[26477] | 1 | /*!\file: random
|
---|
| 2 | * \brief random number generating functions
|
---|
| 3 | */
|
---|
| 4 |
|
---|
| 5 | /*Headers*/
|
---|
| 6 | /*{{{*/
|
---|
| 7 | #include <stdio.h>
|
---|
| 8 | #include <sys/types.h>
|
---|
| 9 | #include <math.h>
|
---|
| 10 | #include <float.h> /* DBL_EPSILON */
|
---|
| 11 | #include <cstdarg>
|
---|
| 12 | #include <iostream>
|
---|
| 13 |
|
---|
| 14 | #include "../Matrix/matrix.h"
|
---|
| 15 | #include "../Exceptions/exceptions.h"
|
---|
| 16 | #include "../MemOps/MemOps.h"
|
---|
| 17 | #include "../io/io.h"
|
---|
[26621] | 18 | #include "./randomgenerator.h"
|
---|
[26477] | 19 | /*}}}*/
|
---|
| 20 |
|
---|
[26621] | 21 | void univariateNormal(IssmPDouble* prand, IssmPDouble mean, IssmPDouble sdev, int seed=-1) { /*{{{*/
|
---|
[26482] | 22 |
|
---|
[26621] | 23 | /*Seed the pseudo-random number generator*/
|
---|
| 24 | rnd::linear_congruential_engine randomengine;
|
---|
| 25 | randomengine.seed(seed);
|
---|
| 26 | /*Normal distribution*/
|
---|
| 27 | rnd::normal_distribution distriNormal(mean,sdev);
|
---|
[26657] | 28 | /*Assign output pointer and cleanup*/
|
---|
[26621] | 29 | *prand = distriNormal.generator(randomengine);
|
---|
[26657] | 30 | randomengine.free_resources();
|
---|
[26477] | 31 | } /*}}}*/
|
---|
[26621] | 32 | void multivariateNormal(IssmDouble** prand, int dim, IssmDouble mean, IssmDouble* covariancematrix, int seed=-1) { /*{{{*/
|
---|
[26482] | 33 |
|
---|
| 34 | IssmPDouble* sampleStandardNormal = xNew<IssmPDouble>(dim);
|
---|
[26477] | 35 | IssmDouble* sampleMultivariateNormal = xNew<IssmDouble>(dim);
|
---|
| 36 | IssmDouble* Lchol = xNewZeroInit<IssmDouble>(dim*dim);
|
---|
[26479] | 37 |
|
---|
[26621] | 38 | /*True randomness if seed<0, otherwise random seed is fixed at seed*/
|
---|
| 39 | /*Seed the pseudo-random number generator, repeatedly calling univariateNormal does not ensure randomness*/
|
---|
| 40 | rnd::linear_congruential_engine randomengine;
|
---|
| 41 | randomengine.seed(seed);
|
---|
| 42 | /*Normal distribution*/
|
---|
| 43 | rnd::normal_distribution distriNormal(0.0,1.0);
|
---|
| 44 | for(int i=0;i<dim;i++){
|
---|
| 45 | sampleStandardNormal[i] = distriNormal.generator(randomengine);
|
---|
[27276] | 46 | //_printf_("VV i sampleStandardNormal[i]: "<<i<<" "<<sampleStandardNormal[i]<<'\n');
|
---|
[26621] | 47 | }
|
---|
| 48 |
|
---|
| 49 | /*Cholsesky decomposition of the covariance matrix*/
|
---|
[26483] | 50 | CholeskyRealPositiveDefinite(Lchol,covariancematrix,dim);
|
---|
[26482] | 51 |
|
---|
| 52 | /*Matrix by vector multiplication*/
|
---|
| 53 | for(int i=0;i<dim;i++){
|
---|
| 54 | /*Entry-by-entry multiplication along matrix row*/
|
---|
[26479] | 55 | IssmDouble sum=0.;
|
---|
[26482] | 56 | for(int j=0;j<dim;j++) sum += sampleStandardNormal[j]*Lchol[i*dim+j];
|
---|
| 57 | sampleMultivariateNormal[i] = mean+sum;
|
---|
[26477] | 58 | }
|
---|
[26479] | 59 |
|
---|
| 60 | /*Assign output pointer and cleanup*/
|
---|
[26477] | 61 | *prand = sampleMultivariateNormal;
|
---|
[26479] | 62 | xDelete<IssmPDouble>(sampleStandardNormal);
|
---|
[26477] | 63 | xDelete<IssmDouble>(Lchol);
|
---|
[26657] | 64 | randomengine.free_resources();
|
---|
[26477] | 65 | } /*}}}*/
|
---|
[26621] | 66 | void multivariateNormal(IssmDouble** prand, int dim, IssmDouble* mean, IssmDouble* covariancematrix, int seed=-1) { /*{{{*/
|
---|
[26482] | 67 |
|
---|
| 68 | IssmPDouble* sampleStandardNormal = xNew<IssmPDouble>(dim);
|
---|
[26477] | 69 | IssmDouble* sampleMultivariateNormal = xNew<IssmDouble>(dim);
|
---|
| 70 | IssmDouble* Lchol = xNewZeroInit<IssmDouble>(dim*dim);
|
---|
[26621] | 71 |
|
---|
| 72 | /*True randomness if seed<0, otherwise random seed is fixed at seed*/
|
---|
| 73 | /*Seed the pseudo-random number generator, repeatedly calling univariateNormal does not ensure randomness*/
|
---|
| 74 | rnd::linear_congruential_engine randomengine;
|
---|
| 75 | randomengine.seed(seed);
|
---|
| 76 | /*Normal distribution*/
|
---|
| 77 | rnd::normal_distribution distriNormal(0.0,1.0);
|
---|
| 78 | for(int i=0;i<dim;i++){
|
---|
| 79 | sampleStandardNormal[i] = distriNormal.generator(randomengine);
|
---|
[27276] | 80 | //_printf_("VV i sampleStandardNormal[i]: "<<i<<" "<<sampleStandardNormal[i]<<'\n');
|
---|
[26621] | 81 | }
|
---|
[26479] | 82 |
|
---|
[26621] | 83 | /*Cholsesky decomposition of the covariance matrix*/
|
---|
[26477] | 84 | CholeskyRealPositiveDefinite(Lchol,covariancematrix,dim);
|
---|
[26479] | 85 |
|
---|
[26482] | 86 | /*Matrix by vector multiplication*/
|
---|
| 87 | for(int i=0;i<dim;i++){
|
---|
[26479] | 88 | IssmDouble sum = 0.;
|
---|
[26482] | 89 | for(int j=0;j<dim;j++) sum += sampleStandardNormal[j]*Lchol[i*dim+j];
|
---|
| 90 | sampleMultivariateNormal[i] = mean[i]+sum;
|
---|
[26477] | 91 | }
|
---|
[26482] | 92 |
|
---|
| 93 | /*Assign output pointer and cleanup*/
|
---|
[26477] | 94 | *prand = sampleMultivariateNormal;
|
---|
[26479] | 95 | xDelete<IssmPDouble>(sampleStandardNormal);
|
---|
[26477] | 96 | xDelete<IssmDouble>(Lchol);
|
---|
[26657] | 97 | randomengine.free_resources();
|
---|
[26477] | 98 | } /*}}}*/
|
---|
| 99 |
|
---|
| 100 |
|
---|
| 101 |
|
---|