source: issm/trunk-jpl/src/m/classes/inversion.py@ 13856

Last change on this file since 13856 was 13856, checked in by jschierm, 12 years ago

CHG: Change Python control_parameter marshaling from column vector to row vector like Matlab.

File size: 9.8 KB
RevLine 
[12038]1#module imports
[13023]2import numpy
[13740]3import copy
[12038]4from fielddisplay import fielddisplay
[13023]5from EnumDefinitions import *
[13043]6from StringToEnum import StringToEnum
[13023]7from checkfield import *
8from WriteData import *
[12038]9
[12958]10class inversion(object):
[13023]11 """
12 INVERSION class definition
13
14 Usage:
15 inversion=inversion();
16 """
17
[12038]18 #properties
19 def __init__(self):
20 # {{{ Properties
21 self.iscontrol = 0
22 self.tao = 0
23 self.incomplete_adjoint = 0
24 self.control_parameters = float('NaN')
25 self.nsteps = 0
26 self.maxiter_per_step = float('NaN')
27 self.cost_functions = float('NaN')
28 self.cost_functions_coefficients = float('NaN')
29 self.gradient_scaling = float('NaN')
30 self.cost_function_threshold = 0
31 self.min_parameters = float('NaN')
32 self.max_parameters = float('NaN')
33 self.step_threshold = float('NaN')
34 self.gradient_only = 0
35 self.vx_obs = float('NaN')
36 self.vy_obs = float('NaN')
37 self.vz_obs = float('NaN')
38 self.vel_obs = float('NaN')
39 self.thickness_obs = float('NaN')
[13093]40
41 #set defaults
42 self.setdefaultparameters()
43
[12038]44 #}}}
[13023]45 def __repr__(self):
[12038]46 # {{{ Display
47 string='\n Inversion parameters:'
[13023]48 string="%s\n%s"%(string,fielddisplay(self,'iscontrol','is inversion activated?'))
49 string="%s\n%s"%(string,fielddisplay(self,'incomplete_adjoint','do we assume linear viscosity?'))
50 string="%s\n%s"%(string,fielddisplay(self,'control_parameters','parameter where inverse control is carried out; ex: {''FrictionCoefficient''}, or {''MaterialsRheologyBbar''}'))
51 string="%s\n%s"%(string,fielddisplay(self,'nsteps','number of optimization searches'))
52 string="%s\n%s"%(string,fielddisplay(self,'cost_functions','indicate the type of response for each optimization step'))
53 string="%s\n%s"%(string,fielddisplay(self,'cost_functions_coefficients','cost_functions_coefficients applied to the misfit of each vertex and for each control_parameter'))
54 string="%s\n%s"%(string,fielddisplay(self,'cost_function_threshold','misfit convergence criterion. Default is 1%, NaN if not applied'))
55 string="%s\n%s"%(string,fielddisplay(self,'maxiter_per_step','maximum iterations during each optimization step'))
56 string="%s\n%s"%(string,fielddisplay(self,'gradient_scaling','scaling factor on gradient direction during optimization, for each optimization step'))
57 string="%s\n%s"%(string,fielddisplay(self,'step_threshold','decrease threshold for misfit, default is 30%'))
58 string="%s\n%s"%(string,fielddisplay(self,'min_parameters','absolute minimum acceptable value of the inversed parameter on each vertex'))
59 string="%s\n%s"%(string,fielddisplay(self,'max_parameters','absolute maximum acceptable value of the inversed parameter on each vertex'))
60 string="%s\n%s"%(string,fielddisplay(self,'gradient_only','stop control method solution at gradient'))
61 string="%s\n%s"%(string,fielddisplay(self,'vx_obs','observed velocity x component [m/a]'))
62 string="%s\n%s"%(string,fielddisplay(self,'vy_obs','observed velocity y component [m/a]'))
63 string="%s\n%s"%(string,fielddisplay(self,'vel_obs','observed velocity magnitude [m/a]'))
64 string="%s\n%s"%(string,fielddisplay(self,'thickness_obs','observed thickness [m]'))
[12038]65 string="%s\n%s"%(string,'Available cost functions:')
66 string="%s\n%s"%(string,' 101: SurfaceAbsVelMisfit')
67 string="%s\n%s"%(string,' 102: SurfaceRelVelMisfit')
68 string="%s\n%s"%(string,' 103: SurfaceLogVelMisfit')
69 string="%s\n%s"%(string,' 104: SurfaceLogVxVyMisfit')
70 string="%s\n%s"%(string,' 105: SurfaceAverageVelMisfit')
71 string="%s\n%s"%(string,' 201: ThicknessAbsMisfit')
72 string="%s\n%s"%(string,' 501: DragCoefficientAbsGradient')
73 string="%s\n%s"%(string,' 502: RheologyBbarAbsGradient')
74 string="%s\n%s"%(string,' 503: ThicknessAbsGradient')
75 return string
76 #}}}
[12123]77
[13029]78 def setdefaultparameters(self): # {{{
[12123]79
80 #default is incomplete adjoint for now
[13023]81 self.incomplete_adjoint=1
[12123]82
83 #parameter to be inferred by control methods (only
84 #drag and B are supported yet)
[13093]85 self.control_parameters='FrictionCoefficient'
[12123]86
87 #number of steps in the control methods
[13023]88 self.nsteps=20
[12123]89
90 #maximum number of iteration in the optimization algorithm for
91 #each step
[13093]92 self.maxiter_per_step=20*numpy.ones(self.nsteps)
[12123]93
94 #the inversed parameter is updated as follows:
95 #new_par=old_par + gradient_scaling(n)*C*gradient with C in [0 1];
96 #usually the gradient_scaling must be of the order of magnitude of the
97 #inversed parameter (10^8 for B, 50 for drag) and can be decreased
98 #after the first iterations
[13642]99 self.gradient_scaling=50*numpy.ones((self.nsteps,1))
[12123]100
101 #several responses can be used:
[13642]102 self.cost_functions=101*numpy.ones((self.nsteps,1))
[12123]103
104 #step_threshold is used to speed up control method. When
[13023]105 #misfit(1)/misfit(0) < self.step_threshold, we go directly to
[12123]106 #the next step
[13093]107 self.step_threshold=.7*numpy.ones(self.nsteps) #30 per cent decrement
[12123]108
109 #stop control solution at the gradient computation and return it?
[13023]110 self.gradient_only=0
[12123]111
112 #cost_function_threshold is a criteria to stop the control methods.
113 #if J[n]-J[n-1]/J[n] < criteria, the control run stops
114 #NaN if not applied
[13093]115 self.cost_function_threshold=float('NaN') #not activated
[12123]116
[13023]117 return self
118 #}}}
[13030]119
[13023]120 def checkconsistency(self,md,solution,analyses): # {{{
[12123]121
[13023]122 #Early return
123 if not self.iscontrol:
124 return md
125
126 num_controls=numpy.size(md.inversion.control_parameters)
[13642]127 num_costfunc=numpy.size(md.inversion.cost_functions,axis=1)
[13023]128
129 md = checkfield(md,'inversion.iscontrol','values',[0,1])
130 md = checkfield(md,'inversion.tao','values',[0,1])
131 md = checkfield(md,'inversion.incomplete_adjoint','values',[0,1])
[13624]132 md = checkfield(md,'inversion.control_parameters','cell',1,'values',['BalancethicknessThickeningRate','FrictionCoefficient','MaterialsRheologyBbar','MaterialsRheologyZbar','Vx','Vy'])
[13040]133 md = checkfield(md,'inversion.nsteps','numel',[1],'>=',1)
[13023]134 md = checkfield(md,'inversion.maxiter_per_step','size',[md.inversion.nsteps],'>=',0)
135 md = checkfield(md,'inversion.step_threshold','size',[md.inversion.nsteps])
[13059]136 md = checkfield(md,'inversion.cost_functions','size',[md.inversion.nsteps,num_costfunc],'values',[101,102,103,104,105,201,501,502,503,504,505])
[13023]137 md = checkfield(md,'inversion.cost_functions_coefficients','size',[md.mesh.numberofvertices,num_costfunc],'>=',0)
138 md = checkfield(md,'inversion.gradient_only','values',[0,1])
139 md = checkfield(md,'inversion.gradient_scaling','size',[md.inversion.nsteps,num_controls])
140 md = checkfield(md,'inversion.min_parameters','size',[md.mesh.numberofvertices,num_controls])
141 md = checkfield(md,'inversion.max_parameters','size',[md.mesh.numberofvertices,num_controls])
142
143 if solution==BalancethicknessSolutionEnum():
144 md = checkfield(md,'inversion.thickness_obs','size',[md.mesh.numberofvertices],'NaN',1)
145 else:
146 md = checkfield(md,'inversion.vx_obs','size',[md.mesh.numberofvertices],'NaN',1)
147 md = checkfield(md,'inversion.vy_obs','size',[md.mesh.numberofvertices],'NaN',1)
148
149 return md
150 # }}}
[13030]151
[13023]152 def marshall(self,fid): # {{{
153
154 WriteData(fid,'object',self,'fieldname','iscontrol','format','Boolean')
155 WriteData(fid,'object',self,'fieldname','tao','format','Boolean')
156 WriteData(fid,'object',self,'fieldname','incomplete_adjoint','format','Boolean')
157 if not self.iscontrol:
158 return
159 WriteData(fid,'object',self,'fieldname','nsteps','format','Integer')
160 WriteData(fid,'object',self,'fieldname','maxiter_per_step','format','DoubleMat','mattype',3)
161 WriteData(fid,'object',self,'fieldname','cost_functions_coefficients','format','DoubleMat','mattype',1)
162 WriteData(fid,'object',self,'fieldname','gradient_scaling','format','DoubleMat','mattype',3)
163 WriteData(fid,'object',self,'fieldname','cost_function_threshold','format','Double')
164 WriteData(fid,'object',self,'fieldname','min_parameters','format','DoubleMat','mattype',3)
165 WriteData(fid,'object',self,'fieldname','max_parameters','format','DoubleMat','mattype',3)
166 WriteData(fid,'object',self,'fieldname','step_threshold','format','DoubleMat','mattype',3)
167 WriteData(fid,'object',self,'fieldname','gradient_only','format','Boolean')
168 WriteData(fid,'object',self,'fieldname','vx_obs','format','DoubleMat','mattype',1)
169 WriteData(fid,'object',self,'fieldname','vy_obs','format','DoubleMat','mattype',1)
170 WriteData(fid,'object',self,'fieldname','vz_obs','format','DoubleMat','mattype',1)
171 WriteData(fid,'object',self,'fieldname','thickness_obs','format','DoubleMat','mattype',1)
172
173 #process control parameters
[13517]174 num_control_parameters=len(self.control_parameters)
[13856]175 data=numpy.array([StringToEnum(control_parameter)[0] for control_parameter in self.control_parameters]).reshape(1,-1)
[13023]176 WriteData(fid,'data',data,'enum',InversionControlParametersEnum(),'format','DoubleMat','mattype',3)
177 WriteData(fid,'data',num_control_parameters,'enum',InversionNumControlParametersEnum(),'format','Integer')
178
179 #process cost functions
[13642]180 num_cost_functions=numpy.size(self.cost_functions,axis=1)
[13740]181 data=copy.deepcopy(self.cost_functions)
[13171]182 data[numpy.nonzero(data==101)]=SurfaceAbsVelMisfitEnum()
183 data[numpy.nonzero(data==102)]=SurfaceRelVelMisfitEnum()
184 data[numpy.nonzero(data==103)]=SurfaceLogVelMisfitEnum()
185 data[numpy.nonzero(data==104)]=SurfaceLogVxVyMisfitEnum()
186 data[numpy.nonzero(data==105)]=SurfaceAverageVelMisfitEnum()
187 data[numpy.nonzero(data==201)]=ThicknessAbsMisfitEnum()
188 data[numpy.nonzero(data==501)]=DragCoefficientAbsGradientEnum()
189 data[numpy.nonzero(data==502)]=RheologyBbarAbsGradientEnum()
190 data[numpy.nonzero(data==503)]=ThicknessAbsGradientEnum()
191 data[numpy.nonzero(data==504)]=ThicknessAlongGradientEnum()
192 data[numpy.nonzero(data==505)]=ThicknessAcrossGradientEnum()
[13023]193 WriteData(fid,'data',data,'enum',InversionCostFunctionsEnum(),'format','DoubleMat','mattype',3)
194 WriteData(fid,'data',num_cost_functions,'enum',InversionNumCostFunctionsEnum(),'format','Integer')
195 # }}}
[13030]196
Note: See TracBrowser for help on using the repository browser.