#module imports import numpy from fielddisplay import fielddisplay from EnumDefinitions import * from checkfield import * from WriteData import * class inversion(object): """ INVERSION class definition Usage: inversion=inversion(); """ #properties def __init__(self): # {{{ Properties self.iscontrol = 0 self.tao = 0 self.incomplete_adjoint = 0 self.control_parameters = float('NaN') self.nsteps = 0 self.maxiter_per_step = float('NaN') self.cost_functions = float('NaN') self.cost_functions_coefficients = float('NaN') self.gradient_scaling = float('NaN') self.cost_function_threshold = 0 self.min_parameters = float('NaN') self.max_parameters = float('NaN') self.step_threshold = float('NaN') self.gradient_only = 0 self.vx_obs = float('NaN') self.vy_obs = float('NaN') self.vz_obs = float('NaN') self.vel_obs = float('NaN') self.thickness_obs = float('NaN') #}}} def __repr__(self): # {{{ Display string='\n Inversion parameters:' string="%s\n%s"%(string,fielddisplay(self,'iscontrol','is inversion activated?')) string="%s\n%s"%(string,fielddisplay(self,'incomplete_adjoint','do we assume linear viscosity?')) string="%s\n%s"%(string,fielddisplay(self,'control_parameters','parameter where inverse control is carried out; ex: {''FrictionCoefficient''}, or {''MaterialsRheologyBbar''}')) string="%s\n%s"%(string,fielddisplay(self,'nsteps','number of optimization searches')) string="%s\n%s"%(string,fielddisplay(self,'cost_functions','indicate the type of response for each optimization step')) string="%s\n%s"%(string,fielddisplay(self,'cost_functions_coefficients','cost_functions_coefficients applied to the misfit of each vertex and for each control_parameter')) string="%s\n%s"%(string,fielddisplay(self,'cost_function_threshold','misfit convergence criterion. Default is 1%, NaN if not applied')) string="%s\n%s"%(string,fielddisplay(self,'maxiter_per_step','maximum iterations during each optimization step')) string="%s\n%s"%(string,fielddisplay(self,'gradient_scaling','scaling factor on gradient direction during optimization, for each optimization step')) string="%s\n%s"%(string,fielddisplay(self,'step_threshold','decrease threshold for misfit, default is 30%')) string="%s\n%s"%(string,fielddisplay(self,'min_parameters','absolute minimum acceptable value of the inversed parameter on each vertex')) string="%s\n%s"%(string,fielddisplay(self,'max_parameters','absolute maximum acceptable value of the inversed parameter on each vertex')) string="%s\n%s"%(string,fielddisplay(self,'gradient_only','stop control method solution at gradient')) string="%s\n%s"%(string,fielddisplay(self,'vx_obs','observed velocity x component [m/a]')) string="%s\n%s"%(string,fielddisplay(self,'vy_obs','observed velocity y component [m/a]')) string="%s\n%s"%(string,fielddisplay(self,'vel_obs','observed velocity magnitude [m/a]')) string="%s\n%s"%(string,fielddisplay(self,'thickness_obs','observed thickness [m]')) string="%s\n%s"%(string,'Available cost functions:') string="%s\n%s"%(string,' 101: SurfaceAbsVelMisfit') string="%s\n%s"%(string,' 102: SurfaceRelVelMisfit') string="%s\n%s"%(string,' 103: SurfaceLogVelMisfit') string="%s\n%s"%(string,' 104: SurfaceLogVxVyMisfit') string="%s\n%s"%(string,' 105: SurfaceAverageVelMisfit') string="%s\n%s"%(string,' 201: ThicknessAbsMisfit') string="%s\n%s"%(string,' 501: DragCoefficientAbsGradient') string="%s\n%s"%(string,' 502: RheologyBbarAbsGradient') string="%s\n%s"%(string,' 503: ThicknessAbsGradient') return string #}}} def setdefaultparameters(self): # {{{ #default is incomplete adjoint for now self.incomplete_adjoint=1 #parameter to be inferred by control methods (only #drag and B are supported yet) self.control_parameters=['FrictionCoefficient'] #number of steps in the control methods self.nsteps=20 #maximum number of iteration in the optimization algorithm for #each step self.maxiter_per_step=20*ones(self.nsteps) #the inversed parameter is updated as follows: #new_par=old_par + gradient_scaling(n)*C*gradient with C in [0 1]; #usually the gradient_scaling must be of the order of magnitude of the #inversed parameter (10^8 for B, 50 for drag) and can be decreased #after the first iterations self.gradient_scaling=50*ones(self.nsteps) #several responses can be used: self.cost_functions=101*ones(self.nsteps) #step_threshold is used to speed up control method. When #misfit(1)/misfit(0) < self.step_threshold, we go directly to #the next step self.step_threshold=.7*ones(self.nsteps) #30 per cent decrement #stop control solution at the gradient computation and return it? self.gradient_only=0 #cost_function_threshold is a criteria to stop the control methods. #if J[n]-J[n-1]/J[n] < criteria, the control run stops #NaN if not applied self.cost_function_threshold=NaN #not activated return self #}}} def checkconsistency(self,md,solution,analyses): # {{{ #Early return if not self.iscontrol: return md num_controls=numpy.size(md.inversion.control_parameters) num_costfunc=numpy.size(md.inversion.cost_functions,1) md = checkfield(md,'inversion.iscontrol','values',[0,1]) md = checkfield(md,'inversion.tao','values',[0,1]) md = checkfield(md,'inversion.incomplete_adjoint','values',[0,1]) md = checkfield(md,'inversion.control_parameters','cell',1,'values',['BalancethicknessThickeningRate','FrictionCoefficient','MaterialsRheologyBbar','Vx','Vy']) md = checkfield(md,'inversion.nsteps','numel',[1],'>=',1) md = checkfield(md,'inversion.maxiter_per_step','size',[md.inversion.nsteps],'>=',0) md = checkfield(md,'inversion.step_threshold','size',[md.inversion.nsteps]) md = checkfield(md,'inversion.cost_functions','size',[md.inversion.nsteps,num_costfunc],'values',[101,102,103,104,105,201,501,502,503,377,378]) md = checkfield(md,'inversion.cost_functions_coefficients','size',[md.mesh.numberofvertices,num_costfunc],'>=',0) md = checkfield(md,'inversion.gradient_only','values',[0,1]) md = checkfield(md,'inversion.gradient_scaling','size',[md.inversion.nsteps,num_controls]) md = checkfield(md,'inversion.min_parameters','size',[md.mesh.numberofvertices,num_controls]) md = checkfield(md,'inversion.max_parameters','size',[md.mesh.numberofvertices,num_controls]) if solution==BalancethicknessSolutionEnum(): md = checkfield(md,'inversion.thickness_obs','size',[md.mesh.numberofvertices],'NaN',1) else: md = checkfield(md,'inversion.vx_obs','size',[md.mesh.numberofvertices],'NaN',1) md = checkfield(md,'inversion.vy_obs','size',[md.mesh.numberofvertices],'NaN',1) return md # }}} def marshall(self,fid): # {{{ WriteData(fid,'object',self,'fieldname','iscontrol','format','Boolean') WriteData(fid,'object',self,'fieldname','tao','format','Boolean') WriteData(fid,'object',self,'fieldname','incomplete_adjoint','format','Boolean') if not self.iscontrol: return WriteData(fid,'object',self,'fieldname','nsteps','format','Integer') WriteData(fid,'object',self,'fieldname','maxiter_per_step','format','DoubleMat','mattype',3) WriteData(fid,'object',self,'fieldname','cost_functions_coefficients','format','DoubleMat','mattype',1) WriteData(fid,'object',self,'fieldname','gradient_scaling','format','DoubleMat','mattype',3) WriteData(fid,'object',self,'fieldname','cost_function_threshold','format','Double') WriteData(fid,'object',self,'fieldname','min_parameters','format','DoubleMat','mattype',3) WriteData(fid,'object',self,'fieldname','max_parameters','format','DoubleMat','mattype',3) WriteData(fid,'object',self,'fieldname','step_threshold','format','DoubleMat','mattype',3) WriteData(fid,'object',self,'fieldname','gradient_only','format','Boolean') WriteData(fid,'object',self,'fieldname','vx_obs','format','DoubleMat','mattype',1) WriteData(fid,'object',self,'fieldname','vy_obs','format','DoubleMat','mattype',1) WriteData(fid,'object',self,'fieldname','vz_obs','format','DoubleMat','mattype',1) WriteData(fid,'object',self,'fieldname','thickness_obs','format','DoubleMat','mattype',1) #process control parameters num_control_parameters=numpy.size(self.control_parameters) data=[StringToEnum(self.control_parameters[i]) for i in xrange(0,num_control_parameters)] WriteData(fid,'data',data,'enum',InversionControlParametersEnum(),'format','DoubleMat','mattype',3) WriteData(fid,'data',num_control_parameters,'enum',InversionNumControlParametersEnum(),'format','Integer') #process cost functions num_cost_functions=size(self.cost_functions,1) data=self.cost_functions data[[i for i,item in enumerate(data) if item==101]]=SurfaceAbsVelMisfitEnum() data[[i for i,item in enumerate(data) if item==102]]=SurfaceRelVelMisfitEnum() data[[i for i,item in enumerate(data) if item==103]]=SurfaceLogVelMisfitEnum() data[[i for i,item in enumerate(data) if item==104]]=SurfaceLogVxVyMisfitEnum() data[[i for i,item in enumerate(data) if item==105]]=SurfaceAverageVelMisfitEnum() data[[i for i,item in enumerate(data) if item==201]]=ThicknessAbsMisfitEnum() data[[i for i,item in enumerate(data) if item==501]]=DragCoefficientAbsGradientEnum() data[[i for i,item in enumerate(data) if item==502]]=RheologyBbarAbsGradientEnum() data[[i for i,item in enumerate(data) if item==503]]=ThicknessAbsGradientEnum() WriteData(fid,'data',data,'enum',InversionCostFunctionsEnum(),'format','DoubleMat','mattype',3) WriteData(fid,'data',num_cost_functions,'enum',InversionNumCostFunctionsEnum(),'format','Integer') # }}}