#module imports from fielddisplay import fielddisplay class inversion(object): #properties def __init__(self): # {{{ Properties self.iscontrol = 0 self.tao = 0 self.incomplete_adjoint = 0 self.control_parameters = float('NaN') self.nsteps = 0 self.maxiter_per_step = float('NaN') self.cost_functions = float('NaN') self.cost_functions_coefficients = float('NaN') self.gradient_scaling = float('NaN') self.cost_function_threshold = 0 self.min_parameters = float('NaN') self.max_parameters = float('NaN') self.step_threshold = float('NaN') self.gradient_only = 0 self.vx_obs = float('NaN') self.vy_obs = float('NaN') self.vz_obs = float('NaN') self.vel_obs = float('NaN') self.thickness_obs = float('NaN') #}}} def __repr__(obj): # {{{ Display string='\n Inversion parameters:' string="%s\n%s"%(string,fielddisplay(obj,'iscontrol','is inversion activated?')) string="%s\n%s"%(string,fielddisplay(obj,'incomplete_adjoint','do we assume linear viscosity?')) string="%s\n%s"%(string,fielddisplay(obj,'control_parameters','parameter where inverse control is carried out; ex: {''FrictionCoefficient''}, or {''MaterialsRheologyBbar''}')) string="%s\n%s"%(string,fielddisplay(obj,'nsteps','number of optimization searches')) string="%s\n%s"%(string,fielddisplay(obj,'cost_functions','indicate the type of response for each optimization step')) string="%s\n%s"%(string,fielddisplay(obj,'cost_functions_coefficients','cost_functions_coefficients applied to the misfit of each vertex and for each control_parameter')) string="%s\n%s"%(string,fielddisplay(obj,'cost_function_threshold','misfit convergence criterion. Default is 1%, NaN if not applied')) string="%s\n%s"%(string,fielddisplay(obj,'maxiter_per_step','maximum iterations during each optimization step')) string="%s\n%s"%(string,fielddisplay(obj,'gradient_scaling','scaling factor on gradient direction during optimization, for each optimization step')) string="%s\n%s"%(string,fielddisplay(obj,'step_threshold','decrease threshold for misfit, default is 30%')) string="%s\n%s"%(string,fielddisplay(obj,'min_parameters','absolute minimum acceptable value of the inversed parameter on each vertex')) string="%s\n%s"%(string,fielddisplay(obj,'max_parameters','absolute maximum acceptable value of the inversed parameter on each vertex')) string="%s\n%s"%(string,fielddisplay(obj,'gradient_only','stop control method solution at gradient')) string="%s\n%s"%(string,fielddisplay(obj,'vx_obs','observed velocity x component [m/a]')) string="%s\n%s"%(string,fielddisplay(obj,'vy_obs','observed velocity y component [m/a]')) string="%s\n%s"%(string,fielddisplay(obj,'vel_obs','observed velocity magnitude [m/a]')) string="%s\n%s"%(string,fielddisplay(obj,'thickness_obs','observed thickness [m]')) string="%s\n%s"%(string,'Available cost functions:') string="%s\n%s"%(string,' 101: SurfaceAbsVelMisfit') string="%s\n%s"%(string,' 102: SurfaceRelVelMisfit') string="%s\n%s"%(string,' 103: SurfaceLogVelMisfit') string="%s\n%s"%(string,' 104: SurfaceLogVxVyMisfit') string="%s\n%s"%(string,' 105: SurfaceAverageVelMisfit') string="%s\n%s"%(string,' 201: ThicknessAbsMisfit') string="%s\n%s"%(string,' 501: DragCoefficientAbsGradient') string="%s\n%s"%(string,' 502: RheologyBbarAbsGradient') string="%s\n%s"%(string,' 503: ThicknessAbsGradient') return string #}}} def setdefaultparameters(obj): # {{{setdefaultparameters #default is incomplete adjoint for now obj.incomplete_adjoint=1 #parameter to be inferred by control methods (only #drag and B are supported yet) obj.control_parameters=['FrictionCoefficient'] #number of steps in the control methods obj.nsteps=20 #maximum number of iteration in the optimization algorithm for #each step obj.maxiter_per_step=20*ones(obj.nsteps) #the inversed parameter is updated as follows: #new_par=old_par + gradient_scaling(n)*C*gradient with C in [0 1]; #usually the gradient_scaling must be of the order of magnitude of the #inversed parameter (10^8 for B, 50 for drag) and can be decreased #after the first iterations obj.gradient_scaling=50*ones(obj.nsteps) #several responses can be used: obj.cost_functions=101*ones(obj.nsteps) #step_threshold is used to speed up control method. When #misfit(1)/misfit(0) < obj.step_threshold, we go directly to #the next step obj.step_threshold=.7*ones(obj.nsteps) #30 per cent decrement #stop control solution at the gradient computation and return it? obj.gradient_only=0 #cost_function_threshold is a criteria to stop the control methods. #if J[n]-J[n-1]/J[n] < criteria, the control run stops #NaN if not applied obj.cost_function_threshold=NaN #not activated return obj #}}}