%MODEL class definition % % Usage: % md = model(varargin) classdef model properties (SetAccess=public) %Model fields % {{{ %Careful here: no other class should be used as default value this is a bug of matlab mesh = 0; mask = 0; geometry = 0; constants = 0; smb = 0; basalforcings = 0; materials = 0; damage = 0; friction = 0; flowequation = 0; timestepping = 0; initialization = 0; rifts = 0; slr = 0; debug = 0; verbose = 0; settings = 0; toolkits = 0; cluster = 0; balancethickness = 0; stressbalance = 0; groundingline = 0; hydrology = 0; masstransport = 0; thermal = 0; steadystate = 0; transient = 0; levelset = 0; calving = 0; gia = 0; esa = 0; autodiff = 0; inversion = 0; qmu = 0; amr = 0; results = 0; outputdefinition = 0; radaroverlay = 0; miscellaneous = 0; private = 0; %}}} end methods (Static) function md = loadobj(md) % {{{ % This function is directly called by matlab when a model object is % loaded. If the input is a struct it is an old version of model and % old fields must be recovered (make sure they are in the deprecated % model properties) if verLessThan('matlab','7.9'), disp('Warning: your matlab version is old and there is a risk that load does not work correctly'); disp(' if the model is not loaded correctly, rename temporarily loadobj so that matlab does not use it'); % This is a Matlab bug: all the fields of md have their default value % Example of error message: % Warning: Error loading an object of class 'model': % Undefined function or method 'exist' for input arguments of type 'cell' % % This has been fixed in MATLAB 7.9 (R2009b) and later versions end if isstruct(md) disp('Recovering model object from a previous version'); md = structtomodel(model,md); end %2012 August 4th if isa(md.materials,'materials'), disp('Recovering old materials'); if numel(md.materials.rheology_Z)==1 & isnan(md.materials.rheology_Z), md.materials=matice(md.materials); else md.materials=matdamageice(md.materials); end end %2013 April 12 if numel(md.stressbalance.loadingforce==1) md.stressbalance.loadingforce=0*ones(md.mesh.numberofvertices,3); end %2013 April 17 if isa(md.hydrology,'hydrology'), disp('Recovering old hydrology class'); md.hydrology=hydrologyshreve(md.materials); end %2013 October 9 if ~isa(md.damage,'damage'), md.damage=damage(); md.damage.D=zeros(md.mesh.numberofvertices,1); md.damage.spcdamage=NaN*ones(md.mesh.numberofvertices,1); end %2013 November 18 if ~isa(md.outputdefinition,'outputdefinition'), md.outputdefinition=outputdefinition(); end %2014 March 26th if isa(md.mesh,'mesh'), disp('Recovering old mesh class'); if isprop(md.mesh,'dimension'), if md.mesh.dimension==2, md.mesh=mesh2d(md.mesh); else md.mesh=mesh3dprisms(md.mesh); end else md.mesh=mesh2dvertical(md.mesh); end end %2014 November 12 if isa(md.calving,'double'); md.calving=calving(); end %2016 February 3 if isa(md.slr,'double'); md.slr=slr(); end %2016 October 11 if isa(md.esa,'double'); md.esa=esa(); end %2017 February 10th if md.settings.solver_residue_threshold==0, md.settings.solver_residue_threshold = 1e-6; end %2017 April 10th if isa(md.gia,'gia'), md.gia=giaivins(); end %2017 May 4th if isa(md.amr,'double'); md.amr=amr(); end end% }}} end methods function md = model(varargin) % {{{ switch nargin case 0 md=setdefaultparameters(md); case 1 error('model constructor not supported yet'); otherwise error('model constructor error message: 0 of 1 argument only in input.'); end end %}}} function md = checkmessage(md,string) % {{{ if(nargout~=1) error('wrong usage, model must be an output'); end disp(['model not consistent: ' string]); md.private.isconsistent=false; end %}}} function md = collapse(md)% {{{ %COLLAPSE - collapses a 3d mesh into a 2d mesh % % This routine collapses a 3d model into a 2d model % and collapses all the fileds of the 3d model by % taking their depth-averaged values % % Usage: % md=collapse(md) % % See also: EXTRUDE, MODELEXTRACT %Check that the model is really a 3d model if ~strcmp(md.mesh.elementtype(),'Penta'), error('collapse error message: only 3d mesh can be collapsed') end %Start with changing all the fields from the 3d mesh %dealing with the friction law %drag is limited to nodes that are on the bedrock. if isa(md.friction,'friction'), md.friction.coefficient=project2d(md,md.friction.coefficient,1); md.friction.p=project2d(md,md.friction.p,1); md.friction.q=project2d(md,md.friction.q,1); elseif isa(md.friction,'frictioncoulomb'), md.friction.coefficient=project2d(md,md.friction.coefficient,1); md.friction.coefficientcoulomb=project2d(md,md.friction.coefficientcoulomb,1); md.friction.p=project2d(md,md.friction.p,1); md.friction.q=project2d(md,md.friction.q,1); elseif isa(md.friction,'frictionhydro'), md.friction.q=project2d(md,md.friction.q,1); md.friction.C=project2d(md,md.friction.C,1); md.friction.As=project2d(md,md.friction.As,1); md.friction.effective_pressure=project2d(md,md.friction.effective_pressure,1); elseif isa(md.friction,'frictionwaterlayer'), md.friction.coefficient=project2d(md,md.friction.coefficient,1); md.friction.p=project2d(md,md.friction.p,1); md.friction.q=project2d(md,md.friction.q,1); md.friction.water_layer=project2d(md,md.friction.water_layer,1); elseif isa(md.friction,'frictionweertman'), md.friction.C=project2d(md,md.friction.C,1); md.friction.m=project2d(md,md.friction.m,1); elseif isa(md.friction,'frictionweertmantemp'), md.friction.C=project2d(md,md.friction.C,1); md.friction.m=project2d(md,md.friction.m,1); else disp('friction type not supported'); end %observations if ~isnan(md.inversion.vx_obs), md.inversion.vx_obs=project2d(md,md.inversion.vx_obs,md.mesh.numberoflayers); end; if ~isnan(md.inversion.vy_obs), md.inversion.vy_obs=project2d(md,md.inversion.vy_obs,md.mesh.numberoflayers); end; if ~isnan(md.inversion.vel_obs), md.inversion.vel_obs=project2d(md,md.inversion.vel_obs,md.mesh.numberoflayers); end; if ~isnan(md.inversion.cost_functions_coefficients), md.inversion.cost_functions_coefficients=project2d(md,md.inversion.cost_functions_coefficients,md.mesh.numberoflayers); end; if numel(md.inversion.min_parameters)>1, md.inversion.min_parameters=project2d(md,md.inversion.min_parameters,md.mesh.numberoflayers); end; if numel(md.inversion.max_parameters)>1, md.inversion.max_parameters=project2d(md,md.inversion.max_parameters,md.mesh.numberoflayers); end; if isa(md.smb,'SMBforcing') & ~isnan(md.smb.mass_balance), md.smb.mass_balance=project2d(md,md.smb.mass_balance,md.mesh.numberoflayers); elseif isa(md.smb,'SMBhenning') & ~isnan(md.smb.smbref), md.smb.smbref=project2d(md,md.smb.smbref,md.mesh.numberoflayers); end; %results if ~isnan(md.initialization.vx),md.initialization.vx=DepthAverage(md,md.initialization.vx);end; if ~isnan(md.initialization.vy),md.initialization.vy=DepthAverage(md,md.initialization.vy);end; if ~isnan(md.initialization.vz),md.initialization.vz=DepthAverage(md,md.initialization.vz);end; if ~isnan(md.initialization.vel),md.initialization.vel=DepthAverage(md,md.initialization.vel);end; if ~isnan(md.initialization.temperature),md.initialization.temperature=DepthAverage(md,md.initialization.temperature);end; if ~isnan(md.initialization.pressure),md.initialization.pressure=project2d(md,md.initialization.pressure,1);end; if ~isnan(md.initialization.sediment_head),md.initialization.sediment_head=project2d(md,md.initialization.sediment_head,1);end; if ~isnan(md.initialization.epl_head),md.initialization.epl_head=project2d(md,md.initialization.epl_head,1);end; if ~isnan(md.initialization.epl_thickness),md.initialization.epl_thickness=project2d(md,md.initialization.epl_thickness,1);end; if ~isnan(md.initialization.waterfraction),md.initialization.waterfraction=project2d(md,md.initialization.waterfraction,1);end; if ~isnan(md.initialization.watercolumn),md.initialization.watercolumn=project2d(md,md.initialization.watercolumn,1);end; %giaivins if ~isnan(md.gia.mantle_viscosity), md.gia.mantle_viscosity=project2d(md,md.gia.mantle_viscosity,1); end if ~isnan(md.gia.lithosphere_thickness), md.gia.lithosphere_thickness=project2d(md,md.gia.lithosphere_thickness,1); end %elementstype if ~isnan(md.flowequation.element_equation) md.flowequation.element_equation=project2d(md,md.flowequation.element_equation,1); md.flowequation.vertex_equation=project2d(md,md.flowequation.vertex_equation,1); md.flowequation.borderSSA=project2d(md,md.flowequation.borderSSA,1); md.flowequation.borderHO=project2d(md,md.flowequation.borderHO,1); md.flowequation.borderFS=project2d(md,md.flowequation.borderFS,1); end %boundary conditions md.stressbalance.spcvx=project2d(md,md.stressbalance.spcvx,md.mesh.numberoflayers); md.stressbalance.spcvy=project2d(md,md.stressbalance.spcvy,md.mesh.numberoflayers); md.stressbalance.spcvz=project2d(md,md.stressbalance.spcvz,md.mesh.numberoflayers); md.stressbalance.referential=project2d(md,md.stressbalance.referential,md.mesh.numberoflayers); md.stressbalance.loadingforce=project2d(md,md.stressbalance.loadingforce,md.mesh.numberoflayers); md.masstransport.spcthickness=project2d(md,md.masstransport.spcthickness,md.mesh.numberoflayers); if numel(md.damage.spcdamage)>1, md.damage.spcdamage=project2d(md,md.damage.spcdamage,md.mesh.numberoflayers); end if numel(md.levelset.spclevelset)>1, md.levelset.spclevelset=project2d(md,md.levelset.spclevelset,md.mesh.numberoflayers); end md.thermal.spctemperature=project2d(md,md.thermal.spctemperature,md.mesh.numberoflayers); % Hydrologydc variables if isa(md.hydrology,'hydrologydc'); md.hydrology.spcsediment_head=project2d(md,md.hydrology.spcsediment_head,1); md.hydrology.mask_eplactive_node=project2d(md,md.hydrology.mask_eplactive_node,1); md.hydrology.sediment_transmitivity=project2d(md,md.hydrology.sediment_transmitivity,1); md.hydrology.basal_moulin_input=project2d(md,md.hydrology.basal_moulin_input,1); if(md.hydrology.isefficientlayer==1) md.hydrology.spcepl_head=project2d(md,md.hydrology.spcepl_head,1); end end %materials md.materials.rheology_B=DepthAverage(md,md.materials.rheology_B); md.materials.rheology_n=project2d(md,md.materials.rheology_n,1); %damage: if md.damage.isdamage, md.damage.D=DepthAverage(md,md.damage.D); end %special for thermal modeling: if ~isnan(md.basalforcings.groundedice_melting_rate), md.basalforcings.groundedice_melting_rate=project2d(md,md.basalforcings.groundedice_melting_rate,1); end if isprop(md.basalforcings,'floatingice_melting_rate') & ~isnan(md.basalforcings.floatingice_melting_rate), md.basalforcings.floatingice_melting_rate=project2d(md,md.basalforcings.floatingice_melting_rate,1); end md.basalforcings.geothermalflux=project2d(md,md.basalforcings.geothermalflux,1); %bedrock only gets geothermal flux if isprop(md.calving,'coeff') & ~isnan(md.calving.coeff), md.calving.coeff=project2d(md,md.calving.coeff,1); end if isprop(md.calving,'meltingrate') & ~isnan(md.calving.meltingrate), md.calving.meltingrate=project2d(md,md.calving.meltingrate,1); end %update of connectivity matrix md.mesh.average_vertex_connectivity=25; %Collapse the mesh nodes2d=md.mesh.numberofvertices2d; elements2d=md.mesh.numberofelements2d; %parameters md.geometry.surface=project2d(md,md.geometry.surface,1); md.geometry.thickness=project2d(md,md.geometry.thickness,1); md.geometry.base=project2d(md,md.geometry.base,1); if ~isnan(md.geometry.bed), md.geometry.bed=project2d(md,md.geometry.bed,1); end if ~isnan(md.mask.groundedice_levelset), md.mask.groundedice_levelset=project2d(md,md.mask.groundedice_levelset,1); end if ~isnan(md.mask.ice_levelset), md.mask.ice_levelset=project2d(md,md.mask.ice_levelset,1); end %outputdefinitions for i=1:length(md.outputdefinition.definitions) if isobject(md.outputdefinition.definitions{i}) %get subfields solutionsubfields=fields(md.outputdefinition.definitions{i}); for j=1:length(solutionsubfields), field=md.outputdefinition.definitions{i}.(solutionsubfields{j}); if length(field)==md.mesh.numberofvertices | length(field)==md.mesh.numberofelements, md.outputdefinition.definitions{i}.(solutionsubfields{j})=project2d(md,md.outputdefinition.definitions{i}.(solutionsubfields{j}),1); end end end end %Initialize with the 2d mesh mesh=mesh2d(); mesh.x=md.mesh.x2d; mesh.y=md.mesh.y2d; mesh.numberofvertices=md.mesh.numberofvertices2d; mesh.numberofelements=md.mesh.numberofelements2d; mesh.elements=md.mesh.elements2d; if numel(md.mesh.lat) ==md.mesh.numberofvertices, mesh.lat=project2d(md,md.mesh.lat,1); end if numel(md.mesh.long)==md.mesh.numberofvertices, mesh.long=project2d(md,md.mesh.long,1); end mesh.epsg=md.mesh.epsg; if ~isnan(md.mesh.vertexonboundary), mesh.vertexonboundary=project2d(md,md.mesh.vertexonboundary,1); end if ~isnan(md.mesh.elementconnectivity), mesh.elementconnectivity=project2d(md,md.mesh.elementconnectivity,1); end md.mesh=mesh; md.mesh.vertexconnectivity=NodeConnectivity(md.mesh.elements,md.mesh.numberofvertices); md.mesh.elementconnectivity=ElementConnectivity(md.mesh.elements,md.mesh.vertexconnectivity); md.mesh.segments=contourenvelope(md.mesh); end % }}} function md2 = extract(md,area) % {{{ %extract - extract a model according to an Argus contour or flag list % % This routine extracts a submodel from a bigger model with respect to a given contour % md must be followed by the corresponding exp file or flags list % It can either be a domain file (argus type, .exp extension), or an array of element flags. % If user wants every element outside the domain to be % extract2d, add '~' to the name of the domain file (ex: '~HO.exp'); % an empty string '' will be considered as an empty domain % a string 'all' will be considered as the entire domain % % Usage: % md2=extract(md,area); % % Examples: % md2=extract(md,'Domain.exp'); % % See also: EXTRUDE, COLLAPSE %copy model md1=md; %some checks if ((nargin~=2) | (nargout~=1)), help extract error('extract error message: bad usage'); end %get elements that are inside area flag_elem=FlagElements(md1,area); if ~any(flag_elem), error('extracted model is empty'); end %kick out all elements with 3 dirichlets spc_elem=find(~flag_elem); spc_node=sort(unique(md1.mesh.elements(spc_elem,:))); flag=ones(md1.mesh.numberofvertices,1); flag(spc_node)=0; pos=find(sum(flag(md1.mesh.elements),2)==0); flag_elem(pos)=0; %extracted elements and nodes lists pos_elem=find(flag_elem); pos_node=sort(unique(md1.mesh.elements(pos_elem,:))); %keep track of some fields numberofvertices1=md1.mesh.numberofvertices; numberofelements1=md1.mesh.numberofelements; numberofvertices2=length(pos_node); numberofelements2=length(pos_elem); flag_node=zeros(numberofvertices1,1); flag_node(pos_node)=1; %Create Pelem and Pnode (transform old nodes in new nodes and same thing for the elements) Pelem=zeros(numberofelements1,1); Pelem(pos_elem)=[1:numberofelements2]'; Pnode=zeros(numberofvertices1,1); Pnode(pos_node)=[1:numberofvertices2]'; %renumber the elements (some nodes won't exist anymore) elements_1=md1.mesh.elements; elements_2=elements_1(pos_elem,:); elements_2(:,1)=Pnode(elements_2(:,1)); elements_2(:,2)=Pnode(elements_2(:,2)); elements_2(:,3)=Pnode(elements_2(:,3)); if isa(md1.mesh,'mesh3dprisms'), elements_2(:,4)=Pnode(elements_2(:,4)); elements_2(:,5)=Pnode(elements_2(:,5)); elements_2(:,6)=Pnode(elements_2(:,6)); end %OK, now create the new model! %take every field from model md2=md1; %automatically modify fields %loop over model fields model_fields=fields(md1); for i=1:length(model_fields), %get field field=md1.(model_fields{i}); fieldsize=size(field); if isobject(field), %recursive call object_fields=fields(md1.(model_fields{i})); for j=1:length(object_fields), %get field field=md1.(model_fields{i}).(object_fields{j}); fieldsize=size(field); %size = number of nodes * n if fieldsize(1)==numberofvertices1 md2.(model_fields{i}).(object_fields{j})=field(pos_node,:); elseif (fieldsize(1)==numberofvertices1+1) md2.(model_fields{i}).(object_fields{j})=[field(pos_node,:); field(end,:)]; %size = number of elements * n elseif fieldsize(1)==numberofelements1 md2.(model_fields{i}).(object_fields{j})=field(pos_elem,:); elseif (fieldsize(1)==numberofelements1+1) md2.(model_fields{i}).(object_fields{j})=[field(pos_elem,:); field(end,:)]; end end else %size = number of nodes * n if fieldsize(1)==numberofvertices1 md2.(model_fields{i})=field(pos_node,:); elseif (fieldsize(1)==numberofvertices1+1) md2.(model_fields{i})=[field(pos_node,:); field(end,:)]; %size = number of elements * n elseif fieldsize(1)==numberofelements1 md2.(model_fields{i})=field(pos_elem,:); elseif (fieldsize(1)==numberofelements1+1) md2.(model_fields{i})=[field(pos_elem,:); field(end,:)]; end end end %modify some specific fields %Mesh md2.mesh.numberofelements=numberofelements2; md2.mesh.numberofvertices=numberofvertices2; md2.mesh.elements=elements_2; %mesh.uppervertex mesh.lowervertex if isa(md1.mesh,'mesh3dprisms'), md2.mesh.uppervertex=md1.mesh.uppervertex(pos_node); pos=find(~isnan(md2.mesh.uppervertex)); md2.mesh.uppervertex(pos)=Pnode(md2.mesh.uppervertex(pos)); md2.mesh.lowervertex=md1.mesh.lowervertex(pos_node); pos=find(~isnan(md2.mesh.lowervertex)); md2.mesh.lowervertex(pos)=Pnode(md2.mesh.lowervertex(pos)); md2.mesh.upperelements=md1.mesh.upperelements(pos_elem); pos=find(~isnan(md2.mesh.upperelements)); md2.mesh.upperelements(pos)=Pelem(md2.mesh.upperelements(pos)); md2.mesh.lowerelements=md1.mesh.lowerelements(pos_elem); pos=find(~isnan(md2.mesh.lowerelements)); md2.mesh.lowerelements(pos)=Pelem(md2.mesh.lowerelements(pos)); end %Initial 2d mesh if isa(md1.mesh,'mesh3dprisms'), flag_elem_2d=flag_elem(1:md1.mesh.numberofelements2d); pos_elem_2d=find(flag_elem_2d); flag_node_2d=flag_node(1:md1.mesh.numberofvertices2d); pos_node_2d=find(flag_node_2d); md2.mesh.numberofelements2d=length(pos_elem_2d); md2.mesh.numberofvertices2d=length(pos_node_2d); md2.mesh.elements2d=md1.mesh.elements2d(pos_elem_2d,:); md2.mesh.elements2d(:,1)=Pnode(md2.mesh.elements2d(:,1)); md2.mesh.elements2d(:,2)=Pnode(md2.mesh.elements2d(:,2)); md2.mesh.elements2d(:,3)=Pnode(md2.mesh.elements2d(:,3)); md2.mesh.x2d=md1.mesh.x(pos_node_2d); md2.mesh.y2d=md1.mesh.y(pos_node_2d); end %Edges if(dimension(md.mesh)==2), if size(md2.mesh.edges,2)>1, %do not use ~isnan because there are some NaNs... %renumber first two columns pos=find(md2.mesh.edges(:,4)~=-1); md2.mesh.edges(: ,1)=Pnode(md2.mesh.edges(:,1)); md2.mesh.edges(: ,2)=Pnode(md2.mesh.edges(:,2)); md2.mesh.edges(: ,3)=Pelem(md2.mesh.edges(:,3)); md2.mesh.edges(pos,4)=Pelem(md2.mesh.edges(pos,4)); %remove edges when the 2 vertices are not in the domain. md2.mesh.edges=md2.mesh.edges(find(md2.mesh.edges(:,1) & md2.mesh.edges(:,2)),:); %Replace all zeros by -1 in the last two columns pos=find(md2.mesh.edges(:,3)==0); md2.mesh.edges(pos,3)=-1; pos=find(md2.mesh.edges(:,4)==0); md2.mesh.edges(pos,4)=-1; %Invert -1 on the third column with last column (Also invert first two columns!!) pos=find(md2.mesh.edges(:,3)==-1); md2.mesh.edges(pos,3)=md2.mesh.edges(pos,4); md2.mesh.edges(pos,4)=-1; values=md2.mesh.edges(pos,2); md2.mesh.edges(pos,2)=md2.mesh.edges(pos,1); md2.mesh.edges(pos,1)=values; %Finally remove edges that do not belong to any element pos=find(md2.mesh.edges(:,3)==-1 & md2.mesh.edges(:,4)==-1); md2.mesh.edges(pos,:)=[]; end end %Penalties if ~isnan(md2.stressbalance.vertex_pairing), for i=1:size(md1.stressbalance.vertex_pairing,1); md2.stressbalance.vertex_pairing(i,:)=Pnode(md1.stressbalance.vertex_pairing(i,:)); end md2.stressbalance.vertex_pairing=md2.stressbalance.vertex_pairing(find(md2.stressbalance.vertex_pairing(:,1)),:); end if ~isnan(md2.masstransport.vertex_pairing), for i=1:size(md1.masstransport.vertex_pairing,1); md2.masstransport.vertex_pairing(i,:)=Pnode(md1.masstransport.vertex_pairing(i,:)); end md2.masstransport.vertex_pairing=md2.masstransport.vertex_pairing(find(md2.masstransport.vertex_pairing(:,1)),:); end %recreate segments if isa(md1.mesh,'mesh2d') | isa(md1.mesh','mesh3dsurface'), md2.mesh.vertexconnectivity=NodeConnectivity(md2.mesh.elements,md2.mesh.numberofvertices); md2.mesh.elementconnectivity=ElementConnectivity(md2.mesh.elements,md2.mesh.vertexconnectivity); md2.mesh.segments=contourenvelope(md2.mesh); md2.mesh.vertexonboundary=zeros(numberofvertices2,1); md2.mesh.vertexonboundary(md2.mesh.segments(:,1:2))=1; else %First do the connectivity for the contourenvelope in 2d md2.mesh.vertexconnectivity=NodeConnectivity(md2.mesh.elements2d,md2.mesh.numberofvertices2d); md2.mesh.elementconnectivity=ElementConnectivity(md2.mesh.elements2d,md2.mesh.vertexconnectivity); segments=contourenvelope(md2.mesh); md2.mesh.vertexonboundary=zeros(numberofvertices2/md2.mesh.numberoflayers,1); md2.mesh.vertexonboundary(segments(:,1:2))=1; md2.mesh.vertexonboundary=repmat(md2.mesh.vertexonboundary,md2.mesh.numberoflayers,1); %Then do it for 3d as usual md2.mesh.vertexconnectivity=NodeConnectivity(md2.mesh.elements,md2.mesh.numberofvertices); md2.mesh.elementconnectivity=ElementConnectivity(md2.mesh.elements,md2.mesh.vertexconnectivity); end %Boundary conditions: Dirichlets on new boundary %Catch the elements that have not been extracted orphans_elem=find(~flag_elem); orphans_node=unique(md1.mesh.elements(orphans_elem,:))'; %Figure out which node are on the boundary between md2 and md1 nodestoflag1=intersect(orphans_node,pos_node); nodestoflag2=Pnode(nodestoflag1); if numel(md1.stressbalance.spcvx)>1 & numel(md1.stressbalance.spcvy)>2 & numel(md1.stressbalance.spcvz)>2, if numel(md1.inversion.vx_obs)>1 & numel(md1.inversion.vy_obs)>1 md2.stressbalance.spcvx(nodestoflag2)=md2.inversion.vx_obs(nodestoflag2); md2.stressbalance.spcvy(nodestoflag2)=md2.inversion.vy_obs(nodestoflag2); else md2.stressbalance.spcvx(nodestoflag2)=NaN; md2.stressbalance.spcvy(nodestoflag2)=NaN; disp(' ') disp('!! extract warning: spc values should be checked !!') disp(' ') end %put 0 for vz md2.stressbalance.spcvz(nodestoflag2)=0; end if ~isnan(md1.thermal.spctemperature), md2.thermal.spctemperature(nodestoflag2,1)=1; end %Results fields if isstruct(md1.results), md2.results=struct(); solutionfields=fields(md1.results); for i=1:length(solutionfields), if isstruct(md1.results.(solutionfields{i})) %get subfields solutionsubfields=fields(md1.results.(solutionfields{i})); for j=1:length(solutionsubfields), field=md1.results.(solutionfields{i}).(solutionsubfields{j}); if length(field)==numberofvertices1, md2.results.(solutionfields{i}).(solutionsubfields{j})=field(pos_node); elseif length(field)==numberofelements1, md2.results.(solutionfields{i}).(solutionsubfields{j})=field(pos_elem); else md2.results.(solutionfields{i}).(solutionsubfields{j})=field; end end else field=md1.results.(solutionfields{i}); if length(field)==numberofvertices1, md2.results.(solutionfields{i})=field(pos_node); elseif length(field)==numberofelements1, md2.results.(solutionfields{i})=field(pos_elem); else md2.results.(solutionfields{i})=field; end end end end %OutputDefinitions fields for i=1:length(md1.outputdefinition.definitions), if isobject(md1.outputdefinition.definitions{i}) %get subfields solutionsubfields=fields(md1.outputdefinition.definitions{i}); for j=1:length(solutionsubfields), field=md1.outputdefinition.definitions{i}.(solutionsubfields{j}); if length(field)==numberofvertices1, md2.outputdefinition.definitions{i}.(solutionsubfields{j})=field(pos_node); elseif length(field)==numberofelements1, md2.outputdefinition.definitions{i}.(solutionsubfields{j})=field(pos_elem); end end end end %Keep track of pos_node and pos_elem md2.mesh.extractedvertices=pos_node; md2.mesh.extractedelements=pos_elem; end % }}} function md = extrude(md,varargin) % {{{ %EXTRUDE - vertically extrude a 2d mesh % % vertically extrude a 2d mesh and create corresponding 3d mesh. % The vertical distribution can: % - follow a polynomial law % - follow two polynomial laws, one for the lower part and one for the upper part of the mesh % - be discribed by a list of coefficients (between 0 and 1) % % % Usage: % md=extrude(md,numlayers,extrusionexponent); % md=extrude(md,numlayers,lowerexponent,upperexponent); % md=extrude(md,listofcoefficients); % % Example: % md=extrude(md,15,1.3); % md=extrude(md,15,1.3,1.2); % md=extrude(md,[0 0.2 0.5 0.7 0.9 0.95 1]); % % See also: MODELEXTRACT, COLLAPSE %some checks on list of arguments if ((nargin>4) | (nargin<2) | (nargout~=1)), help extrude; error('extrude error message'); end %Extrude the mesh if nargin==2, %list of coefficients clist=varargin{1}; if any(clist<0) | any(clist>1), error('extrusioncoefficients must be between 0 and 1'); end extrusionlist=sort(unique([clist(:);0;1])); numlayers=length(extrusionlist); elseif nargin==3, %one polynomial law if varargin{2}<=0, help extrude; error('extrusionexponent must be >=0'); end numlayers=varargin{1}; extrusionlist=((0:1:numlayers-1)/(numlayers-1)).^varargin{2}; elseif nargin==4, %two polynomial laws numlayers=varargin{1}; lowerexp=varargin{2}; upperexp=varargin{3}; if varargin{2}<=0 | varargin{3}<=0, help extrude; error('lower and upper extrusionexponents must be >=0'); end lowerextrusionlist=[(0:2/(numlayers-1):1).^lowerexp]/2; upperextrusionlist=[(0:2/(numlayers-1):1).^upperexp]/2; extrusionlist=sort(unique([lowerextrusionlist 1-upperextrusionlist])); end if numlayers<2, error('number of layers should be at least 2'); end if strcmp(md.mesh.domaintype(),'3D') error('Cannot extrude a 3d mesh (extrude cannot be called more than once)'); end %Initialize with the 2d mesh mesh2d = md.mesh; md.mesh=mesh3dprisms(); md.mesh.x = mesh2d.x; md.mesh.y = mesh2d.y; md.mesh.elements = mesh2d.elements; md.mesh.numberofelements = mesh2d.numberofelements; md.mesh.numberofvertices = mesh2d.numberofvertices; md.mesh.lat = mesh2d.lat; md.mesh.long = mesh2d.long; md.mesh.epsg = mesh2d.epsg; md.mesh.vertexonboundary = mesh2d.vertexonboundary; md.mesh.vertexconnectivity = mesh2d.vertexconnectivity; md.mesh.elementconnectivity = mesh2d.elementconnectivity; md.mesh.average_vertex_connectivity = mesh2d.average_vertex_connectivity; md.mesh.extractedvertices = mesh2d.extractedvertices; md.mesh.extractedelements = mesh2d.extractedelements; x3d=[]; y3d=[]; z3d=[]; %the lower node is on the bed thickness3d=md.geometry.thickness; %thickness and bed for these nodes bed3d=md.geometry.base; %Create the new layers for i=1:numlayers, x3d=[x3d; md.mesh.x]; y3d=[y3d; md.mesh.y]; %nodes are distributed between bed and surface accordingly to the given exponent z3d=[z3d; bed3d+thickness3d*extrusionlist(i)]; end number_nodes3d=size(x3d,1); %number of 3d nodes for the non extruded part of the mesh %Extrude elements elements3d=[]; for i=1:numlayers-1, elements3d=[elements3d;[md.mesh.elements+(i-1)*md.mesh.numberofvertices md.mesh.elements+i*md.mesh.numberofvertices]]; %Create the elements of the 3d mesh for the non extruded part end number_el3d=size(elements3d,1); %number of 3d nodes for the non extruded part of the mesh %Keep a trace of lower and upper nodes lowervertex=NaN*ones(number_nodes3d,1); uppervertex=NaN*ones(number_nodes3d,1); lowervertex(md.mesh.numberofvertices+1:end)=1:(numlayers-1)*md.mesh.numberofvertices; uppervertex(1:(numlayers-1)*md.mesh.numberofvertices)=md.mesh.numberofvertices+1:number_nodes3d; md.mesh.lowervertex=lowervertex; md.mesh.uppervertex=uppervertex; %same for lower and upper elements lowerelements=NaN*ones(number_el3d,1); upperelements=NaN*ones(number_el3d,1); lowerelements(md.mesh.numberofelements+1:end)=1:(numlayers-2)*md.mesh.numberofelements; upperelements(1:(numlayers-2)*md.mesh.numberofelements)=md.mesh.numberofelements+1:(numlayers-1)*md.mesh.numberofelements; md.mesh.lowerelements=lowerelements; md.mesh.upperelements=upperelements; %Save old mesh md.mesh.x2d=md.mesh.x; md.mesh.y2d=md.mesh.y; md.mesh.elements2d=md.mesh.elements; md.mesh.numberofelements2d=md.mesh.numberofelements; md.mesh.numberofvertices2d=md.mesh.numberofvertices; %Build global 3d mesh md.mesh.elements=elements3d; md.mesh.x=x3d; md.mesh.y=y3d; md.mesh.z=z3d; md.mesh.numberofelements=number_el3d; md.mesh.numberofvertices=number_nodes3d; md.mesh.numberoflayers=numlayers; %Ok, now deal with the other fields from the 2d mesh: %bedinfo and surface info md.mesh.vertexonbase=project3d(md,'vector',ones(md.mesh.numberofvertices2d,1),'type','node','layer',1); md.mesh.vertexonsurface=project3d(md,'vector',ones(md.mesh.numberofvertices2d,1),'type','node','layer',md.mesh.numberoflayers); md.mesh.vertexonboundary=project3d(md,'vector',md.mesh.vertexonboundary,'type','node'); %lat long md.mesh.lat=project3d(md,'vector',md.mesh.lat,'type','node'); md.mesh.long=project3d(md,'vector',md.mesh.long,'type','node'); md.geometry=extrude(md.geometry,md); md.friction = extrude(md.friction,md); md.inversion = extrude(md.inversion,md); md.smb = extrude(md.smb,md); md.initialization = extrude(md.initialization,md); md.flowequation=md.flowequation.extrude(md); md.stressbalance=extrude(md.stressbalance,md); md.thermal=md.thermal.extrude(md); md.masstransport=md.masstransport.extrude(md); md.levelset=extrude(md.levelset,md); md.calving=extrude(md.calving,md); md.hydrology = extrude(md.hydrology,md); %connectivity if ~isnan(md.mesh.elementconnectivity) md.mesh.elementconnectivity=repmat(md.mesh.elementconnectivity,numlayers-1,1); md.mesh.elementconnectivity(find(md.mesh.elementconnectivity==0))=NaN; for i=2:numlayers-1, md.mesh.elementconnectivity((i-1)*md.mesh.numberofelements2d+1:(i)*md.mesh.numberofelements2d,:)... =md.mesh.elementconnectivity((i-1)*md.mesh.numberofelements2d+1:(i)*md.mesh.numberofelements2d,:)+md.mesh.numberofelements2d; end md.mesh.elementconnectivity(find(isnan(md.mesh.elementconnectivity)))=0; end md.materials=extrude(md.materials,md); md.damage=extrude(md.damage,md); md.mask=extrude(md.mask,md); md.qmu=extrude(md.qmu,md); md.basalforcings=extrude(md.basalforcings,md); md.outputdefinition=extrude(md.outputdefinition,md); %increase connectivity if less than 25: if md.mesh.average_vertex_connectivity<=25, md.mesh.average_vertex_connectivity=100; end end % }}} function md = structtomodel(md,structmd) % {{{ if ~isstruct(structmd) error('input model is not a structure'); end %loaded model is a struct, initialize output and recover all fields md = structtoobj(model,structmd); %Old field now classes if (isfield(structmd,'timestepping') & isnumeric(md.timestepping)), md.timestepping=timestepping(); end if (isfield(structmd,'mask') & isnumeric(md.mask)),md.mask=mask(); end %Field name change if isfield(structmd,'drag'), md.friction.coefficient=structmd.drag; end if isfield(structmd,'p'), md.friction.p=structmd.p; end if isfield(structmd,'q'), md.friction.q=structmd.p; end if isfield(structmd,'melting'), md.basalforcings.floatingice_melting_rate=structmd.melting; end if isfield(structmd,'melting_rate'), md.basalforcings.floatingice_melting_rate=structmd.melting_rate; end if isfield(structmd,'melting_rate'), md.basalforcings.groundedice_melting_rate=structmd.melting_rate; end if isfield(structmd,'accumulation'), md.smb.mass_balance=structmd.accumulation; end if isfield(structmd,'numberofgrids'), md.mesh.numberofvertices=structmd.numberofgrids; end if isfield(structmd,'numberofgrids2d'), md.mesh.numberofvertices2d=structmd.numberofgrids2d; end if isfield(structmd,'uppergrids'), md.mesh.uppervertex=structmd.uppergrids; end if isfield(structmd,'lowergrids'), md.mesh.lowervertex=structmd.lowergrids; end if isfield(structmd,'gridonbase'), md.mesh.vertexonbase=structmd.gridonbase; end if isfield(structmd,'gridonsurface'), md.mesh.vertexonsurface=structmd.gridonsurface; end if isfield(structmd,'extractedgrids'), md.mesh.extractedvertices=structmd.extractedgrids; end if isfield(structmd,'gridonboundary'), md.mesh.vertexonboundary=structmd.gridonboundary; end if isfield(structmd,'petscoptions') & ~isempty(structmd.petscoptions), md.toolkits=structmd.petscoptions; end if isfield(structmd,'g'), md.constants.g=structmd.g; end if isfield(structmd,'yts'), md.constants.yts=structmd.yts; end if isfield(structmd,'surface_mass_balance'), md.smb.mass_balance=structmd.surface_mass_balance; end if isfield(structmd,'basal_melting_rate'), md.basalforcings.floatingice_melting_rate=structmd.basal_melting_rate; end if isfield(structmd,'geothermalflux'), md.basalforcings.geothermalflux=structmd.geothermalflux; end if isfield(structmd,'drag'), md.friction.coefficient=structmd.drag; end if isfield(structmd,'drag_coefficient'), md.friction.coefficient=structmd.drag_coefficient; end if isfield(structmd,'drag_p'), md.friction.p=structmd.drag_p; end if isfield(structmd,'drag_q'), md.friction.q=structmd.drag_q; end if isfield(structmd,'riftproperties'), %old implementation md.rifts=rifts(); md.rifts.riftproperties=structmd.riftproperties; md.rifts.riftstruct=structmd.rifts; md.rifts.riftproperties=structmd.riftinfo; end if isfield(structmd,'bamg'), md.private.bamg=structmd.bamg; end if isfield(structmd,'lowmem'), md.settings.lowmem=structmd.lowmem; end if isfield(structmd,'io_gather'), md.settings.io_gather=structmd.io_gather; end if isfield(structmd,'spcwatercolumn'), md.hydrology.spcwatercolumn=structmd.spcwatercolumn; end if isfield(structmd,'hydro_n'), md.hydrology.n=structmd.hydro_n; end if isfield(structmd,'hydro_p'), md.hydrology.p=structmd.hydro_p; end if isfield(structmd,'hydro_q'), md.hydrology.q=structmd.hydro_q; end if isfield(structmd,'hydro_CR'), md.hydrology.CR=structmd.hydro_CR; end if isfield(structmd,'hydro_kn'), md.hydrology.kn=structmd.hydro_kn; end if isfield(structmd,'spctemperature'), md.thermal.spctemperature=structmd.spctemperature; end if isfield(structmd,'min_thermal_constraints'), md.thermal.penalty_threshold=structmd.min_thermal_constraints; end if isfield(structmd,'artificial_diffusivity'), md.thermal.stabilization=structmd.artificial_diffusivity; end if isfield(structmd,'max_nonlinear_iterations'), md.thermal.maxiter=structmd.max_nonlinear_iterations; end if isfield(structmd,'stabilize_constraints'), md.thermal.penalty_lock=structmd.stabilize_constraints; end if isfield(structmd,'penalty_offset'), md.thermal.penalty_factor=structmd.penalty_offset; end if isfield(structmd,'name'), md.miscellaneous.name=structmd.name; end if isfield(structmd,'notes'), md.miscellaneous.notes=structmd.notes; end if isfield(structmd,'dummy'), md.miscellaneous.dummy=structmd.dummy; end if isfield(structmd,'dt'), md.timestepping.time_step=structmd.dt; end if isfield(structmd,'ndt'), md.timestepping.final_time=structmd.ndt; end if isfield(structmd,'time_adapt'), md.timestepping.time_adapt=structmd.time_adapt; end if isfield(structmd,'cfl_coefficient'), md.timestepping.cfl_coefficient=structmd.cfl_coefficient; end if isfield(structmd,'spcthickness'), md.masstransport.spcthickness=structmd.spcthickness; end if isfield(structmd,'artificial_diffusivity'), md.masstransport.stabilization=structmd.artificial_diffusivity; end if isfield(structmd,'hydrostatic_adjustment'), md.masstransport.hydrostatic_adjustment=structmd.hydrostatic_adjustment; end if isfield(structmd,'penalties'), md.masstransport.vertex_pairing=structmd.penalties; end if isfield(structmd,'penalty_offset'), md.masstransport.penalty_factor=structmd.penalty_offset; end if isfield(structmd,'B'), md.materials.rheology_B=structmd.B; end if isfield(structmd,'n'), md.materials.rheology_n=structmd.n; end if isfield(structmd,'rheology_B'), md.materials.rheology_B=structmd.rheology_B; end if isfield(structmd,'rheology_n'), md.materials.rheology_n=structmd.rheology_n; end if isfield(structmd,'rheology_Z'), md.damage.D=(1-structmd.rheology_Z); end if isfield(structmd,'spcthickness'), md.balancethickness.spcthickness=structmd.spcthickness; end if isfield(structmd,'artificial_diffusivity'), md.balancethickness.stabilization=structmd.artificial_diffusivity; end if isfield(structmd,'dhdt'), md.balancethickness.thickening_rate=structmd.dhdt; end if isfield(structmd,'isSIA'), md.flowequation.isSIA=structmd.isSIA; end if isfield(structmd,'isFS'), md.flowequation.isFS=structmd.isFS; end if isfield(structmd,'elements_type'), md.flowequation.element_equation=structmd.elements_type; end if isfield(structmd,'vertices_type'), md.flowequation.vertex_equation=structmd.vertices_type; end if isfield(structmd,'eps_rel'), md.steadystate.reltol=structmd.eps_rel; end if isfield(structmd,'max_steadystate_iterations'), md.steadystate.maxiter=structmd.max_steadystate_iterations; end if isfield(structmd,'isdiagnostic'), md.transient.isstressbalance=structmd.isdiagnostic; end if isfield(structmd,'isprognostic'), md.transient.ismasstransport=structmd.isprognostic; end if isfield(structmd,'isthermal'), md.transient.isthermal=structmd.isthermal; end if isfield(structmd,'control_analysis'), md.inversion.iscontrol=structmd.control_analysis; end if isfield(structmd,'weights'), md.inversion.cost_functions_coefficients=structmd.weights; end if isfield(structmd,'nsteps'), md.inversion.nsteps=structmd.nsteps; end if isfield(structmd,'maxiter_per_step'), md.inversion.maxiter_per_step=structmd.maxiter_per_step; end if isfield(structmd,'cm_min'), md.inversion.min_parameters=structmd.cm_min; end if isfield(structmd,'cm_max'), md.inversion.max_parameters=structmd.cm_max; end if isfield(structmd,'vx_obs'), md.inversion.vx_obs=structmd.vx_obs; end if isfield(structmd,'vy_obs'), md.inversion.vy_obs=structmd.vy_obs; end if isfield(structmd,'vel_obs'), md.inversion.vel_obs=structmd.vel_obs; end if isfield(structmd,'thickness_obs'), md.inversion.thickness_obs=structmd.thickness_obs; end if isfield(structmd,'vx'), md.initialization.vx=structmd.vx; end if isfield(structmd,'vy'), md.initialization.vy=structmd.vy; end if isfield(structmd,'vz'), md.initialization.vz=structmd.vz; end if isfield(structmd,'vel'), md.initialization.vel=structmd.vel; end if isfield(structmd,'pressure'), md.initialization.pressure=structmd.pressure; end if isfield(structmd,'temperature'), md.initialization.temperature=structmd.temperature; end if isfield(structmd,'waterfraction'), md.initialization.waterfraction=structmd.waterfraction; end if isfield(structmd,'watercolumn'), md.initialization.watercolumn=structmd.watercolumn; end if isfield(structmd,'surface'), md.geometry.surface=structmd.surface; end if isfield(structmd,'bed'), md.geometry.base=structmd.bed; end if isfield(structmd,'thickness'), md.geometry.thickness=structmd.thickness; end if isfield(structmd,'bathymetry'), md.geometry.bed=structmd.bathymetry; end if isfield(structmd,'thickness_coeff'), md.geometry.hydrostatic_ratio=structmd.thickness_coeff; end if isfield(structmd,'connectivity'), md.mesh.average_vertex_connectivity=structmd.connectivity; end if isfield(structmd,'extractednodes'), md.mesh.extractedvertices=structmd.extractednodes; end if isfield(structmd,'extractedelements'), md.mesh.extractedelements=structmd.extractedelements; end if isfield(structmd,'nodeonboundary'), md.mesh.vertexonboundary=structmd.nodeonboundary; end if isfield(structmd,'lat'), md.mesh.lat=structmd.lat; end if isfield(structmd,'long'), md.mesh.long=structmd.long; end if isfield(structmd,'segments'), md.mesh.segments=structmd.segments; end if isfield(structmd,'segmentmarkers'), md.mesh.segmentmarkers=structmd.segmentmarkers; end if isfield(structmd,'numlayers'), md.mesh.numberoflayers=structmd.numlayers; end if isfield(structmd,'numberofelements'), md.mesh.numberofelements=structmd.numberofelements; end if isfield(structmd,'numberofvertices'), md.mesh.numberofvertices=structmd.numberofvertices; end if isfield(structmd,'numberofnodes'), md.mesh.numberofvertices=structmd.numberofnodes; end if isfield(structmd,'numberofedges'), md.mesh.numberofedges=structmd.numberofedges; end if isfield(structmd,'numberofelements2d'), md.mesh.numberofelements2d=structmd.numberofelements2d; end if isfield(structmd,'numberofnodes2d'), md.mesh.numberofvertices2d=structmd.numberofnodes2d; end if isfield(structmd,'nodeconnectivity'), md.mesh.vertexconnectivity=structmd.nodeconnectivity; end if isfield(structmd,'elementconnectivity'), md.mesh.elementconnectivity=structmd.elementconnectivity; end if isfield(structmd,'uppernodes'), md.mesh.uppervertex=structmd.uppernodes; end if isfield(structmd,'lowernodes'), md.mesh.lowervertex=structmd.lowernodes; end if isfield(structmd,'upperelements'), md.mesh.upperelements=structmd.upperelements; end if isfield(structmd,'lowerelements'), md.mesh.lowerelements=structmd.lowerelements; end if isfield(structmd,'nodeonsurface'), md.mesh.vertexonsurface=structmd.nodeonsurface; end if isfield(structmd,'nodeonbase'), md.mesh.vertexonbase=structmd.nodeonbase; end if isfield(structmd,'elements2d'), md.mesh.elements2d=structmd.elements2d; end if isfield(structmd,'y2d'), md.mesh.y2d=structmd.y2d; end if isfield(structmd,'x2d'), md.mesh.x2d=structmd.x2d; end if isfield(structmd,'elements'), md.mesh.elements=structmd.elements; end if isfield(structmd,'edges'), md.mesh.edges=structmd.edges; md.mesh.edges(isnan(md.mesh.edges))=-1; end if isfield(structmd,'y'), md.mesh.y=structmd.y; end if isfield(structmd,'x'), md.mesh.x=structmd.x; end if isfield(structmd,'z'), md.mesh.z=structmd.z; end if isfield(structmd,'diagnostic_ref'), md.stressbalance.referential=structmd.diagnostic_ref; end if isfield(structmd,'npart'); md.qmu.numberofpartitions=structmd.npart; end if isfield(structmd,'part'); md.qmu.partition=structmd.part; end if isnumeric(md.verbose), md.verbose=verbose; end if isfield(structmd,'spcvelocity'), md.stressbalance.spcvx=NaN*ones(md.mesh.numberofvertices,1); md.stressbalance.spcvy=NaN*ones(md.mesh.numberofvertices,1); md.stressbalance.spcvz=NaN*ones(md.mesh.numberofvertices,1); pos=find(structmd.spcvelocity(:,1)); md.stressbalance.spcvx(pos)=structmd.spcvelocity(pos,4); pos=find(structmd.spcvelocity(:,2)); md.stressbalance.spcvy(pos)=structmd.spcvelocity(pos,5); pos=find(structmd.spcvelocity(:,3)); md.stressbalance.spcvz(pos)=structmd.spcvelocity(pos,6); end if isfield(structmd,'spcvx'), md.stressbalance.spcvx=NaN*ones(md.mesh.numberofvertices,1); pos=find(~isnan(structmd.spcvx)); md.stressbalance.spcvx(pos)=structmd.spcvx(pos); end if isfield(structmd,'spcvy'), md.stressbalance.spcvy=NaN*ones(md.mesh.numberofvertices,1); pos=find(~isnan(structmd.spcvy)); md.stressbalance.spcvy(pos)=structmd.spcvy(pos); end if isfield(structmd,'spcvz'), md.stressbalance.spcvz=NaN*ones(md.mesh.numberofvertices,1); pos=find(~isnan(structmd.spcvz)); md.stressbalance.spcvz(pos)=structmd.spcvz(pos); end if isfield(structmd,'pressureload'), if ~isempty(structmd.pressureload) & ismember(structmd.pressureload(end,end),[118 119 120]), pos=find(structmd.pressureload(:,end)==120); md.stressbalance.icefront(pos,end)=0; pos=find(structmd.pressureload(:,end)==118); md.stressbalance.icefront(pos,end)=1; pos=find(structmd.pressureload(:,end)==119); md.stressbalance.icefront(pos,end)=2; end end if isfield(structmd,'elements_type') & structmd.elements_type(end,end)>50, pos=find(structmd.elements_type==59); md.flowequation.element_equation(pos,end)=0; pos=find(structmd.elements_type==55); md.flowequation.element_equation(pos,end)=1; pos=find(structmd.elements_type==56); md.flowequation.element_equation(pos,end)=2; pos=find(structmd.elements_type==60); md.flowequation.element_equation(pos,end)=3; pos=find(structmd.elements_type==62); md.flowequation.element_equation(pos,end)=4; pos=find(structmd.elements_type==57); md.flowequation.element_equation(pos,end)=5; pos=find(structmd.elements_type==58); md.flowequation.element_equation(pos,end)=6; pos=find(structmd.elements_type==61); md.flowequation.element_equation(pos,end)=7; end if isfield(structmd,'vertices_type') & structmd.vertices_type(end,end)>50, pos=find(structmd.vertices_type==59); md.flowequation.vertex_equation(pos,end)=0; pos=find(structmd.vertices_type==55); md.flowequation.vertex_equation(pos,end)=1; pos=find(structmd.vertices_type==56); md.flowequation.vertex_equation(pos,end)=2; pos=find(structmd.vertices_type==60); md.flowequation.vertex_equation(pos,end)=3; pos=find(structmd.vertices_type==62); md.flowequation.vertex_equation(pos,end)=4; pos=find(structmd.vertices_type==57); md.flowequation.vertex_equation(pos,end)=5; pos=find(structmd.vertices_type==58); md.flowequation.vertex_equation(pos,end)=6; pos=find(structmd.vertices_type==61); md.flowequation.vertex_equation(pos,end)=7; end if isfield(structmd,'rheology_law') & isnumeric(structmd.rheology_law), if (structmd.rheology_law==272), md.materials.rheology_law='None'; end if (structmd.rheology_law==368), md.materials.rheology_law='Paterson'; end if (structmd.rheology_law==369), md.materials.rheology_law='Arrhenius'; end end if isfield(structmd,'groundingline_migration') & isnumeric(structmd.groundingline_migration), if (structmd.groundingline_migration==272), md.groundingline.migration='None'; end if (structmd.groundingline_migration==273), md.groundingline.migration='AggressiveMigration'; end if (structmd.groundingline_migration==274), md.groundingline.migration='SoftMigration'; end end if isfield(structmd,'control_type') & isnumeric(structmd.control_type), if (structmd.control_type==143), md.inversion.control_parameters={'FrictionCoefficient'}; end if (structmd.control_type==190), md.inversion.control_parameters={'RheologyBbar'}; end if (structmd.control_type==147), md.inversion.control_parameters={'Thickeningrate'}; end end if isfield(structmd,'cm_responses') & ismember(structmd.cm_responses(end,end),[165:170 383 388 389]), pos=find(structmd.cm_responses==166); md.inversion.cost_functions(pos)=101; pos=find(structmd.cm_responses==167); md.inversion.cost_functions(pos)=102; pos=find(structmd.cm_responses==168); md.inversion.cost_functions(pos)=103; pos=find(structmd.cm_responses==169); md.inversion.cost_functions(pos)=104; pos=find(structmd.cm_responses==170); md.inversion.cost_functions(pos)=105; pos=find(structmd.cm_responses==165); md.inversion.cost_functions(pos)=201; pos=find(structmd.cm_responses==389); md.inversion.cost_functions(pos)=501; pos=find(structmd.cm_responses==388); md.inversion.cost_functions(pos)=502; pos=find(structmd.cm_responses==382); md.inversion.cost_functions(pos)=503; end if isfield(structmd,'artificial_diffusivity') & structmd.artificial_diffusivity==2, md.thermal.stabilization=2; md.masstransport.stabilization=1; md.balancethickness.stabilization=1; end if isnumeric(md.masstransport.hydrostatic_adjustment) if md.masstransport.hydrostatic_adjustment==269, md.masstransport.hydrostatic_adjustment='Incremental'; else md.masstransport.hydrostatic_adjustment='Absolute'; end end %New fields if ~isfield(structmd,'upperelements') & isa(md.mesh,'mesh3dprisms') md.mesh.upperelements=transpose(1:md.mesh.numberofelements)+md.mesh.numberofelements2d; md.mesh.upperelements(end-md.mesh.numberofelements2d+1:end)=NaN; end if ~isfield(structmd,'lowerelements') & isa(md.mesh,'mesh3dprisms') md.mesh.lowerelements=transpose(1:md.mesh.numberofelements)-md.mesh.numberofelements2d; md.mesh.lowerelements(1:md.mesh.numberofelements2d)=NaN; end if ~isfield(structmd,'diagnostic_ref'); md.stressbalance.referential=NaN*ones(md.mesh.numberofvertices,6); end if ~isfield(structmd,'loadingforce'); md.stressbalance.loadingforce=0*ones(md.mesh.numberofvertices,3); end %2013 August 9 if isfield(structmd,'prognostic') & isa(structmd.prognostic,'prognostic'), disp('Recovering old prognostic class'); md.masstransport=masstransport(structmd.prognostic); end %2013 August 9 if isfield(structmd,'diagnostic') & (isa(structmd.diagnostic,'diagnostic') || isa(structmd.diagnostic,'stressbalance')), disp('Recovering old diagnostic class'); md.stressbalance=stressbalance(structmd.diagnostic); end %2014 January 9th if isfield(structmd,'surfaceforcings') & isa(md.smb,'surfaceforcings'), disp('Recovering old surfaceforcings class'); mass_balance=structmd.surfaceforcings.mass_balance; md.smb=SMB(); md.smb.mass_balance=mass_balance; end %2015 September 10 if isfield(structmd,'surfaceforcings') & isa(structmd.surfaceforcings,'SMB'), disp('Recovering old SMB class'); md.smb=SMBforcing(structmd.surfaceforcings); end if isfield(structmd,'surfaceforcings') & isa(structmd.surfaceforcings,'SMBhenning'), disp('Recovering old SMBhenning class'); md.smb=SMBhenning(structmd.surfaceforcings); end end% }}} function md = setdefaultparameters(md) % {{{ %initialize subclasses md.mesh = mesh2d(); md.mask = mask(); md.constants = constants(); md.geometry = geometry(); md.initialization = initialization(); md.smb = SMBforcing(); md.basalforcings = basalforcings(); md.friction = friction(); md.rifts = rifts(); md.slr = slr(); md.timestepping = timestepping(); md.groundingline = groundingline(); md.materials = matice(); md.damage = damage(); md.flowequation = flowequation(); md.debug = debug(); md.verbose = verbose(); md.settings = settings(); md.toolkits = toolkits(); md.cluster = generic(); md.balancethickness = balancethickness(); md.stressbalance = stressbalance(); md.hydrology = hydrologyshreve(); md.masstransport = masstransport(); md.thermal = thermal(); md.steadystate = steadystate(); md.transient = transient(); md.levelset = levelset(); md.calving = calving(); md.gia = giaivins(); md.esa = esa(); md.autodiff = autodiff(); md.inversion = inversion(); md.qmu = qmu(); md.amr = amr(); md.radaroverlay = radaroverlay(); md.results = struct(); md.outputdefinition = outputdefinition(); md.miscellaneous = miscellaneous(); md.private = private(); end %}}} function md = tetras(md,varargin) % {{{ %TETRAS - split 3d prismatic mesh into 3 tetrahedrons % % Usage: % md=tetra(md) if ~isa(md.mesh,'mesh3dprisms') error('mesh is not a 3d prismatic mesh'); end %Initialize tetra mesh md.mesh=mesh3dtetras(md.mesh); %Subdivision from Philipp Furnstahl (http://studierstube.icg.tugraz.at/thesis/fuernstahl_thesis.pdf) steiner = 0; nbv = md.mesh.numberofvertices; nbt = 3*md.mesh.numberofelements; elements = zeros(nbt,4); for i=1:md.mesh.numberofelements v1=md.mesh.elements(i,1); v2=md.mesh.elements(i,2); v3=md.mesh.elements(i,3); v4=md.mesh.elements(i,4); v5=md.mesh.elements(i,5); v6=md.mesh.elements(i,6); if(min(v2,v4)min(v2,v6)), elements(3*(i-1)+1,:) = [v1 v2 v4 v6]; elements(3*(i-1)+2,:) = [v2 v4 v5 v6]; elements(3*(i-1)+3,:) = [v1 v2 v3 v6]; elseif(min(v2,v4)min(v3,v4) & min(v3,v5)min(v3,v4) & min(v3,v5)>min(v2,v6)), elements(3*(i-1)+1,:) = [v1 v2 v3 v4]; elements(3*(i-1)+2,:) = [v2 v4 v5 v6]; elements(3*(i-1)+3,:) = [v2 v3 v4 v6]; elseif(min(v2,v4)>min(v1,v5) & min(v1,v6)min(v1,v5) & min(v1,v6)min(v2,v6)), elements(3*(i-1)+1,:) = [v1 v4 v5 v6]; elements(3*(i-1)+2,:) = [v1 v2 v5 v6]; elements(3*(i-1)+3,:) = [v1 v2 v3 v6]; elseif(min(v2,v4)>min(v1,v5) & min(v1,v6)>min(v3,v4) & min(v3,v5)min(v1,v5) & min(v1,v6)min(v1,v5) & min(v1,v6)>min(v3,v4) & min(v3,v5)>min(v2,v6)), steiner = steiner+1; nbv = nbv+1; nbt = nbt+5; v7 = nbv; md.mesh.x=[md.mesh.x; mean(md.mesh.x(md.mesh.elements(i,:)))]; md.mesh.y=[md.mesh.y; mean(md.mesh.y(md.mesh.elements(i,:)))]; md.mesh.z=[md.mesh.z; mean(md.mesh.z(md.mesh.elements(i,:)))]; elements(3*(i-1)+1,:) = [v1 v2 v3 v7]; elements(3*(i-1)+2,:) = [v1 v4 v5 v7]; elements(3*(i-1)+3,:) = [v1 v2 v5 v7]; elements(end+1,:) = [v2 v5 v6 v7]; elements(end+1,:) = [v2 v3 v6 v7]; elements(end+1,:) = [v3 v4 v6 v7]; elements(end+1,:) = [v1 v3 v4 v7]; elements(end+1,:) = [v4 v5 v6 v7]; else error('Case not supported'); %not supposed to happen! end %Reorder elements to make sure they are direct for j=1:3 element = elements(3*(i-1)+j,:); matrix = [md.mesh.x(element), md.mesh.y(element), md.mesh.z(element), ones(4,1)]; if det(matrix)>0, elements(3*(i-1)+j,1)=element(2); elements(3*(i-1)+j,2)=element(1); end end end %%Split in 3 tetras %subelement1 = [1 2 3 5]; %subelement2 = [4 6 5 1]; %subelement3 = [5 6 3 1]; %elements=[md.mesh.elements(:,subelement1);md.mesh.elements(:,subelement2);md.mesh.elements(:,subelement3)]; if steiner==0, disp('No Steiner point required to split prismatic mesh into tets'); else disp([num2str(steiner) ' Steiner points had to be included']) error('Steiner point not supported yet'); end pos_elements = repmat([1:md.mesh.numberofelements]',3,1); md.mesh.elements=elements; md.mesh.numberofelements=size(elements,1); %p and q (same deal, except for element that are on the bedrock: ) if ~isnan(md.friction.p), md.friction.p=md.friction.p(pos_elements); md.friction.q=md.friction.q(pos_elements); end %elementstype if ~isnan(md.flowequation.element_equation) oldelements_type=md.flowequation.element_equation; md.flowequation.element_equation=md.flowequation.element_equation(pos_elements); end %connectivity md.mesh.elementconnectivity=NaN; %materials if ~isnan(md.materials.rheology_n), md.materials.rheology_n=md.materials.rheology_n(pos_elements); end %increase connectivity if less than 25: if md.mesh.average_vertex_connectivity<=25, md.mesh.average_vertex_connectivity=100; end end % }}} function disp(self) % {{{ disp(sprintf('%19s: %-22s -- %s','mesh' ,['[1x1 ' class(self.mesh) ']'],'mesh properties')); disp(sprintf('%19s: %-22s -- %s','mask' ,['[1x1 ' class(self.mask) ']'],'defines grounded and floating elements')); disp(sprintf('%19s: %-22s -- %s','geometry' ,['[1x1 ' class(self.geometry) ']'],'surface elevation, bedrock topography, ice thickness,...')); disp(sprintf('%19s: %-22s -- %s','constants' ,['[1x1 ' class(self.constants) ']'],'physical constants')); disp(sprintf('%19s: %-22s -- %s','smb' ,['[1x1 ' class(self.smb) ']'],'surface mass balance')); disp(sprintf('%19s: %-22s -- %s','basalforcings' ,['[1x1 ' class(self.basalforcings) ']'],'bed forcings')); disp(sprintf('%19s: %-22s -- %s','materials' ,['[1x1 ' class(self.materials) ']'],'material properties')); disp(sprintf('%19s: %-22s -- %s','damage' ,['[1x1 ' class(self.damage) ']'],'parameters for damage evolution solution')); disp(sprintf('%19s: %-22s -- %s','friction' ,['[1x1 ' class(self.friction) ']'],'basal friction/drag properties')); disp(sprintf('%19s: %-22s -- %s','flowequation' ,['[1x1 ' class(self.flowequation) ']'],'flow equations')); disp(sprintf('%19s: %-22s -- %s','timestepping' ,['[1x1 ' class(self.timestepping) ']'],'time stepping for transient models')); disp(sprintf('%19s: %-22s -- %s','initialization' ,['[1x1 ' class(self.initialization) ']'],'initial guess/state')); disp(sprintf('%19s: %-22s -- %s','rifts' ,['[1x1 ' class(self.rifts) ']'],'rifts properties')); disp(sprintf('%19s: %-22s -- %s','slr' ,['[1x1 ' class(self.slr) ']'],'slr forcings')); disp(sprintf('%19s: %-22s -- %s','debug' ,['[1x1 ' class(self.debug) ']'],'debugging tools (valgrind, gprof)')); disp(sprintf('%19s: %-22s -- %s','verbose' ,['[1x1 ' class(self.verbose) ']'],'verbosity level in solve')); disp(sprintf('%19s: %-22s -- %s','settings' ,['[1x1 ' class(self.settings) ']'],'settings properties')); disp(sprintf('%19s: %-22s -- %s','toolkits' ,['[1x1 ' class(self.toolkits) ']'],'PETSc options for each solution')); disp(sprintf('%19s: %-22s -- %s','cluster' ,['[1x1 ' class(self.cluster) ']'],'cluster parameters (number of cpus...)')); disp(sprintf('%19s: %-22s -- %s','balancethickness',['[1x1 ' class(self.balancethickness) ']'],'parameters for balancethickness solution')); disp(sprintf('%19s: %-22s -- %s','stressbalance' ,['[1x1 ' class(self.stressbalance) ']'],'parameters for stressbalance solution')); disp(sprintf('%19s: %-22s -- %s','groundingline' ,['[1x1 ' class(self.groundingline) ']'],'parameters for groundingline solution')); disp(sprintf('%19s: %-22s -- %s','hydrology' ,['[1x1 ' class(self.hydrology) ']'],'parameters for hydrology solution')); disp(sprintf('%19s: %-22s -- %s','masstransport' ,['[1x1 ' class(self.masstransport) ']'],'parameters for masstransport solution')); disp(sprintf('%19s: %-22s -- %s','thermal' ,['[1x1 ' class(self.thermal) ']'],'parameters for thermal solution')); disp(sprintf('%19s: %-22s -- %s','steadystate' ,['[1x1 ' class(self.steadystate) ']'],'parameters for steadystate solution')); disp(sprintf('%19s: %-22s -- %s','transient' ,['[1x1 ' class(self.transient) ']'],'parameters for transient solution')); disp(sprintf('%19s: %-22s -- %s','levelset' ,['[1x1 ' class(self.levelset) ']'],'parameters for moving boundaries (level-set method)')); disp(sprintf('%19s: %-22s -- %s','calving' ,['[1x1 ' class(self.calving) ']'],'parameters for calving')); disp(sprintf('%19s: %-22s -- %s','gia' ,['[1x1 ' class(self.gia) ']'],'parameters for gia solution')); disp(sprintf('%19s: %-22s -- %s','esa' ,['[1x1 ' class(self.esa) ']'],'parameters for elastic adjustment solution')); disp(sprintf('%19s: %-22s -- %s','autodiff' ,['[1x1 ' class(self.autodiff) ']'],'automatic differentiation parameters')); disp(sprintf('%19s: %-22s -- %s','inversion' ,['[1x1 ' class(self.inversion) ']'],'parameters for inverse methods')); disp(sprintf('%19s: %-22s -- %s','qmu' ,['[1x1 ' class(self.qmu) ']'],'dakota properties')); disp(sprintf('%19s: %-22s -- %s','amr' ,['[1x1 ' class(self.amr) ']'],'adaptive mesh refinement properties')); disp(sprintf('%19s: %-22s -- %s','outputdefinition',['[1x1 ' class(self.outputdefinition) ']'],'output definition')); disp(sprintf('%19s: %-22s -- %s','results' ,['[1x1 ' class(self.results) ']'],'model results')); disp(sprintf('%19s: %-22s -- %s','radaroverlay' ,['[1x1 ' class(self.radaroverlay) ']'],'radar image for plot overlay')); disp(sprintf('%19s: %-22s -- %s','miscellaneous' ,['[1x1 ' class(self.miscellaneous) ']'],'miscellaneous fields')); end % }}} function memory(self) % {{{ disp(sprintf('\nMemory imprint:\n')); fields=properties('model'); mem=0; for i=1:length(fields), field=self.(fields{i}); s=whos('field'); mem=mem+s.bytes/1e6; disp(sprintf('%19s: %6.2f Mb',fields{i},s.bytes/1e6)); end disp(sprintf('%19s--%10s','--------------','--------------')); disp(sprintf('%19s: %g Mb','Total',mem)); end % }}} function netcdf(self,filename) % {{{ %NETCDF - save model as netcdf % % Usage: % netcdf(md,filename) % % Example: % netcdf(md,'model.nc'); disp('Saving model as NetCDF'); %1. Create NetCDF file ncid=netcdf.create(filename,'CLOBBER'); netcdf.putAtt(ncid,netcdf.getConstant('NC_GLOBAL'),'Conventions','CF-1.4'); netcdf.putAtt(ncid,netcdf.getConstant('NC_GLOBAL'),'Title',['ISSM model (' self.miscellaneous.name ')']); netcdf.putAtt(ncid,netcdf.getConstant('NC_GLOBAL'),'Author',getenv('USER')); netcdf.putAtt(ncid,netcdf.getConstant('NC_GLOBAL'),'Date',datestr(now)); %Preallocate variable id, needed to write variables in netcdf file var_id=zeros(1000,1);%preallocate for step=1:2, counter=0; [var_id,counter]=structtonc(ncid,'md',self,0,var_id,counter,step); if step==1, netcdf.endDef(ncid); end end if counter>1000, warning(['preallocation of var_id need to be updated from ' num2str(1000) ' to ' num2str(counter)]); end netcdf.close(ncid) end % }}} function xylim(self) % {{{ xlim([min(self.mesh.x) max(self.mesh.x)]); ylim([min(self.mesh.y) max(self.mesh.y)]) end % }}} function md=upload(md) % {{{ %the goal of this routine is to upload the model onto a server, and to empty it. %So first, save the model with a unique name and upload the file to the server: random_part=fix(rand(1)*10000); id=[md.miscellaneous.name '-' regexprep(datestr(now),'[^\w'']','') '-' num2str(random_part) '-' getenv('USER') '-' oshostname() '.upload']; eval(['save ' id ' md']); %Now, upload the file: issmscpout(md.settings.upload_server,md.settings.upload_path,md.settings.upload_login,md.settings.upload_port,{id},1); %Now, empty this model of everything except settings, and record name of file we just uploaded! settings_back=md.settings; md=model(); md.settings=settings_back; md.settings.upload_filename=id; %get locally rid of file that was uploaded eval(['delete ' id]); end % }}} function md=download(md) % {{{ %the goal of this routine is to download the internals of the current model from a server, because %this model is empty, except for the settings which tell us where to go and find this model! %Download the file: issmscpin(md.settings.upload_server, md.settings.upload_login, md.settings.upload_port, md.settings.upload_path, {md.settings.upload_filename}); name=md.settings.upload_filename; %Now, load this model: md=loadmodel(md.settings.upload_filename); %get locally rid of file that was downloaded eval(['delete ' name]); end % }}} function savemodeljs(md,modelname,websiteroot) % {{{ %the goal of this routine is to save the model as a javascript array that can be included in any html %file: %disp: disp(['saving model ''' modelname ''' in file ' websiteroot '/js/' modelname '.js']); %open file for writing and declare the model: fid=fopen([websiteroot '/js/' modelname '.js'],'w'); fprintf(fid,'var %s=new model();\n',modelname); %now go through all the classes and fwrite all the corresponding fields: fields=properties('model'); for i=1:length(fields), field=fields{i}; %Some properties do not need to be saved if ismember(field,{'results','cluster' }), continue; end %Check that current field is an object if ~isobject(md.(field)) error(['field ''' char(field) ''' is not an object']); end %savemodeljs for current object %disp(['javascript saving ' field '...']); savemodeljs(md.(field),fid,modelname); end %done, close file: fclose(fid); end end end