1 | /*!\file: random
|
---|
2 | * \brief random number generating functions
|
---|
3 | */
|
---|
4 |
|
---|
5 | /*Headers*/
|
---|
6 | /*{{{*/
|
---|
7 | #include <stdio.h>
|
---|
8 | #include <sys/types.h>
|
---|
9 | #include <math.h>
|
---|
10 | #include <float.h> /* DBL_EPSILON */
|
---|
11 | #include <chrono>
|
---|
12 | #include <cstdarg>
|
---|
13 | #include <iostream>
|
---|
14 | #include <random>
|
---|
15 |
|
---|
16 | #include "../Matrix/matrix.h"
|
---|
17 | #include "../Exceptions/exceptions.h"
|
---|
18 | #include "../MemOps/MemOps.h"
|
---|
19 | #include "../io/io.h"
|
---|
20 | /*}}}*/
|
---|
21 |
|
---|
22 | void univariateNormal(IssmDouble* prand, IssmDouble mean, IssmDouble sdev) { /*{{{*/
|
---|
23 | /*univariateNormal generates a random value follwoing Normal distribution*/
|
---|
24 | unsigned seed = std::chrono::steady_clock::now().time_since_epoch().count(); //random seed using time_since_epoch
|
---|
25 | std::default_random_engine generator(seed); //generator of random numbers
|
---|
26 | std::normal_distribution<double> normdistri(mean,sdev); //Normal probability distribution
|
---|
27 | double tfunc;
|
---|
28 | *prand = normdistri(generator);
|
---|
29 | } /*}}}*/
|
---|
30 | void multivariateNormal(IssmDouble** prand, int dim, IssmDouble mean, IssmDouble* covariancematrix) { /*{{{*/
|
---|
31 | IssmDouble* sampleStandardNormal = xNew<IssmDouble>(dim);
|
---|
32 | IssmDouble* sampleMultivariateNormal = xNew<IssmDouble>(dim);
|
---|
33 | IssmDouble* Lchol = xNewZeroInit<IssmDouble>(dim*dim);
|
---|
34 | for(int ii{0};ii<dim;ii++){univariateNormal(&(sampleStandardNormal[ii]),0.0,1.0);}
|
---|
35 | CholeskyRealPositiveDefinite(Lchol,covariancematrix,dim);
|
---|
36 | for(int ii{0};ii<dim;ii++){ //matrix by vector multiplication
|
---|
37 | double sum{0.0};
|
---|
38 | for(int jj{0};jj<dim;jj++){sum += sampleStandardNormal[jj]*Lchol[ii*dim+jj];} //entry-by-entry multiplication along matrix row
|
---|
39 | sampleMultivariateNormal[ii] = mean+sum; //assign value
|
---|
40 | }
|
---|
41 | *prand = sampleMultivariateNormal;
|
---|
42 | xDelete<IssmDouble>(sampleStandardNormal);
|
---|
43 | xDelete<IssmDouble>(Lchol);
|
---|
44 | } /*}}}*/
|
---|
45 | void multivariateNormal(IssmDouble** prand, int dim, IssmDouble* mean, IssmDouble* covariancematrix) { /*{{{*/
|
---|
46 | IssmDouble* sampleStandardNormal = xNew<IssmDouble>(dim);
|
---|
47 | IssmDouble* sampleMultivariateNormal = xNew<IssmDouble>(dim);
|
---|
48 | IssmDouble* Lchol = xNewZeroInit<IssmDouble>(dim*dim);
|
---|
49 | for(int ii{0};ii<dim;ii++){univariateNormal(&(sampleStandardNormal[ii]),0.0,1.0);}
|
---|
50 | CholeskyRealPositiveDefinite(Lchol,covariancematrix,dim);
|
---|
51 | for(int ii{0};ii<dim;ii++){ //matrix by vector multiplication
|
---|
52 | double sum{0.0};
|
---|
53 | for(int jj{0};jj<dim;jj++){sum += sampleStandardNormal[jj]*Lchol[ii*dim+jj];} //entry-by-entry multiplication along matrix row
|
---|
54 | sampleMultivariateNormal[ii] = mean[ii]+sum; //assign value
|
---|
55 | }
|
---|
56 | *prand = sampleMultivariateNormal;
|
---|
57 | xDelete<IssmDouble>(sampleStandardNormal);
|
---|
58 | xDelete<IssmDouble>(Lchol);
|
---|
59 | } /*}}}*/
|
---|
60 |
|
---|
61 |
|
---|
62 |
|
---|