source: issm/trunk-jpl/src/m/classes/inversion.py@ 26480

Last change on this file since 26480 was 26480, checked in by jdquinn, 3 years ago

CHG: MATLAB -> Python

File size: 11.2 KB
RevLine 
[21303]1import numpy as np
[25688]2
3from checkfield import checkfield
4from fielddisplay import fielddisplay
5from marshallcostfunctions import marshallcostfunctions
[19048]6from project3d import project3d
[18994]7from supportedcontrols import supportedcontrols
8from supportedcostfunctions import supportedcostfunctions
[25688]9from WriteData import WriteData
[12038]10
[24213]11
[12958]12class inversion(object):
[25688]13 """INVERSION class definition
[13023]14
[25688]15 Usage:
16 inversion = inversion()
[24213]17 """
[13023]18
[24213]19 def __init__(self): # {{{
20 self.iscontrol = 0
21 self.incomplete_adjoint = 0
[25688]22 self.control_parameters = np.nan
[24213]23 self.nsteps = 0
[25688]24 self.maxiter_per_step = np.nan
[24213]25 self.cost_functions = ''
[25688]26 self.cost_functions_coefficients = np.nan
27 self.gradient_scaling = np.nan
[24213]28 self.cost_function_threshold = 0
[25688]29 self.min_parameters = np.nan
30 self.max_parameters = np.nan
31 self.step_threshold = np.nan
32 self.vx_obs = np.nan
33 self.vy_obs = np.nan
34 self.vz_obs = np.nan
35 self.vel_obs = np.nan
36 self.thickness_obs = np.nan
37 self.surface_obs = np.nan
[13093]38
[24213]39 self.setdefaultparameters()
40 #}}}
[12123]41
[24213]42 def __repr__(self): # {{{
[25688]43 s = ' inversion parameters:\n'
44 s += '{}\n'.format(fielddisplay(self, 'iscontrol', 'is inversion activated?'))
45 s += '{}\n'.format(fielddisplay(self, 'incomplete_adjoint', '1: linear viscosity, 0: non - linear viscosity'))
46 s += '{}\n'.format(fielddisplay(self, 'control_parameters', 'ex: {''FrictionCoefficient''}, or {''MaterialsRheologyBbar''}'))
47 s += '{}\n'.format(fielddisplay(self, 'nsteps', 'number of optimization searches'))
48 s += '{}\n'.format(fielddisplay(self, 'cost_functions', 'indicate the type of response for each optimization step'))
49 s += '{}\n'.format(fielddisplay(self, 'cost_functions_coefficients', 'cost_functions_coefficients applied to the misfit of each vertex and for each control_parameter'))
50 s += '{}\n'.format(fielddisplay(self, 'cost_function_threshold', 'misfit convergence criterion. Default is 1%, NaN if not applied'))
51 s += '{}\n'.format(fielddisplay(self, 'maxiter_per_step', 'maximum iterations during each optimization step'))
52 s += '{}\n'.format(fielddisplay(self, 'gradient_scaling', 'scaling factor on gradient direction during optimization, for each optimization step'))
53 s += '{}\n'.format(fielddisplay(self, 'step_threshold', 'decrease threshold for misfit, default is 30%'))
54 s += '{}\n'.format(fielddisplay(self, 'min_parameters', 'absolute minimum acceptable value of the inversed parameter on each vertex'))
55 s += '{}\n'.format(fielddisplay(self, 'max_parameters', 'absolute maximum acceptable value of the inversed parameter on each vertex'))
[25806]56 s += '{}\n'.format(fielddisplay(self, 'vx_obs', 'observed velocity x component [m/yr]'))
57 s += '{}\n'.format(fielddisplay(self, 'vy_obs', 'observed velocity y component [m/yr]'))
58 s += '{}\n'.format(fielddisplay(self, 'vel_obs', 'observed velocity magnitude [m/yr]'))
[25688]59 s += '{}\n'.format(fielddisplay(self, 'thickness_obs', 'observed thickness [m]'))
60 s += '{}\n'.format(fielddisplay(self, 'surface_obs', 'observed surface elevation [m]'))
61 s += '{}\n'.format('Available cost functions:')
62 s += '{}\n'.format(' 101: SurfaceAbsVelMisfit')
63 s += '{}\n'.format(' 102: SurfaceRelVelMisfit')
64 s += '{}\n'.format(' 103: SurfaceLogVelMisfit')
65 s += '{}\n'.format(' 104: SurfaceLogVxVyMisfit')
66 s += '{}\n'.format(' 105: SurfaceAverageVelMisfit')
67 s += '{}\n'.format(' 201: ThicknessAbsMisfit')
68 s += '{}\n'.format(' 501: DragCoefficientAbsGradient')
69 s += '{}\n'.format(' 502: RheologyBbarAbsGradient')
70 s += '{}\n'.format(' 503: ThicknessAbsGradient')
71 return s
[24213]72 #}}}
[12123]73
[24213]74 def setdefaultparameters(self): # {{{
75 #default is incomplete adjoint for now
76 self.incomplete_adjoint = 1
77 #parameter to be inferred by control methods (only
78 #drag and B are supported yet)
79 self.control_parameters = 'FrictionCoefficient'
80 #number of steps in the control methods
81 self.nsteps = 20
82 #maximum number of iteration in the optimization algorithm for
83 #each step
84 self.maxiter_per_step = 20 * np.ones(self.nsteps)
85 #the inversed parameter is updated as follows:
86 #new_par = old_par + gradient_scaling(n) * C * gradient with C in [0 1]
87 #usually the gradient_scaling must be of the order of magnitude of the
[24261]88 #inversed parameter (1.0e8 for B, 50 for drag) and can be decreased
[24213]89 #after the first iterations
90 self.gradient_scaling = 50 * np.ones((self.nsteps, 1))
91 #several responses can be used:
92 self.cost_functions = [101, ]
93 #step_threshold is used to speed up control method. When
94 #misfit(1) / misfit(0) < self.step_threshold, we go directly to
95 #the next step
96 self.step_threshold = 0.7 * np.ones(self.nsteps) #30 per cent decrement
97 #cost_function_threshold is a criteria to stop the control methods.
98 #if J[n] - J[n - 1] / J[n] < criteria, the control run stops
99 #NaN if not applied
[25688]100 self.cost_function_threshold = np.nan #not activated
101 return self
102 #}}}
[12123]103
[25688]104 def extrude(self, md): # {{{
105 self.vx_obs = project3d(md, 'vector', self.vx_obs, 'type', 'node')
106 self.vy_obs = project3d(md, 'vector', self.vy_obs, 'type', 'node')
107 self.vel_obs = project3d(md, 'vector', self.vel_obs, 'type', 'node')
108 self.thickness_obs = project3d(md, 'vector', self.thickness_obs, 'type', 'node')
109 if not np.any(np.isnan(self.cost_functions_coefficients)):
110 self.cost_functions_coefficients = project3d(md, 'vector', self.cost_functions_coefficients, 'type', 'node')
111 if not np.any(np.isnan(self.min_parameters)):
112 self.min_parameters = project3d(md, 'vector', self.min_parameters, 'type', 'node')
113 if not np.any(np.isnan(self.max_parameters)):
114 self.max_parameters = project3d(md, 'vector', self.max_parameters, 'type', 'node')
[24213]115 return self
116 #}}}
[12123]117
[24213]118 def checkconsistency(self, md, solution, analyses): # {{{
[25688]119 # Early return
[24213]120 if not self.iscontrol:
121 return md
[12123]122
[24213]123 num_controls = np.size(md.inversion.control_parameters)
124 num_costfunc = np.size(md.inversion.cost_functions)
[12123]125
[24213]126 md = checkfield(md, 'fieldname', 'inversion.iscontrol', 'values', [0, 1])
127 md = checkfield(md, 'fieldname', 'inversion.incomplete_adjoint', 'values', [0, 1])
128 md = checkfield(md, 'fieldname', 'inversion.control_parameters', 'cell', 1, 'values', supportedcontrols())
129 md = checkfield(md, 'fieldname', 'inversion.nsteps', 'numel', [1], '>=', 0)
130 md = checkfield(md, 'fieldname', 'inversion.maxiter_per_step', 'size', [md.inversion.nsteps], '>=', 0)
131 md = checkfield(md, 'fieldname', 'inversion.step_threshold', 'size', [md.inversion.nsteps])
132 md = checkfield(md, 'fieldname', 'inversion.cost_functions', 'size', [num_costfunc], 'values', supportedcostfunctions())
133 md = checkfield(md, 'fieldname', 'inversion.cost_functions_coefficients', 'size', [md.mesh.numberofvertices, num_costfunc], '>=', 0)
134 md = checkfield(md, 'fieldname', 'inversion.gradient_scaling', 'size', [md.inversion.nsteps, num_controls])
135 md = checkfield(md, 'fieldname', 'inversion.min_parameters', 'size', [md.mesh.numberofvertices, num_controls])
136 md = checkfield(md, 'fieldname', 'inversion.max_parameters', 'size', [md.mesh.numberofvertices, num_controls])
[12123]137
[25688]138 # Only SSA, HO and FS are supported right now
[24213]139 if solution == 'StressbalanceSolution':
[26480]140 if not (md.flowequation.isSSA or md.flowequation.isMLHO or md.flowequation.isHO or md.flowequation.isFS or md.flowequation.isL1L2):
141 md.checkmessage("'inversion can only be performed for SSA, MLHO, HO or FS ice flow models")
[24213]142 if solution == 'BalancethicknessSolution':
143 md = checkfield(md, 'fieldname', 'inversion.thickness_obs', 'size', [md.mesh.numberofvertices], 'NaN', 1, 'Inf', 1)
[25688]144 elif solution == 'BalancethicknessSoftSolution':
145 md = checkfield(md, 'fieldname', 'inversion.thickness_obs', 'size', [md.mesh.numberofvertices], 'NaN', 1, 'Inf', 1)
[24213]146 else:
147 md = checkfield(md, 'fieldname', 'inversion.vx_obs', 'size', [md.mesh.numberofvertices], 'NaN', 1, 'Inf', 1)
148 md = checkfield(md, 'fieldname', 'inversion.vy_obs', 'size', [md.mesh.numberofvertices], 'NaN', 1, 'Inf', 1)
149 return md
150 # }}}
[13023]151
[24213]152 def marshall(self, prefix, md, fid): # {{{
153 yts = md.constants.yts
[15860]154
[24213]155 WriteData(fid, prefix, 'name', 'md.inversion.type', 'data', 0, 'format', 'Integer')
156 WriteData(fid, prefix, 'object', self, 'fieldname', 'iscontrol', 'format', 'Boolean')
157 WriteData(fid, prefix, 'object', self, 'fieldname', 'incomplete_adjoint', 'format', 'Boolean')
158 WriteData(fid, prefix, 'object', self, 'fieldname', 'vel_obs', 'format', 'DoubleMat', 'mattype', 1, 'scale', 1. / yts)
159 if not self.iscontrol:
160 return
161 WriteData(fid, prefix, 'object', self, 'fieldname', 'nsteps', 'format', 'Integer')
[25806]162 WriteData(fid, prefix, 'object', self, 'fieldname', 'maxiter_per_step', 'format', 'IntMat', 'mattype', 3)
[24213]163 WriteData(fid, prefix, 'object', self, 'fieldname', 'cost_functions_coefficients', 'format', 'DoubleMat', 'mattype', 1)
164 WriteData(fid, prefix, 'object', self, 'fieldname', 'gradient_scaling', 'format', 'DoubleMat', 'mattype', 3)
165 WriteData(fid, prefix, 'object', self, 'fieldname', 'cost_function_threshold', 'format', 'Double')
166 WriteData(fid, prefix, 'object', self, 'fieldname', 'min_parameters', 'format', 'DoubleMat', 'mattype', 3)
167 WriteData(fid, prefix, 'object', self, 'fieldname', 'max_parameters', 'format', 'DoubleMat', 'mattype', 3)
168 WriteData(fid, prefix, 'object', self, 'fieldname', 'step_threshold', 'format', 'DoubleMat', 'mattype', 3)
169 WriteData(fid, prefix, 'object', self, 'fieldname', 'vx_obs', 'format', 'DoubleMat', 'mattype', 1, 'scale', 1. / yts)
170 WriteData(fid, prefix, 'object', self, 'fieldname', 'vy_obs', 'format', 'DoubleMat', 'mattype', 1, 'scale', 1. / yts)
171 WriteData(fid, prefix, 'object', self, 'fieldname', 'vz_obs', 'format', 'DoubleMat', 'mattype', 1, 'scale', 1. / yts)
172 WriteData(fid, prefix, 'object', self, 'fieldname', 'thickness_obs', 'format', 'DoubleMat', 'mattype', 1)
173 WriteData(fid, prefix, 'object', self, 'fieldname', 'surface_obs', 'format', 'DoubleMat', 'mattype', 1)
[13023]174
[25688]175 # Process control parameters
[24213]176 num_control_parameters = len(self.control_parameters)
177 WriteData(fid, prefix, 'object', self, 'fieldname', 'control_parameters', 'format', 'StringArray')
178 WriteData(fid, prefix, 'data', num_control_parameters, 'name', 'md.inversion.num_control_parameters', 'format', 'Integer')
[13023]179
[25688]180 # Process cost functions
[24213]181 num_cost_functions = np.size(self.cost_functions)
182 data = marshallcostfunctions(self.cost_functions)
183 WriteData(fid, prefix, 'data', data, 'name', 'md.inversion.cost_functions', 'format', 'StringArray')
184 WriteData(fid, prefix, 'data', num_cost_functions, 'name', 'md.inversion.num_cost_functions', 'format', 'Integer')
185 # }}}
Note: See TracBrowser for help on using the repository browser.