce');
1044 md.stressbalance.loadingforce=0*ones(md.mesh.numberofvertices,3);
1045 end
1046
1047 %2013 August 9
1048 if isfield(structmd,'prognostic') & isa(structmd.prognostic,'prognostic'),
1049 disp('Recovering old prognostic class');
1050 md.masstransport=masstransport(structmd.prognostic);
1051 end
1052 %2013 August 9
1053 if isfield(structmd,'diagnostic') & (isa(structmd.diagnostic,'diagnostic') || isa(structmd.diagnostic,'stressbalance')),
1054 disp('Recovering old diagnostic class');
1055 md.stressbalance=stressbalance(structmd.diagnostic);
1056 end
1057 end% }}}
1058 function md = setdefaultparameters(md) % {{{
1059
1060 %initialize subclasses
1061 md.mesh = mesh();
1062 md.mask = mask();
1063 md.constants = constants();
1064 md.geometry = geometry();
1065 md.initialization = initialization();
1066 md.surfaceforcings = surfaceforcings();
1067 md.basalforcings = basalforcings();
1068 md.friction = friction();
1069 md.rifts = rifts();
1070 md.timestepping = timestepping();
1071 md.groundingline = groundingline();
1072 md.materials = matice();
1073 md.damage = damage();
1074 md.flowequation = flowequation();
1075 md.debug = debug();
1076 md.verbose = verbose();
1077 md.settings = settings();
1078 md.toolkits = toolkits();
1079 md.cluster = generic();
1080 md.balancethickness = balancethickness();
1081 md.stressbalance = stressbalance();
1082 md.hydrology = hydrologyshreve();
1083 md.masstransport = masstransport();
1084 md.thermal = thermal();
1085 md.steadystate = steadystate();
1086 md.transient = transient();
1087 md.gia = gia();
1088 md.autodiff = autodiff();
1089 md.flaim = flaim();
1090 md.inversion = inversion();
1091 md.qmu = qmu();
1092 md.radaroverlay = radaroverlay();
1093 md.results = struct();
1094 md.outputdefinition = outputdefinition();
1095 md.miscellaneous = miscellaneous();
1096 md.private = private();
1097 end
1098 %}}}
1099 function disp(obj) % {{{
1100 disp(sprintf('%19s: %-22s -- %s','mesh' ,['[1x1 ' class(obj.mesh) ']'],'mesh properties'));
1101 disp(sprintf('%19s: %-22s -- %s','mask' ,['[1x1 ' class(obj.mask) ']'],'defines grounded and floating elements'));
1102 disp(sprintf('%19s: %-22s -- %s','geometry' ,['[1x1 ' class(obj.geometry) ']'],'surface elevation, bedrock topography, ice thickness,...'));
1103 disp(sprintf('%19s: %-22s -- %s','constants' ,['[1x1 ' class(obj.constants) ']'],'physical constants'));
1104 disp(sprintf('%19s: %-22s -- %s','surfaceforcings' ,['[1x1 ' class(obj.surfaceforcings) ']'],'surface forcings'));
1105 disp(sprintf('%19s: %-22s -- %s','basalforcings' ,['[1x1 ' class(obj.basalforcings) ']'],'bed forcings'));
1106 disp(sprintf('%19s: %-22s -- %s','materials' ,['[1x1 ' class(obj.materials) ']'],'material properties'));
1107 disp(sprintf('%19s: %-22s -- %s','damage' ,['[1x1 ' class(obj.damage) ']'],'damage propagation laws'));
1108 disp(sprintf('%19s: %-22s -- %s','friction' ,['[1x1 ' class(obj.friction) ']'],'basal friction/drag properties'));
1109 disp(sprintf('%19s: %-22s -- %s','flowequation' ,['[1x1 ' class(obj.flowequation) ']'],'flow equations'));
1110 disp(sprintf('%19s: %-22s -- %s','timestepping' ,['[1x1 ' class(obj.timestepping) ']'],'time stepping for transient models'));
1111 disp(sprintf('%19s: %-22s -- %s','initialization' ,['[1x1 ' class(obj.initialization) ']'],'initial guess/state'));
1112 disp(sprintf('%19s: %-22s -- %s','rifts' ,['[1x1 ' class(obj.rifts) ']'],'rifts properties'));
1113 disp(sprintf('%19s: %-22s -- %s','debug' ,['[1x1 ' class(obj.debug) ']'],'debugging tools (valgrind, gprof)'));
1114 disp(sprintf('%19s: %-22s -- %s','verbose' ,['[1x1 ' class(obj.verbose) ']'],'verbosity level in solve'));
1115 disp(sprintf('%19s: %-22s -- %s','settings' ,['[1x1 ' class(obj.settings) ']'],'settings properties'));
1116 disp(sprintf('%19s: %-22s -- %s','toolkits' ,['[1x1 ' class(obj.toolkits) ']'],'PETSc options for each solution'));
1117 disp(sprintf('%19s: %-22s -- %s','cluster' ,['[1x1 ' class(obj.cluster) ']'],'cluster parameters (number of cpus...)'));
1118 disp(sprintf('%19s: %-22s -- %s','balancethickness',['[1x1 ' class(obj.balancethickness) ']'],'parameters for balancethickness solution'));
1119 disp(sprintf('%19s: %-22s -- %s','stressbalance' ,['[1x1 ' class(obj.stressbalance) ']'],'parameters for stressbalance solution'));
1120 disp(sprintf('%19s: %-22s -- %s','groundingline' ,['[1x1 ' class(obj.groundingline) ']'],'parameters for groundingline solution'));
1121 disp(sprintf('%19s: %-22s -- %s','hydrology' ,['[1x1 ' class(obj.hydrology) ']'],'parameters for hydrology solution'));
1122 disp(sprintf('%19s: %-22s -- %s','masstransport' ,['[1x1 ' class(obj.masstransport) ']'],'parameters for masstransport solution'));
1123 disp(sprintf('%19s: %-22s -- %s','thermal' ,['[1x1 ' class(obj.thermal) ']'],'parameters for thermal solution'));
1124 disp(sprintf('%19s: %-22s -- %s','steadystate' ,['[1x1 ' class(obj.steadystate) ']'],'parameters for steadystate solution'));
1125 disp(sprintf('%19s: %-22s -- %s','transient' ,['[1x1 ' class(obj.transient) ']'],'parameters for transient solution'));
1126 disp(sprintf('%19s: %-22s -- %s','gia' ,['[1x1 ' class(obj.gia) ']'],'parameters for gia solution'));
1127 disp(sprintf('%19s: %-22s -- %s','autodiff' ,['[1x1 ' class(obj.autodiff) ']'],'automatic differentiation parameters'));
1128 disp(sprintf('%19s: %-22s -- %s','flaim' ,['[1x1 ' class(obj.flaim) ']'],'flaim parameters'));
1129 disp(sprintf('%19s: %-22s -- %s','inversion' ,['[1x1 ' class(obj.inversion) ']'],'parameters for inverse methods'));
1130 disp(sprintf('%19s: %-22s -- %s','qmu' ,['[1x1 ' class(obj.qmu) ']'],'dakota properties'));
1131 disp(sprintf('%19s: %-22s -- %s','outputdefinition',['[1x1 ' class(obj.outputdefinition) ']'],'output definition'));
1132 disp(sprintf('%19s: %-22s -- %s','results' ,['[1x1 ' class(obj.results) ']'],'model results'));
1133 disp(sprintf('%19s: %-22s -- %s','radaroverlay' ,['[1x1 ' class(obj.radaroverlay) ']'],'radar image for plot overlay'));
1134 disp(sprintf('%19s: %-22s -- %s','miscellaneous' ,['[1x1 ' class(obj.miscellaneous) ']'],'miscellaneous fields'));
1135 end % }}}
1136 function memory(obj) % {{{
1137
1138 disp(sprintf('\nMemory imprint:\n'));
1139
1140 fields=properties('model');
1141 mem=0;
1142
1143 for i=1:length(fields),
1144 field=obj.(fields{i});
1145 s=whos('field');
1146 mem=mem+s.bytes/1e6;
1147 disp(sprintf('%19s: %6.2f Mb',fields{i},s.bytes/1e6));
1148 end
1149 disp(sprintf('%19s--%10s','--------------','--------------'));
1150 disp(sprintf('%19s: %g Mb','Total',mem));
1151 end % }}}
1152 function netcdf(obj,filename) % {{{
1153 %NETCDF - save model as netcdf
1154 %
1155 % Usage:
1156 % netcdf(md,filename)
1157 %
1158 % Example:
1159 % netcdf(md,'model.nc');
1160
1161 disp('Saving model as NetCDF');
1162 %1. Create NetCDF file
1163 ncid=netcdf.create(filename,'CLOBBER');
1164 netcdf.putAtt(ncid,netcdf.getConstant('NC_GLOBAL'),'Conventions','CF-1.4');
1165 netcdf.putAtt(ncid,netcdf.getConstant('NC_GLOBAL'),'Title',['ISSM model (' obj.miscellaneous.name ')']);
1166 netcdf.putAtt(ncid,netcdf.getConstant('NC_GLOBAL'),'Author',getenv('USER'));
1167 netcdf.putAtt(ncid,netcdf.getConstant('NC_GLOBAL'),'Date',datestr(now));
1168
1169 %Preallocate variable id, needed to write variables in netcdf file
1170 var_id=zeros(1000,1);%preallocate
1171
1172 for step=1:2,
1173 counter=0;
1174 [var_id,counter]=structtonc(ncid,'md',obj,0,var_id,counter,step);
1175 if step==1, netcdf.endDef(ncid); end
1176 end
1177
1178 if counter>1000,
1179 warning(['preallocation of var_id need to be updated from ' num2str(1000) ' to ' num2str(counter)]);
1180 end
1181
1182 netcdf.close(ncid)
1183 end % }}}
1184 function xylim(obj) % {{{
1185
1186 xlim([min(obj.mesh.x) max(obj.mesh.x)]);
1187 ylim([min(obj.mesh.y) max(obj.mesh.y)])
1188 end % }}}
1189 function md=upload(md) % {{{
1190 %the goal of this routine is to upload the model onto a server, and to empty it.
1191 %So first, save the model with a unique name and upload the file to the server:
1192 random_part=fix(rand(1)*10000);
1193 id=[md.miscellaneous.name '-' regexprep(datestr(now),'[^\w'']','') '-' num2str(random_part) '-' getenv('USER') '-' oshostname() '.upload'];
1194 eval(['save ' id ' md']);
1195
1196 %Now, upload the file:
1197 issmscpout(md.settings.upload_server,md.settings.upload_path,md.settings.upload_login,md.settings.upload_port,{id},1);
1198
1199 %Now, empty this model of everything except settings, and record name of file we just uploaded!
1200 settings_back=md.settings;
1201 md=model();
1202 md.settings=settings_back;
1203 md.settings.upload_filename=id;
1204
1205 %get locally rid of file that was uploaded
1206 eval(['delete ' id]);
1207
1208 end % }}}
1209 function md=download(md) % {{{
1210
1211 %the goal of this routine is to download the internals of the current model from a server, because
1212 %this model is empty, except for the settings which tell us where to go and find this model!
1213
1214 %Download the file:
1215 issmscpin(md.settings.upload_server, md.settings.upload_login, md.settings.upload_port, md.settings.upload_path, {md.settings.upload_filename});
1216
1217 name=md.settings.upload_filename;
1218
1219 %Now, load this model:
1220 md=loadmodel(md.settings.upload_filename);
1221
1222 %get locally rid of file that was downloaded
1223 eval(['delete ' name]);
1224
1225 end % }}}
1226 end
1227 end
Note: See TracBrowser for help on using the repository browser.