source: issm/trunk-jpl/src/m/classes/inversion.py@ 15125

Last change on this file since 15125 was 15125, checked in by Mathieu Morlighem, 12 years ago

CHG: moved more conversions from Core to classes

File size: 9.8 KB
RevLine 
[13023]1import numpy
[13740]2import copy
[12038]3from fielddisplay import fielddisplay
[13023]4from EnumDefinitions import *
[13043]5from StringToEnum import StringToEnum
[13023]6from checkfield import *
7from WriteData import *
[12038]8
[12958]9class inversion(object):
[13023]10 """
11 INVERSION class definition
12
13 Usage:
14 inversion=inversion();
15 """
16
[14640]17 def __init__(self): # {{{
[12038]18 self.iscontrol = 0
19 self.tao = 0
20 self.incomplete_adjoint = 0
21 self.control_parameters = float('NaN')
22 self.nsteps = 0
23 self.maxiter_per_step = float('NaN')
24 self.cost_functions = float('NaN')
25 self.cost_functions_coefficients = float('NaN')
26 self.gradient_scaling = float('NaN')
27 self.cost_function_threshold = 0
28 self.min_parameters = float('NaN')
29 self.max_parameters = float('NaN')
30 self.step_threshold = float('NaN')
31 self.gradient_only = 0
32 self.vx_obs = float('NaN')
33 self.vy_obs = float('NaN')
34 self.vz_obs = float('NaN')
35 self.vel_obs = float('NaN')
36 self.thickness_obs = float('NaN')
[13093]37
38 #set defaults
39 self.setdefaultparameters()
40
[12038]41 #}}}
[14640]42 def __repr__(self): # {{{
[14141]43 string=' inversion parameters:'
[13023]44 string="%s\n%s"%(string,fielddisplay(self,'iscontrol','is inversion activated?'))
[14640]45 string="%s\n%s"%(string,fielddisplay(self,'incomplete_adjoint','1: linear viscosity, 0: non-linear viscosity'))
46 string="%s\n%s"%(string,fielddisplay(self,'control_parameters','ex: {''FrictionCoefficient''}, or {''MaterialsRheologyBbar''}'))
[13023]47 string="%s\n%s"%(string,fielddisplay(self,'nsteps','number of optimization searches'))
48 string="%s\n%s"%(string,fielddisplay(self,'cost_functions','indicate the type of response for each optimization step'))
49 string="%s\n%s"%(string,fielddisplay(self,'cost_functions_coefficients','cost_functions_coefficients applied to the misfit of each vertex and for each control_parameter'))
50 string="%s\n%s"%(string,fielddisplay(self,'cost_function_threshold','misfit convergence criterion. Default is 1%, NaN if not applied'))
51 string="%s\n%s"%(string,fielddisplay(self,'maxiter_per_step','maximum iterations during each optimization step'))
52 string="%s\n%s"%(string,fielddisplay(self,'gradient_scaling','scaling factor on gradient direction during optimization, for each optimization step'))
53 string="%s\n%s"%(string,fielddisplay(self,'step_threshold','decrease threshold for misfit, default is 30%'))
54 string="%s\n%s"%(string,fielddisplay(self,'min_parameters','absolute minimum acceptable value of the inversed parameter on each vertex'))
55 string="%s\n%s"%(string,fielddisplay(self,'max_parameters','absolute maximum acceptable value of the inversed parameter on each vertex'))
56 string="%s\n%s"%(string,fielddisplay(self,'gradient_only','stop control method solution at gradient'))
[14640]57 string="%s\n%s"%(string,fielddisplay(self,'vx_obs','observed velocity x component [m/yr]'))
58 string="%s\n%s"%(string,fielddisplay(self,'vy_obs','observed velocity y component [m/yr]'))
59 string="%s\n%s"%(string,fielddisplay(self,'vel_obs','observed velocity magnitude [m/yr]'))
[13023]60 string="%s\n%s"%(string,fielddisplay(self,'thickness_obs','observed thickness [m]'))
[12038]61 string="%s\n%s"%(string,'Available cost functions:')
62 string="%s\n%s"%(string,' 101: SurfaceAbsVelMisfit')
63 string="%s\n%s"%(string,' 102: SurfaceRelVelMisfit')
64 string="%s\n%s"%(string,' 103: SurfaceLogVelMisfit')
65 string="%s\n%s"%(string,' 104: SurfaceLogVxVyMisfit')
66 string="%s\n%s"%(string,' 105: SurfaceAverageVelMisfit')
67 string="%s\n%s"%(string,' 201: ThicknessAbsMisfit')
68 string="%s\n%s"%(string,' 501: DragCoefficientAbsGradient')
69 string="%s\n%s"%(string,' 502: RheologyBbarAbsGradient')
70 string="%s\n%s"%(string,' 503: ThicknessAbsGradient')
71 return string
72 #}}}
[13029]73 def setdefaultparameters(self): # {{{
[12123]74
75 #default is incomplete adjoint for now
[13023]76 self.incomplete_adjoint=1
[12123]77
78 #parameter to be inferred by control methods (only
79 #drag and B are supported yet)
[13093]80 self.control_parameters='FrictionCoefficient'
[12123]81
82 #number of steps in the control methods
[13023]83 self.nsteps=20
[12123]84
85 #maximum number of iteration in the optimization algorithm for
86 #each step
[13093]87 self.maxiter_per_step=20*numpy.ones(self.nsteps)
[12123]88
89 #the inversed parameter is updated as follows:
90 #new_par=old_par + gradient_scaling(n)*C*gradient with C in [0 1];
91 #usually the gradient_scaling must be of the order of magnitude of the
92 #inversed parameter (10^8 for B, 50 for drag) and can be decreased
93 #after the first iterations
[13642]94 self.gradient_scaling=50*numpy.ones((self.nsteps,1))
[12123]95
96 #several responses can be used:
[13642]97 self.cost_functions=101*numpy.ones((self.nsteps,1))
[12123]98
99 #step_threshold is used to speed up control method. When
[13023]100 #misfit(1)/misfit(0) < self.step_threshold, we go directly to
[12123]101 #the next step
[13093]102 self.step_threshold=.7*numpy.ones(self.nsteps) #30 per cent decrement
[12123]103
104 #stop control solution at the gradient computation and return it?
[13023]105 self.gradient_only=0
[12123]106
107 #cost_function_threshold is a criteria to stop the control methods.
108 #if J[n]-J[n-1]/J[n] < criteria, the control run stops
109 #NaN if not applied
[13093]110 self.cost_function_threshold=float('NaN') #not activated
[12123]111
[13023]112 return self
113 #}}}
114 def checkconsistency(self,md,solution,analyses): # {{{
[12123]115
[13023]116 #Early return
117 if not self.iscontrol:
118 return md
119
120 num_controls=numpy.size(md.inversion.control_parameters)
[13642]121 num_costfunc=numpy.size(md.inversion.cost_functions,axis=1)
[13023]122
123 md = checkfield(md,'inversion.iscontrol','values',[0,1])
124 md = checkfield(md,'inversion.tao','values',[0,1])
125 md = checkfield(md,'inversion.incomplete_adjoint','values',[0,1])
[13624]126 md = checkfield(md,'inversion.control_parameters','cell',1,'values',['BalancethicknessThickeningRate','FrictionCoefficient','MaterialsRheologyBbar','MaterialsRheologyZbar','Vx','Vy'])
[13040]127 md = checkfield(md,'inversion.nsteps','numel',[1],'>=',1)
[13023]128 md = checkfield(md,'inversion.maxiter_per_step','size',[md.inversion.nsteps],'>=',0)
129 md = checkfield(md,'inversion.step_threshold','size',[md.inversion.nsteps])
[13059]130 md = checkfield(md,'inversion.cost_functions','size',[md.inversion.nsteps,num_costfunc],'values',[101,102,103,104,105,201,501,502,503,504,505])
[13023]131 md = checkfield(md,'inversion.cost_functions_coefficients','size',[md.mesh.numberofvertices,num_costfunc],'>=',0)
132 md = checkfield(md,'inversion.gradient_only','values',[0,1])
133 md = checkfield(md,'inversion.gradient_scaling','size',[md.inversion.nsteps,num_controls])
134 md = checkfield(md,'inversion.min_parameters','size',[md.mesh.numberofvertices,num_controls])
135 md = checkfield(md,'inversion.max_parameters','size',[md.mesh.numberofvertices,num_controls])
136
137 if solution==BalancethicknessSolutionEnum():
138 md = checkfield(md,'inversion.thickness_obs','size',[md.mesh.numberofvertices],'NaN',1)
139 else:
140 md = checkfield(md,'inversion.vx_obs','size',[md.mesh.numberofvertices],'NaN',1)
141 md = checkfield(md,'inversion.vy_obs','size',[md.mesh.numberofvertices],'NaN',1)
142
143 return md
144 # }}}
145 def marshall(self,fid): # {{{
146
[15125]147 yts=365.0*24.0*3600.0
148
[13023]149 WriteData(fid,'object',self,'fieldname','iscontrol','format','Boolean')
150 WriteData(fid,'object',self,'fieldname','tao','format','Boolean')
151 WriteData(fid,'object',self,'fieldname','incomplete_adjoint','format','Boolean')
152 if not self.iscontrol:
153 return
154 WriteData(fid,'object',self,'fieldname','nsteps','format','Integer')
155 WriteData(fid,'object',self,'fieldname','maxiter_per_step','format','DoubleMat','mattype',3)
156 WriteData(fid,'object',self,'fieldname','cost_functions_coefficients','format','DoubleMat','mattype',1)
157 WriteData(fid,'object',self,'fieldname','gradient_scaling','format','DoubleMat','mattype',3)
158 WriteData(fid,'object',self,'fieldname','cost_function_threshold','format','Double')
159 WriteData(fid,'object',self,'fieldname','min_parameters','format','DoubleMat','mattype',3)
160 WriteData(fid,'object',self,'fieldname','max_parameters','format','DoubleMat','mattype',3)
161 WriteData(fid,'object',self,'fieldname','step_threshold','format','DoubleMat','mattype',3)
162 WriteData(fid,'object',self,'fieldname','gradient_only','format','Boolean')
[15125]163 WriteData(fid,'object',self,'fieldname','vx_obs','format','DoubleMat','mattype',1,'scale',1./yts)
164 WriteData(fid,'object',self,'fieldname','vy_obs','format','DoubleMat','mattype',1,'scale',1./yts)
165 WriteData(fid,'object',self,'fieldname','vz_obs','format','DoubleMat','mattype',1,'scale',1./yts)
[13023]166 WriteData(fid,'object',self,'fieldname','thickness_obs','format','DoubleMat','mattype',1)
167
168 #process control parameters
[13517]169 num_control_parameters=len(self.control_parameters)
[13856]170 data=numpy.array([StringToEnum(control_parameter)[0] for control_parameter in self.control_parameters]).reshape(1,-1)
[13023]171 WriteData(fid,'data',data,'enum',InversionControlParametersEnum(),'format','DoubleMat','mattype',3)
172 WriteData(fid,'data',num_control_parameters,'enum',InversionNumControlParametersEnum(),'format','Integer')
173
174 #process cost functions
[13642]175 num_cost_functions=numpy.size(self.cost_functions,axis=1)
[13740]176 data=copy.deepcopy(self.cost_functions)
[13171]177 data[numpy.nonzero(data==101)]=SurfaceAbsVelMisfitEnum()
178 data[numpy.nonzero(data==102)]=SurfaceRelVelMisfitEnum()
179 data[numpy.nonzero(data==103)]=SurfaceLogVelMisfitEnum()
180 data[numpy.nonzero(data==104)]=SurfaceLogVxVyMisfitEnum()
181 data[numpy.nonzero(data==105)]=SurfaceAverageVelMisfitEnum()
182 data[numpy.nonzero(data==201)]=ThicknessAbsMisfitEnum()
183 data[numpy.nonzero(data==501)]=DragCoefficientAbsGradientEnum()
184 data[numpy.nonzero(data==502)]=RheologyBbarAbsGradientEnum()
185 data[numpy.nonzero(data==503)]=ThicknessAbsGradientEnum()
186 data[numpy.nonzero(data==504)]=ThicknessAlongGradientEnum()
187 data[numpy.nonzero(data==505)]=ThicknessAcrossGradientEnum()
[13023]188 WriteData(fid,'data',data,'enum',InversionCostFunctionsEnum(),'format','DoubleMat','mattype',3)
189 WriteData(fid,'data',num_cost_functions,'enum',InversionNumCostFunctionsEnum(),'format','Integer')
190 # }}}
Note: See TracBrowser for help on using the repository browser.