1 | function solutionsequence_linear(femmodel::FemModel,analysis::Analysis) # {{{
|
---|
2 |
|
---|
3 | #First, update constraints in case the levelset has changed
|
---|
4 | UpdateConstraintsx(femmodel, analysis)
|
---|
5 |
|
---|
6 | #Get new matrices
|
---|
7 | Kff, Kfs, pf = SystemMatricesx(femmodel,analysis)
|
---|
8 |
|
---|
9 | #Enforce constraints
|
---|
10 | ys = CreateNodalConstraintsx(femmodel.nodes)
|
---|
11 | Reduceloadx!(pf, Kfs, ys)
|
---|
12 |
|
---|
13 | #Solve!
|
---|
14 | uf = Solverx(Kff, pf)
|
---|
15 |
|
---|
16 | #Merge uf with ys and update inputs
|
---|
17 | gsize = NumberOfDofs(femmodel.nodes,GsetEnum)
|
---|
18 | ug = IssmVector(gsize)
|
---|
19 | Mergesolutionfromftogx(ug, uf, ys, femmodel.nodes)
|
---|
20 |
|
---|
21 | InputUpdateFromSolutionx(analysis, ug, femmodel)
|
---|
22 |
|
---|
23 | end# }}}
|
---|
24 | function solutionsequence_nonlinear(femmodel::FemModel,analysis::Analysis,maxiter::Int64,restol::Float64,reltol::Float64,abstol::Float64) # {{{
|
---|
25 |
|
---|
26 | #First, update constraints in case the levelset has changed
|
---|
27 | UpdateConstraintsx(femmodel, analysis)
|
---|
28 |
|
---|
29 | #Initialize number of iterations
|
---|
30 | count = 0
|
---|
31 | converged = false
|
---|
32 |
|
---|
33 | #Get existing solution
|
---|
34 | ug = GetSolutionFromInputsx(analysis,femmodel)
|
---|
35 | uf = Reducevectorgtofx(ug,femmodel.nodes)
|
---|
36 |
|
---|
37 | #Update once again the solution to make sure that vx and vxold are similar (for next step in transient or steadystate)
|
---|
38 | InputUpdateFromSolutionx(analysis,ug,femmodel)
|
---|
39 |
|
---|
40 | #Loop until we reach convergence
|
---|
41 | while(~converged)
|
---|
42 |
|
---|
43 | #Get new matrices
|
---|
44 | Kff, Kfs, pf = SystemMatricesx(femmodel,analysis)
|
---|
45 |
|
---|
46 | #Enforce constraints
|
---|
47 | ys = CreateNodalConstraintsx(femmodel.nodes)
|
---|
48 | Reduceloadx!(pf, Kfs, ys)
|
---|
49 |
|
---|
50 | #Solve!
|
---|
51 | old_uf = uf
|
---|
52 | uf = Solverx(Kff, pf, old_uf)
|
---|
53 |
|
---|
54 | #Merge uf with ys
|
---|
55 | Mergesolutionfromftogx(ug, uf, ys, femmodel.nodes)
|
---|
56 |
|
---|
57 | #Check for convergence
|
---|
58 | converged = convergence(Kff,pf,uf,old_uf,restol,reltol,abstol)
|
---|
59 | InputUpdateFromSolutionx(analysis,ug,femmodel)
|
---|
60 |
|
---|
61 | #Increase count
|
---|
62 | count += 1
|
---|
63 | if(count>=maxiter)
|
---|
64 | println(" maximum number of nonlinear iterations (",maxiter,") exceeded")
|
---|
65 | converged = true
|
---|
66 | end
|
---|
67 | end
|
---|
68 |
|
---|
69 | print("\n total number of iterations: ", count, "\n")
|
---|
70 |
|
---|
71 | end# }}}
|
---|
72 | function convergence(Kff::IssmMatrix, pf::IssmVector, uf::IssmVector, old_uf::IssmVector, restol::Float64, reltol::Float64, abstol::Float64)#{{{
|
---|
73 |
|
---|
74 | print(" checking convergence\n");
|
---|
75 |
|
---|
76 | #If solution vector is empty, return true
|
---|
77 | if(IsEmpty(uf))
|
---|
78 | return true
|
---|
79 | end
|
---|
80 |
|
---|
81 | #Convergence criterion #1: force equilibrium (Mandatory)
|
---|
82 | #compute K[n]U[n-1] - F
|
---|
83 | KUold = Duplicate(uf); MatMult!(Kff,old_uf,KUold)
|
---|
84 | KUoldF = Duplicate(KUold); VecCopy!(KUold, KUoldF); AXPY!(KUoldF, -1.0, pf)
|
---|
85 | nKUoldF = Norm(KUoldF,2)
|
---|
86 | nF = Norm(pf,2)
|
---|
87 | res = nKUoldF/nF
|
---|
88 | if ~isfinite(res)
|
---|
89 | println("norm nf = ", nF, " and norm kuold = ",nKUoldF)
|
---|
90 | error("mechanical equilibrium convergence criterion is not finite!")
|
---|
91 | end
|
---|
92 | if(res<restol)
|
---|
93 | print(" mechanical equilibrium convergence criterion ", res*100, " < ", restol*100, " %\n")
|
---|
94 | converged=true
|
---|
95 | else
|
---|
96 | print(" mechanical equilibrium convergence criterion ", res*100, " > ", restol*100, " %\n")
|
---|
97 | converged=false;
|
---|
98 | end
|
---|
99 |
|
---|
100 | #Convergence criterion #2: norm(du)/norm(u)
|
---|
101 | if ~isnan(reltol)
|
---|
102 | duf = Duplicate(old_uf); VecCopy!(old_uf,duf); AXPY!(duf, -1.0, uf)
|
---|
103 | ndu = Norm(duf, 2); nu = Norm(old_uf, 2)
|
---|
104 | if ~isfinite(ndu) | ~isfinite(nu)
|
---|
105 | error("convergence criterion is not finite!")
|
---|
106 | end
|
---|
107 | if((ndu/nu)<reltol)
|
---|
108 | print(" Convergence criterion: norm(du)/norm(u) ", ndu/nu*100, " < ", reltol*100, " %\n")
|
---|
109 | else
|
---|
110 | print(" Convergence criterion: norm(du)/norm(u) ", ndu/nu*100, " > ", reltol*100, " %\n")
|
---|
111 | converged=false;
|
---|
112 | end
|
---|
113 | end
|
---|
114 |
|
---|
115 | #Convergence criterion #3: max(du)
|
---|
116 | if ~isnan(abstol)
|
---|
117 | duf = Duplicate(old_uf); VecCopy!(old_uf,duf); AXPY!(duf, -1.0, uf)
|
---|
118 | nduinf= Norm(duf, 3)
|
---|
119 | if ~isfinite(nduinf)
|
---|
120 | error("convergence criterion is not finite!")
|
---|
121 | end
|
---|
122 | if(nduinf<abstol)
|
---|
123 | print(" Convergence criterion: max(du) ", nduinf, " < ", abstol, "\n")
|
---|
124 | else
|
---|
125 | print(" Convergence criterion: max(du) ", nduinf, " > ", abstol, "\n")
|
---|
126 | converged=false;
|
---|
127 | end
|
---|
128 | end
|
---|
129 |
|
---|
130 | return converged
|
---|
131 |
|
---|
132 | end#}}}
|
---|