source: issm/trunk-jpl/src/c/modules/SurfaceMassBalancex/SurfaceMassBalancex.cpp@ 26526

Last change on this file since 26526 was 26526, checked in by vverjans, 3 years ago

CHG: matlab stochasticforcing class, update of SMBautoregression and FrontalForcingsRignotAutoregression, no noise in AutoregressionInit

File size: 19.1 KB
Line 
1/*!\file SurfaceMassBalancex
2 * \brief: calculates SMB
3 */
4
5#include <config.h>
6#include "./SurfaceMassBalancex.h"
7#include "../../shared/shared.h"
8#include "../../toolkits/toolkits.h"
9#include "../modules.h"
10#include "../../classes/Inputs/TransientInput.h"
11#include "../../shared/Random/random.h"
12
13void SmbForcingx(FemModel* femmodel){/*{{{*/
14
15 // void SmbForcingx(smb,ni){
16 // INPUT parameters: ni: working size of arrays
17 // OUTPUT: mass-balance (m/yr ice): agd(NA)
18
19}/*}}}*/
20void SmbGradientsx(FemModel* femmodel){/*{{{*/
21
22 // void SurfaceMassBalancex(hd,agd,ni){
23 // INPUT parameters: ni: working size of arrays
24 // INPUT: surface elevation (m): hd(NA)
25 // OUTPUT: mass-balance (m/yr ice): agd(NA)
26 int v;
27 IssmDouble rho_water; // density of fresh water
28 IssmDouble rho_ice; // density of ice
29 IssmDouble yts; // conversion factor year to second
30
31 /*Loop over all the elements of this partition*/
32 for(Object* & object : femmodel->elements->objects){
33 Element* element=xDynamicCast<Element*>(object);
34
35 /*Allocate all arrays*/
36 int numvertices = element->GetNumberOfVertices();
37 IssmDouble* Href = xNew<IssmDouble>(numvertices); // reference elevation from which deviations are used to calculate the SMB adjustment
38 IssmDouble* Smbref = xNew<IssmDouble>(numvertices); // reference SMB to which deviations are added
39 IssmDouble* b_pos = xNew<IssmDouble>(numvertices); // Hs-SMB relation parameter
40 IssmDouble* b_neg = xNew<IssmDouble>(numvertices); // Hs-SMB relation paremeter
41 IssmDouble* s = xNew<IssmDouble>(numvertices); // surface elevation (m)
42 IssmDouble* smb = xNew<IssmDouble>(numvertices);
43
44 /*Recover SmbGradients*/
45 element->GetInputListOnVertices(Href,SmbHrefEnum);
46 element->GetInputListOnVertices(Smbref,SmbSmbrefEnum);
47 element->GetInputListOnVertices(b_pos,SmbBPosEnum);
48 element->GetInputListOnVertices(b_neg,SmbBNegEnum);
49
50 /*Recover surface elevation at vertices: */
51 element->GetInputListOnVertices(s,SurfaceEnum);
52
53 /*Get material parameters :*/
54 rho_ice=element->FindParam(MaterialsRhoIceEnum);
55 rho_water=element->FindParam(MaterialsRhoFreshwaterEnum);
56
57 /* Get constants */
58 femmodel->parameters->FindParam(&yts,ConstantsYtsEnum);
59
60 // loop over all vertices
61 for(v=0;v<numvertices;v++){
62 if(Smbref[v]>0){
63 smb[v]=Smbref[v]+b_pos[v]*(s[v]-Href[v]);
64 }
65 else{
66 smb[v]=Smbref[v]+b_neg[v]*(s[v]-Href[v]);
67 }
68
69 smb[v]=smb[v]/1000*rho_water/rho_ice; // SMB in m/y ice
70 } //end of the loop over the vertices
71
72 /*Add input to element and Free memory*/
73 element->AddInput(SmbMassBalanceEnum,smb,P1Enum);
74 xDelete<IssmDouble>(Href);
75 xDelete<IssmDouble>(Smbref);
76 xDelete<IssmDouble>(b_pos);
77 xDelete<IssmDouble>(b_neg);
78 xDelete<IssmDouble>(s);
79 xDelete<IssmDouble>(smb);
80 }
81
82}/*}}}*/
83void SmbGradientsElax(FemModel* femmodel){/*{{{*/
84
85 // void SurfaceMassBalancex(hd,agd,ni){
86 // INPUT parameters: ni: working size of arrays
87 // INPUT: surface elevation (m): hd(NA)
88 // OUTPUT: surface mass-balance (m/yr ice): agd(NA)
89 int v;
90
91 /*Loop over all the elements of this partition*/
92 for(Object* & object : femmodel->elements->objects){
93 Element* element=xDynamicCast<Element*>(object);
94
95 /*Allocate all arrays*/
96 int numvertices = element->GetNumberOfVertices();
97 IssmDouble* ela = xNew<IssmDouble>(numvertices); // Equilibrium Line Altitude (m a.s.l) to which deviations are used to calculate the SMB
98 IssmDouble* b_pos = xNew<IssmDouble>(numvertices); // SMB gradient above ELA (m ice eq. per m elevation change)
99 IssmDouble* b_neg = xNew<IssmDouble>(numvertices); // SMB gradient below ELA (m ice eq. per m elevation change)
100 IssmDouble* b_max = xNew<IssmDouble>(numvertices); // Upper cap on SMB rate (m/y ice eq.)
101 IssmDouble* b_min = xNew<IssmDouble>(numvertices); // Lower cap on SMB rate (m/y ice eq.)
102 IssmDouble* s = xNew<IssmDouble>(numvertices); // Surface elevation (m a.s.l.)
103 IssmDouble* smb = xNew<IssmDouble>(numvertices); // SMB (m/y ice eq.)
104
105 /*Recover ELA, SMB gradients, and caps*/
106 element->GetInputListOnVertices(ela,SmbElaEnum);
107 element->GetInputListOnVertices(b_pos,SmbBPosEnum);
108 element->GetInputListOnVertices(b_neg,SmbBNegEnum);
109 element->GetInputListOnVertices(b_max,SmbBMaxEnum);
110 element->GetInputListOnVertices(b_min,SmbBMinEnum);
111
112 /*Recover surface elevation at vertices: */
113 element->GetInputListOnVertices(s,SurfaceEnum);
114
115 /*Loop over all vertices, calculate SMB*/
116 for(v=0;v<numvertices;v++){
117 // if surface is above the ELA
118 if(s[v]>ela[v]){
119 smb[v]=b_pos[v]*(s[v]-ela[v]);
120 }
121 // if surface is below or equal to the ELA
122 else{
123 smb[v]=b_neg[v]*(s[v]-ela[v]);
124 }
125
126 // if SMB is larger than upper cap, set SMB to upper cap
127 if(smb[v]>b_max[v]){
128 smb[v]=b_max[v];
129 }
130 // if SMB is smaller than lower cap, set SMB to lower cap
131 if(smb[v]<b_min[v]){
132 smb[v]=b_min[v];
133 }
134 } //end of the loop over the vertices
135
136 /*Add input to element and Free memory*/
137 element->AddInput(SmbMassBalanceEnum,smb,P1Enum);
138 xDelete<IssmDouble>(ela);
139 xDelete<IssmDouble>(b_pos);
140 xDelete<IssmDouble>(b_neg);
141 xDelete<IssmDouble>(b_max);
142 xDelete<IssmDouble>(b_min);
143 xDelete<IssmDouble>(s);
144 xDelete<IssmDouble>(smb);
145
146 }
147
148}/*}}}*/
149void SmbautoregressionInitx(FemModel* femmodel){/*{{{*/
150
151 /*Initialization step of Smbautoregressionx*/
152 int M,N,Nphi,arorder,numbasins,my_rank;
153 IssmDouble starttime,tstep_ar,tinit_ar;
154 femmodel->parameters->FindParam(&numbasins,SmbNumBasinsEnum);
155 femmodel->parameters->FindParam(&arorder,SmbAutoregressiveOrderEnum);
156 IssmDouble* beta0 = NULL;
157 IssmDouble* beta1 = NULL;
158 IssmDouble* phi = NULL;
159 femmodel->parameters->FindParam(&starttime,TimesteppingStartTimeEnum);
160 femmodel->parameters->FindParam(&tstep_ar,SmbAutoregressionTimestepEnum);
161 femmodel->parameters->FindParam(&tinit_ar,SmbAutoregressionInitialTimeEnum);
162 femmodel->parameters->FindParam(&beta0,&M,SmbBeta0Enum); _assert_(M==numbasins);
163 femmodel->parameters->FindParam(&beta1,&M,SmbBeta1Enum); _assert_(M==numbasins);
164 femmodel->parameters->FindParam(&phi,&M,&Nphi,SmbPhiEnum); _assert_(M==numbasins); _assert_(Nphi==arorder);
165
166 /*AR model spin-up with 0 noise to initialize SmbValuesAutoregressionEnum*/
167 int nspin{2*arorder+5};
168 for(Object* &object:femmodel->elements->objects){
169 Element* element = xDynamicCast<Element*>(object); //generate element object
170 element->AutoregressionInit(numbasins,arorder,nspin,starttime,tstep_ar,tinit_ar,beta0,beta1,phi,SMBautoregressionEnum);
171 }
172 /*Cleanup*/
173 xDelete<IssmDouble>(beta0);
174 xDelete<IssmDouble>(beta1);
175 xDelete<IssmDouble>(phi);
176}/*}}}*/
177void Smbautoregressionx(FemModel* femmodel){/*{{{*/
178
179 /*Get time parameters*/
180 IssmDouble time,dt,starttime,tstep_ar;
181 femmodel->parameters->FindParam(&time,TimeEnum);
182 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
183 femmodel->parameters->FindParam(&starttime,TimesteppingStartTimeEnum);
184 femmodel->parameters->FindParam(&tstep_ar,SmbAutoregressionTimestepEnum);
185
186 /*Initialize module at first time step*/
187 if(time<=starttime+dt){SmbautoregressionInitx(femmodel);}
188 /*Determine if this is a time step for the AR model*/
189 bool isstepforar = false;
190
191 #ifndef _HAVE_AD_
192 if((fmod(time,tstep_ar)<fmod((time-dt),tstep_ar)) || (time<=starttime+dt) || tstep_ar==dt) isstepforar = true;
193 #else
194 _error_("not implemented yet");
195 #endif
196
197 /*Load parameters*/
198 bool isstochastic;
199 int M,N,Nphi,arorder,numbasins,my_rank;
200 femmodel->parameters->FindParam(&numbasins,SmbNumBasinsEnum);
201 femmodel->parameters->FindParam(&arorder,SmbAutoregressiveOrderEnum);
202 IssmDouble tinit_ar;
203 IssmDouble* beta0 = NULL;
204 IssmDouble* beta1 = NULL;
205 IssmDouble* phi = NULL;
206
207 femmodel->parameters->FindParam(&tinit_ar,SmbAutoregressionInitialTimeEnum);
208 femmodel->parameters->FindParam(&beta0,&M,SmbBeta0Enum); _assert_(M==numbasins);
209 femmodel->parameters->FindParam(&beta1,&M,SmbBeta1Enum); _assert_(M==numbasins);
210 femmodel->parameters->FindParam(&phi,&M,&Nphi,SmbPhiEnum); _assert_(M==numbasins); _assert_(Nphi==arorder);
211
212 /*Retrieve noise terms if stochasticity, otherwise leave noiseterms as 0*/
213 IssmDouble* noiseterms = xNewZeroInit<IssmDouble>(numbasins);
214 femmodel->parameters->FindParam(&isstochastic,StochasticForcingIsStochasticForcingEnum);
215 if(isstochastic){
216 int numstochasticfields;
217 int* stochasticfields;
218 femmodel->parameters->FindParam(&numstochasticfields,StochasticForcingNumFieldsEnum);
219 femmodel->parameters->FindParam(&stochasticfields,&N,StochasticForcingFieldsEnum); _assert_(N==numstochasticfields);
220 for(int i=0;i<numstochasticfields;i++){
221 if(stochasticfields[i]==SMBautoregressionEnum){
222 femmodel->parameters->FindParam(&noiseterms,&M,SmbAutoregressionNoiseEnum); _assert_(M==numbasins);
223 }
224 }
225 xDelete<int>(stochasticfields);
226 }
227 /*Time elapsed with respect to AR model initial time*/
228 IssmDouble telapsed_ar = time-tinit_ar;
229
230 /*Loop over each element to compute SMB at vertices*/
231 for(Object* &object:femmodel->elements->objects){
232 Element* element = xDynamicCast<Element*>(object);
233 element->Autoregression(isstepforar,arorder,telapsed_ar,beta0,beta1,phi,noiseterms,SMBautoregressionEnum);
234 }
235
236 /*Cleanup*/
237 xDelete<IssmDouble>(beta0);
238 xDelete<IssmDouble>(beta1);
239 xDelete<IssmDouble>(phi);
240 xDelete<IssmDouble>(noiseterms);
241}/*}}}*/
242void Delta18oParameterizationx(FemModel* femmodel){/*{{{*/
243
244 for(Object* & object : femmodel->elements->objects){
245 Element* element=xDynamicCast<Element*>(object);
246 element->Delta18oParameterization();
247 }
248
249}/*}}}*/
250void MungsmtpParameterizationx(FemModel* femmodel){/*{{{*/
251
252 for(Object* & object : femmodel->elements->objects){
253 Element* element=xDynamicCast<Element*>(object);
254 element->MungsmtpParameterization();
255 }
256
257}/*}}}*/
258void Delta18opdParameterizationx(FemModel* femmodel){/*{{{*/
259
260 for(Object* & object : femmodel->elements->objects){
261 Element* element=xDynamicCast<Element*>(object);
262 element->Delta18opdParameterization();
263 }
264
265}/*}}}*/
266void PositiveDegreeDayx(FemModel* femmodel){/*{{{*/
267
268 // void PositiveDegreeDayx(hd,vTempsea,vPrec,agd,Tsurf,ni){
269 // note "v" prefix means 12 monthly means, ie time dimension
270 // INPUT parameters: ni: working size of arrays
271 // INPUT: surface elevation (m): hd(NA)
272 // monthly mean surface sealevel temperature (degrees C): vTempsea(NA
273 // ,NTIME)
274 // monthly mean precip rate (m/yr water equivalent): vPrec(NA,NTIME)
275 // OUTPUT: mass-balance (m/yr ice): agd(NA)
276 // mean annual surface temperature (degrees C): Tsurf(NA)
277
278 int it, jj, itm;
279 IssmDouble DT = 0.02, sigfac, snormfac;
280 IssmDouble signorm = 5.5; // signorm : sigma of the temperature distribution for a normal day
281 IssmDouble siglim; // sigma limit for the integration which is equal to 2.5 sigmanorm
282 IssmDouble signormc = signorm - 0.5; // sigma of the temperature distribution for cloudy day
283 IssmDouble siglimc, siglim0, siglim0c;
284 IssmDouble tstep, tsint, tint, tstepc;
285 int NPDMAX = 1504, NPDCMAX = 1454;
286 //IssmDouble pdds[NPDMAX]={0};
287 //IssmDouble pds[NPDCMAX]={0};
288 IssmDouble pddt, pd ; // pd : snow/precip fraction, precipitation falling as snow
289 IssmDouble PDup, PDCUT = 2.0; // PDcut: rain/snow cutoff temperature (C)
290 IssmDouble tstar; // monthly mean surface temp
291
292 bool ismungsm;
293 bool issetpddfac;
294
295 IssmDouble *pdds = NULL;
296 IssmDouble *pds = NULL;
297 Element *element = NULL;
298
299 pdds=xNew<IssmDouble>(NPDMAX+1);
300 pds=xNew<IssmDouble>(NPDCMAX+1);
301
302 // Get ismungsm parameter
303 femmodel->parameters->FindParam(&ismungsm,SmbIsmungsmEnum);
304
305 // Get issetpddfac parameter
306 femmodel->parameters->FindParam(&issetpddfac,SmbIssetpddfacEnum);
307
308 /* initialize PDD (creation of a lookup table)*/
309 tstep = 0.1;
310 tsint = tstep*0.5;
311 sigfac = -1.0/(2.0*pow(signorm,2));
312 snormfac = 1.0/(signorm*sqrt(2.0*acos(-1.0)));
313 siglim = 2.5*signorm;
314 siglimc = 2.5*signormc;
315 siglim0 = siglim/DT + 0.5;
316 siglim0c = siglimc/DT + 0.5;
317 PDup = siglimc+PDCUT;
318
319 itm = reCast<int,IssmDouble>((2*siglim/DT + 1.5));
320
321 if(itm >= NPDMAX) _error_("increase NPDMAX in massBalance.cpp");
322 for(it = 0; it < itm; it++){
323 // tstar = REAL(it)*DT-siglim;
324 tstar = it*DT-siglim;
325 tint = tsint;
326 pddt = 0.;
327 for ( jj = 0; jj < 600; jj++){
328 if (tint > (tstar+siglim)){break;}
329 pddt = pddt + tint*exp(sigfac*(pow((tint-tstar),2)))*tstep;
330 tint = tint+tstep;
331 }
332 pdds[it] = pddt*snormfac;
333 }
334 pdds[itm+1] = siglim + DT;
335
336 //*********compute PD(T) : snow/precip fraction. precipitation falling as snow
337 tstepc = 0.1;
338 tsint = PDCUT-tstepc*0.5;
339 signormc = signorm - 0.5;
340 sigfac = -1.0/(2.0*pow(signormc,2));
341 snormfac = 1.0/(signormc*sqrt(2.0*acos(-1.0)));
342 siglimc = 2.5*signormc ;
343 itm = reCast<int,IssmDouble>((PDCUT+2.*siglimc)/DT + 1.5);
344 if(itm >= NPDCMAX) _error_("increase NPDCMAX in p35com");
345 for(it = 0; it < itm; it++ ){
346 tstar = it*DT-siglimc;
347 // tstar = REAL(it)*DT-siglimc;
348 tint = tsint; // start against upper bound
349 pd = 0.;
350 for (jj = 0; jj < 600; jj++){
351 if (tint<(tstar-siglimc)) {break;}
352 pd = pd + exp(sigfac*(pow((tint-tstar),2)))*tstepc;
353 tint = tint-tstepc;
354 }
355 pds[it] = pd*snormfac; // gaussian integral lookup table for snow fraction
356 }
357 pds[itm+1] = 0.;
358 // *******END initialize PDD
359
360 for(Object* & object : femmodel->elements->objects){
361 element=xDynamicCast<Element*>(object);
362 element->PositiveDegreeDay(pdds,pds,signorm,ismungsm,issetpddfac);
363 }
364 /*free ressouces: */
365 xDelete<IssmDouble>(pdds);
366 xDelete<IssmDouble>(pds);
367}/*}}}*/
368void PositiveDegreeDaySicopolisx(FemModel* femmodel){/*{{{*/
369
370 bool isfirnwarming;
371 femmodel->parameters->FindParam(&isfirnwarming,SmbIsfirnwarmingEnum);
372
373 for(Object* & object : femmodel->elements->objects){
374 Element* element=xDynamicCast<Element*>(object);
375 element->PositiveDegreeDaySicopolis(isfirnwarming);
376 }
377
378}/*}}}*/
379void SmbHenningx(FemModel* femmodel){/*{{{*/
380
381 /*Intermediaries*/
382 IssmDouble z_critical = 1675.;
383 IssmDouble dz = 0;
384 IssmDouble a = -15.86;
385 IssmDouble b = 0.00969;
386 IssmDouble c = -0.235;
387 IssmDouble f = 1.;
388 IssmDouble g = -0.0011;
389 IssmDouble h = -1.54e-5;
390 IssmDouble smb,smbref,anomaly,yts,z;
391
392 /* Get constants */
393 femmodel->parameters->FindParam(&yts,ConstantsYtsEnum);
394 /*iomodel->FindConstant(&yts,"md.constants.yts");*/
395 /*this->parameters->FindParam(&yts,ConstantsYtsEnum);*/
396 /*Mathieu original*/
397 /*IssmDouble smb,smbref,z;*/
398
399 /*Loop over all the elements of this partition*/
400 for(Object* & object : femmodel->elements->objects){
401 Element* element=xDynamicCast<Element*>(object);
402
403 /*Get reference SMB (uncorrected) and allocate all arrays*/
404 int numvertices = element->GetNumberOfVertices();
405 IssmDouble* surfacelist = xNew<IssmDouble>(numvertices);
406 IssmDouble* smblistref = xNew<IssmDouble>(numvertices);
407 IssmDouble* smblist = xNew<IssmDouble>(numvertices);
408 element->GetInputListOnVertices(surfacelist,SurfaceEnum);
409 element->GetInputListOnVertices(smblistref,SmbSmbrefEnum);
410
411 /*Loop over all vertices of element and correct SMB as a function of altitude z*/
412 for(int v=0;v<numvertices;v++){
413
414 /*Get vertex elevation, anoma smb*/
415 z = surfacelist[v];
416 anomaly = smblistref[v];
417
418 /* Henning edited acc. to Riannes equations*/
419 /* Set SMB maximum elevation, if dz = 0 -> z_critical = 1675 */
420 z_critical = z_critical + dz;
421
422 /* Calculate smb acc. to the surface elevation z */
423 if(z<z_critical){
424 smb = a + b*z + c;
425 }
426 else{
427 smb = (a + b*z)*(f + g*(z-z_critical) + h*(z-z_critical)*(z-z_critical)) + c;
428 }
429
430 /* Compute smb including anomaly,
431 correct for number of seconds in a year [s/yr]*/
432 smb = smb/yts + anomaly;
433
434 /*Update array accordingly*/
435 smblist[v] = smb;
436
437 }
438
439 /*Add input to element and Free memory*/
440 element->AddInput(SmbMassBalanceEnum,smblist,P1Enum);
441 xDelete<IssmDouble>(surfacelist);
442 xDelete<IssmDouble>(smblistref);
443 xDelete<IssmDouble>(smblist);
444 }
445
446}/*}}}*/
447void SmbComponentsx(FemModel* femmodel){/*{{{*/
448
449 // void SmbComponentsx(acc,evap,runoff,ni){
450 // INPUT parameters: ni: working size of arrays
451 // INPUT: surface accumulation (m/yr water equivalent): acc
452 // surface evaporation (m/yr water equivalent): evap
453 // surface runoff (m/yr water equivalent): runoff
454 // OUTPUT: mass-balance (m/yr ice): agd(NA)
455
456 /*Loop over all the elements of this partition*/
457 for(Object* & object : femmodel->elements->objects){
458 Element* element=xDynamicCast<Element*>(object);
459
460 /*Allocate all arrays*/
461 int numvertices = element->GetNumberOfVertices();
462 IssmDouble* acc = xNew<IssmDouble>(numvertices);
463 IssmDouble* evap = xNew<IssmDouble>(numvertices);
464 IssmDouble* runoff = xNew<IssmDouble>(numvertices);
465 IssmDouble* smb = xNew<IssmDouble>(numvertices);
466
467 /*Recover Smb Components*/
468 element->GetInputListOnVertices(acc,SmbAccumulationEnum);
469 element->GetInputListOnVertices(evap,SmbEvaporationEnum);
470 element->GetInputListOnVertices(runoff,SmbRunoffEnum);
471
472 // loop over all vertices
473 for(int v=0;v<numvertices;v++) smb[v]=acc[v]-evap[v]-runoff[v];
474
475 /*Add input to element and Free memory*/
476 element->AddInput(SmbMassBalanceEnum,smb,P1Enum);
477 xDelete<IssmDouble>(acc);
478 xDelete<IssmDouble>(evap);
479 xDelete<IssmDouble>(runoff);
480 xDelete<IssmDouble>(smb);
481 }
482
483}/*}}}*/
484void SmbMeltComponentsx(FemModel* femmodel){/*{{{*/
485
486 // void SmbMeltComponentsx(acc,evap,melt,refreeze,ni){
487 // INPUT parameters: ni: working size of arrays
488 // INPUT: surface accumulation (m/yr water equivalent): acc
489 // surface evaporation (m/yr water equivalent): evap
490 // surface melt (m/yr water equivalent): melt
491 // refreeze of surface melt (m/yr water equivalent): refreeze
492 // OUTPUT: mass-balance (m/yr ice): agd(NA)
493
494 /*Loop over all the elements of this partition*/
495 for(Object* & object : femmodel->elements->objects){
496 Element* element=xDynamicCast<Element*>(object);
497
498 /*Allocate all arrays*/
499 int numvertices = element->GetNumberOfVertices();
500 IssmDouble* acc = xNew<IssmDouble>(numvertices);
501 IssmDouble* evap = xNew<IssmDouble>(numvertices);
502 IssmDouble* melt = xNew<IssmDouble>(numvertices);
503 IssmDouble* refreeze = xNew<IssmDouble>(numvertices);
504 IssmDouble* smb = xNew<IssmDouble>(numvertices);
505
506 /*Recover Smb Components*/
507 element->GetInputListOnVertices(acc,SmbAccumulationEnum);
508 element->GetInputListOnVertices(evap,SmbEvaporationEnum);
509 element->GetInputListOnVertices(melt,SmbMeltEnum);
510 element->GetInputListOnVertices(refreeze,SmbRefreezeEnum);
511
512 // loop over all vertices
513 for(int v=0;v<numvertices;v++) smb[v]=acc[v]-evap[v]-melt[v]+refreeze[v];
514
515 /*Add input to element and Free memory*/
516 element->AddInput(SmbMassBalanceEnum,smb,P1Enum);
517 xDelete<IssmDouble>(acc);
518 xDelete<IssmDouble>(evap);
519 xDelete<IssmDouble>(melt);
520 xDelete<IssmDouble>(refreeze);
521 xDelete<IssmDouble>(smb);
522 }
523
524}/*}}}*/
525void SmbGradientsComponentsx(FemModel* femmodel){/*{{{*/
526
527 for(Object* & object : femmodel->elements->objects){
528 Element* element=xDynamicCast<Element*>(object);
529 element->SmbGradCompParameterization();
530 }
531
532}/*}}}*/
533#ifdef _HAVE_SEMIC_
534void SmbSemicx(FemModel* femmodel){/*{{{*/
535
536 for(Object* & object : femmodel->elements->objects){
537 Element* element=xDynamicCast<Element*>(object);
538 element->SmbSemic();
539 }
540
541}/*}}}*/
542#else
543void SmbSemicx(FemModel* femmodel){_error_("SEMIC not installed");}
544#endif //_HAVE_SEMIC_
Note: See TracBrowser for help on using the repository browser.