| 1 | /*!\file SolverxSeq
|
|---|
| 2 | * \brief implementation of sequential solver using the GSL librarie
|
|---|
| 3 | */
|
|---|
| 4 |
|
|---|
| 5 | #ifdef HAVE_CONFIG_H
|
|---|
| 6 | #include <config.h>
|
|---|
| 7 | #else
|
|---|
| 8 | #error "Cannot compile with HAVE_CONFIG_H symbol! run configure first!"
|
|---|
| 9 | #endif
|
|---|
| 10 | #include <cstring>
|
|---|
| 11 |
|
|---|
| 12 | #include "./Solverx.h"
|
|---|
| 13 | #include "../../shared/shared.h"
|
|---|
| 14 | #include "../../classes/classes.h"
|
|---|
| 15 | #include "../../include/include.h"
|
|---|
| 16 | #include "../../io/io.h"
|
|---|
| 17 |
|
|---|
| 18 | #ifdef _HAVE_GSL_
|
|---|
| 19 | #include <gsl/gsl_linalg.h>
|
|---|
| 20 | #endif
|
|---|
| 21 |
|
|---|
| 22 | void SolverxSeq(SeqVec<IssmDouble>** puf,SeqMat<IssmDouble>* Kff, SeqVec<IssmDouble>* pf, Parameters* parameters){/*{{{*/
|
|---|
| 23 |
|
|---|
| 24 | #ifdef _HAVE_GSL_
|
|---|
| 25 | /*Intermediary: */
|
|---|
| 26 | int M,N,N2,s;
|
|---|
| 27 | SeqVec<IssmDouble> *uf = NULL;
|
|---|
| 28 |
|
|---|
| 29 | Kff->GetSize(&M,&N);
|
|---|
| 30 | pf->GetSize(&N2);
|
|---|
| 31 |
|
|---|
| 32 | if(N!=N2)_error_("Right hand side vector of size " << N2 << ", when matrix is of size " << M << "-" << N << " !");
|
|---|
| 33 | if(M!=N)_error_("Stiffness matrix should be square!");
|
|---|
| 34 | #ifdef _HAVE_ADOLC_
|
|---|
| 35 | ensureContiguousLocations(N);
|
|---|
| 36 | #endif
|
|---|
| 37 | IssmDouble *x = xNew<IssmDouble>(N);
|
|---|
| 38 | #ifdef _HAVE_ADOLC_
|
|---|
| 39 | SolverxSeq(x,Kff->matrix,pf->vector,N,parameters);
|
|---|
| 40 | #else
|
|---|
| 41 | SolverxSeq(x,Kff->matrix,pf->vector,N);
|
|---|
| 42 | #endif
|
|---|
| 43 |
|
|---|
| 44 | uf=new SeqVec<IssmDouble>(x,N);
|
|---|
| 45 | xDelete(x);
|
|---|
| 46 |
|
|---|
| 47 | /*Assign output pointers:*/
|
|---|
| 48 | *puf=uf;
|
|---|
| 49 |
|
|---|
| 50 | #else
|
|---|
| 51 | _error_("GSL support not compiled in!");
|
|---|
| 52 | #endif
|
|---|
| 53 |
|
|---|
| 54 | }/*}}}*/
|
|---|
| 55 | void SolverxSeq(IssmPDouble **pX, IssmPDouble *A, IssmPDouble *B,int n){ /*{{{*/
|
|---|
| 56 |
|
|---|
| 57 | /*Allocate output*/
|
|---|
| 58 | double* X = xNew<double>(n);
|
|---|
| 59 |
|
|---|
| 60 | /*Solve*/
|
|---|
| 61 | SolverxSeq(X,A,B,n);
|
|---|
| 62 |
|
|---|
| 63 | /*Assign output pointer*/
|
|---|
| 64 | *pX=X;
|
|---|
| 65 | }
|
|---|
| 66 | /*}}}*/
|
|---|
| 67 |
|
|---|
| 68 | #ifdef _HAVE_ADOLC_
|
|---|
| 69 | int EDF_for_solverx(int n, IssmPDouble *x, int m, IssmPDouble *y){ /*{{{*/
|
|---|
| 70 | SolverxSeq(y,x, x+m*m, m); // x is where the matrix starts, x+m*m is where the right-hand side starts
|
|---|
| 71 | return 0;
|
|---|
| 72 | } /*}}}*/
|
|---|
| 73 | int EDF_fos_forward_for_solverx(int n, IssmPDouble *inVal, IssmPDouble *inDeriv, int m, IssmPDouble *outVal, IssmPDouble *outDeriv) { /*{{{*/
|
|---|
| 74 | #ifdef _HAVE_GSL_
|
|---|
| 75 | // for (int i=0; i<m*m; ++i) std::cout << "EDF_fos_forward_for_solverx A["<< i << "]=" << inVal[i] << std::endl;
|
|---|
| 76 | // for (int i=0; i<m; ++i) std::cout << "EDF_fos_forward_for_solverx b["<< i << "]=" << inVal[i+m*m] << std::endl;
|
|---|
| 77 | // the matrix will be modified by LU decomposition. Use gsl_A copy
|
|---|
| 78 | double* Acopy = xNew<double>(m*m);
|
|---|
| 79 | xMemCpy(Acopy,inVal,m*m);
|
|---|
| 80 | /*Initialize gsl matrices and vectors: */
|
|---|
| 81 | gsl_matrix_view gsl_A = gsl_matrix_view_array (Acopy,m,m);
|
|---|
| 82 | gsl_vector_view gsl_b = gsl_vector_view_array (inVal+m*m,m); // the right hand side starts at address inVal+m*m
|
|---|
| 83 | gsl_permutation *perm_p = gsl_permutation_alloc (m);
|
|---|
| 84 | int signPerm;
|
|---|
| 85 | // factorize
|
|---|
| 86 | gsl_linalg_LU_decomp (&gsl_A.matrix, perm_p, &signPerm);
|
|---|
| 87 | gsl_vector *gsl_x_p = gsl_vector_alloc (m);
|
|---|
| 88 | // solve for the value
|
|---|
| 89 | gsl_linalg_LU_solve (&gsl_A.matrix, perm_p, &gsl_b.vector, gsl_x_p);
|
|---|
| 90 | /*Copy result*/
|
|---|
| 91 | xMemCpy(outVal,gsl_vector_ptr(gsl_x_p,0),m);
|
|---|
| 92 | gsl_vector_free(gsl_x_p);
|
|---|
| 93 | // for (int i=0; i<m; ++i) std::cout << "EDF_fos_forward_for_solverx x["<< i << "]=" << outVal[i] << std::endl;
|
|---|
| 94 | // solve for the derivatives acc. to A * dx = r with r=db - dA * x
|
|---|
| 95 | // compute the RHS
|
|---|
| 96 | double* r=xNew<double>(m);
|
|---|
| 97 | for (int i=0; i<m; i++) {
|
|---|
| 98 | r[i]=inDeriv[m*m+i]; // this is db[i]
|
|---|
| 99 | for (int j=0;j<m; j++) {
|
|---|
| 100 | r[i]-=inDeriv[i*m+j]*outVal[j]; // this is dA[i][j]*x[j]
|
|---|
| 101 | }
|
|---|
| 102 | }
|
|---|
| 103 | gsl_vector_view gsl_r=gsl_vector_view_array(r,m);
|
|---|
| 104 | gsl_vector *gsl_dx_p = gsl_vector_alloc(m);
|
|---|
| 105 | gsl_linalg_LU_solve (&gsl_A.matrix, perm_p, &gsl_r.vector, gsl_dx_p);
|
|---|
| 106 | xMemCpy(outDeriv,gsl_vector_ptr(gsl_dx_p,0),m);
|
|---|
| 107 | gsl_vector_free(gsl_dx_p);
|
|---|
| 108 | xDelete(r);
|
|---|
| 109 | gsl_permutation_free(perm_p);
|
|---|
| 110 | xDelete(Acopy);
|
|---|
| 111 | #endif
|
|---|
| 112 | return 0;
|
|---|
| 113 | } /*}}}*/
|
|---|
| 114 | int EDF_fov_forward_for_solverx(int n, IssmPDouble *inVal, int directionCount, IssmPDouble **inDeriv, int m, IssmPDouble *outVal, IssmPDouble **outDeriv) { /*{{{*/
|
|---|
| 115 | #ifdef _HAVE_GSL_
|
|---|
| 116 | // the matrix will be modified by LU decomposition. Use gsl_A copy
|
|---|
| 117 | double* Acopy = xNew<double>(m*m);
|
|---|
| 118 | xMemCpy(Acopy,inVal,m*m);
|
|---|
| 119 | /*Initialize gsl matrices and vectors: */
|
|---|
| 120 | gsl_matrix_view gsl_A = gsl_matrix_view_array (Acopy,m,m);
|
|---|
| 121 | gsl_vector_view gsl_b = gsl_vector_view_array (inVal+m*m,m); // the right hand side starts at address inVal+m*m
|
|---|
| 122 | gsl_permutation *perm_p = gsl_permutation_alloc (m);
|
|---|
| 123 | int signPerm;
|
|---|
| 124 | // factorize
|
|---|
| 125 | gsl_linalg_LU_decomp (&gsl_A.matrix, perm_p, &signPerm);
|
|---|
| 126 | gsl_vector *gsl_x_p = gsl_vector_alloc (m);
|
|---|
| 127 | // solve for the value
|
|---|
| 128 | gsl_linalg_LU_solve (&gsl_A.matrix, perm_p, &gsl_b.vector, gsl_x_p);
|
|---|
| 129 | /*Copy result*/
|
|---|
| 130 | xMemCpy(outVal,gsl_vector_ptr(gsl_x_p,0),m);
|
|---|
| 131 | gsl_vector_free(gsl_x_p);
|
|---|
| 132 | // solve for the derivatives acc. to A * dx = r with r=db - dA * x
|
|---|
| 133 | double* r=xNew<double>(m);
|
|---|
| 134 | gsl_vector *gsl_dx_p = gsl_vector_alloc(m);
|
|---|
| 135 | for (int dir=0;dir<directionCount;++dir) {
|
|---|
| 136 | // compute the RHS
|
|---|
| 137 | for (int i=0; i<m; i++) {
|
|---|
| 138 | r[i]=inDeriv[m*m+i][dir]; // this is db[i]
|
|---|
| 139 | for (int j=0;j<m; j++) {
|
|---|
| 140 | r[i]-=inDeriv[i*m+j][dir]*outVal[j]; // this is dA[i][j]*x[j]
|
|---|
| 141 | }
|
|---|
| 142 | }
|
|---|
| 143 | gsl_vector_view gsl_r=gsl_vector_view_array(r,m);
|
|---|
| 144 | gsl_linalg_LU_solve (&gsl_A.matrix, perm_p, &gsl_r.vector, gsl_dx_p);
|
|---|
| 145 | // reuse r
|
|---|
| 146 | xMemCpy(r,gsl_vector_ptr(gsl_dx_p,0),m);
|
|---|
| 147 | for (int i=0; i<m; i++) {
|
|---|
| 148 | outDeriv[i][dir]=r[i];
|
|---|
| 149 | }
|
|---|
| 150 | }
|
|---|
| 151 | gsl_vector_free(gsl_dx_p);
|
|---|
| 152 | xDelete(r);
|
|---|
| 153 | gsl_permutation_free(perm_p);
|
|---|
| 154 | xDelete(Acopy);
|
|---|
| 155 | #endif
|
|---|
| 156 | return 0;
|
|---|
| 157 | }
|
|---|
| 158 | /*}}}*/
|
|---|
| 159 | int EDF_fos_reverse_for_solverx(int m, double *dp_U, int n, double *dp_Z, double* dp_x, double* dp_y) { /*{{{*/
|
|---|
| 160 | // copy to transpose the matrix
|
|---|
| 161 | double* transposed=xNew<double>(m*m);
|
|---|
| 162 | for (int i=0; i<m; ++i) for (int j=0; j<m; ++j) transposed[j*m+i]=dp_x[i*m+j];
|
|---|
| 163 | gsl_matrix_view aTransposed = gsl_matrix_view_array (transposed,m,m);
|
|---|
| 164 | // the adjoint of the solution is our right-hand side
|
|---|
| 165 | gsl_vector_view x_bar=gsl_vector_view_array(dp_U,m);
|
|---|
| 166 | // the last m elements of dp_Z representing the adjoint of the right-hand side we want to compute:
|
|---|
| 167 | gsl_vector_view b_bar=gsl_vector_view_array(dp_Z+m*m,m);
|
|---|
| 168 | gsl_permutation *perm_p = gsl_permutation_alloc (m);
|
|---|
| 169 | int permSign;
|
|---|
| 170 | gsl_linalg_LU_decomp (&aTransposed.matrix, perm_p, &permSign);
|
|---|
| 171 | gsl_linalg_LU_solve (&aTransposed.matrix, perm_p, &x_bar.vector, &b_bar.vector);
|
|---|
| 172 | // now do the adjoint of the matrix
|
|---|
| 173 | for (int i=0; i<m; ++i) for (int j=0; j<m; ++j) dp_Z[i*m+j]-=dp_Z[m*m+i]*dp_y[j];
|
|---|
| 174 | gsl_permutation_free(perm_p);
|
|---|
| 175 | xDelete(transposed);
|
|---|
| 176 | return 0;
|
|---|
| 177 | }
|
|---|
| 178 | /*}}}*/
|
|---|
| 179 | int EDF_fov_reverse_for_solverx(int m, int p, double **dpp_U, int n, double **dpp_Z, double* dp_x, double* dp_y) { /*{{{*/
|
|---|
| 180 | // copy to transpose the matrix
|
|---|
| 181 | double* transposed=xNew<double>(m*m);
|
|---|
| 182 | for (int i=0; i<m; ++i) for (int j=0; j<m; ++j) transposed[j*m+i]=dp_x[i*m+j];
|
|---|
| 183 | gsl_matrix_view aTransposed = gsl_matrix_view_array (transposed,m,m);
|
|---|
| 184 | gsl_permutation *perm_p = gsl_permutation_alloc (m);
|
|---|
| 185 | int permSign;
|
|---|
| 186 | gsl_linalg_LU_decomp (&aTransposed.matrix, perm_p, &permSign);
|
|---|
| 187 | for (int weightsRowIndex=0;weightsRowIndex<p;++weightsRowIndex) {
|
|---|
| 188 | // the adjoint of the solution is our right-hand side
|
|---|
| 189 | gsl_vector_view x_bar=gsl_vector_view_array(dpp_U[weightsRowIndex],m);
|
|---|
| 190 | // the last m elements of dp_Z representing the adjoint of the right-hand side we want to compute:
|
|---|
| 191 | gsl_vector_view b_bar=gsl_vector_view_array(dpp_Z[weightsRowIndex]+m*m,m);
|
|---|
| 192 | gsl_linalg_LU_solve (&aTransposed.matrix, perm_p, &x_bar.vector, &b_bar.vector);
|
|---|
| 193 | // now do the adjoint of the matrix
|
|---|
| 194 | for (int i=0; i<m; ++i) for (int j=0; j<m; ++j) dpp_Z[weightsRowIndex][i*m+j]-=dpp_Z[weightsRowIndex][m*m+i]*dp_y[j];
|
|---|
| 195 | }
|
|---|
| 196 | gsl_permutation_free(perm_p);
|
|---|
| 197 | xDelete(transposed);
|
|---|
| 198 | return 0;
|
|---|
| 199 | }
|
|---|
| 200 | /*}}}*/
|
|---|
| 201 | void SolverxSeq(IssmDouble *X,IssmDouble *A,IssmDouble *B,int n, Parameters* parameters){/*{{{*/
|
|---|
| 202 | // pack inputs to conform to the EDF-prescribed interface
|
|---|
| 203 | // ensure a contiguous block of locations:
|
|---|
| 204 | ensureContiguousLocations(n*(n+1));
|
|---|
| 205 | IssmDouble* adoubleEDFin=xNew<IssmDouble>(n*(n+1)); // packed inputs, i.e. matrix and right hand side
|
|---|
| 206 | for(int i=0; i<n*n;i++)adoubleEDFin[i] =A[i]; // pack matrix
|
|---|
| 207 | for(int i=0; i<n; i++)adoubleEDFin[i+n*n]=B[i]; // pack the right hand side
|
|---|
| 208 | IssmPDouble* pdoubleEDFin=xNew<IssmPDouble>(n*(n+1)); // provide space to transfer inputs during call_ext_fct
|
|---|
| 209 | IssmPDouble* pdoubleEDFout=xNew<IssmPDouble>(n); // provide space to transfer outputs during call_ext_fct
|
|---|
| 210 | // call the wrapped solver through the registry entry we retrieve from parameters
|
|---|
| 211 | call_ext_fct(dynamic_cast<GenericParam<Adolc_edf> * >(parameters->FindParamObject(AdolcParamEnum))->GetParameterValue().myEDF_for_solverx_p,
|
|---|
| 212 | n*(n+1), pdoubleEDFin, adoubleEDFin,
|
|---|
| 213 | n, pdoubleEDFout,X);
|
|---|
| 214 | // for(int i=0; i<n; i++) {ADOLC_DUMP_MACRO(X[i]);}
|
|---|
| 215 | xDelete(adoubleEDFin);
|
|---|
| 216 | xDelete(pdoubleEDFin);
|
|---|
| 217 | xDelete(pdoubleEDFout);
|
|---|
| 218 | }
|
|---|
| 219 | /*}}}*/
|
|---|
| 220 | #endif
|
|---|
| 221 | void SolverxSeq(IssmPDouble *X, IssmPDouble *A, IssmPDouble *B,int n){ /*{{{*/
|
|---|
| 222 | #ifdef _HAVE_GSL_
|
|---|
| 223 | /*GSL Matrices and vectors: */
|
|---|
| 224 | int s;
|
|---|
| 225 | gsl_matrix_view a;
|
|---|
| 226 | gsl_vector_view b,x;
|
|---|
| 227 | gsl_permutation *p = NULL;
|
|---|
| 228 | // for (int i=0; i<n*n; ++i) std::cout << "SolverxSeq A["<< i << "]=" << A[i] << std::endl;
|
|---|
| 229 | // for (int i=0; i<n; ++i) std::cout << "SolverxSeq b["<< i << "]=" << B[i] << std::endl;
|
|---|
| 230 | /*A will be modified by LU decomposition. Use copy*/
|
|---|
| 231 | double* Acopy = xNew<double>(n*n);
|
|---|
| 232 | xMemCpy(Acopy,A,n*n);
|
|---|
| 233 |
|
|---|
| 234 | /*Initialize gsl matrices and vectors: */
|
|---|
| 235 | a = gsl_matrix_view_array (Acopy,n,n);
|
|---|
| 236 | b = gsl_vector_view_array (B,n);
|
|---|
| 237 | x = gsl_vector_view_array (X,n);
|
|---|
| 238 |
|
|---|
| 239 | /*Run LU and solve: */
|
|---|
| 240 | p = gsl_permutation_alloc (n);
|
|---|
| 241 | gsl_linalg_LU_decomp (&a.matrix, p, &s);
|
|---|
| 242 | gsl_linalg_LU_solve (&a.matrix, p, &b.vector, &x.vector);
|
|---|
| 243 |
|
|---|
| 244 | /*Clean up and assign output pointer*/
|
|---|
| 245 | xDelete(Acopy);
|
|---|
| 246 | gsl_permutation_free(p);
|
|---|
| 247 | #endif
|
|---|
| 248 | }
|
|---|
| 249 | /*}}}*/
|
|---|