#include #include #include #include #include "../classes/classes.h" #include "./bamgobjects.h" #include "./det.h" namespace bamg { /*Methods*/ /*FUNCTION BamgVertex::Echo {{{*/ void BamgVertex::Echo(void){ _printLine_("Vertex:"); _printLine_(" integer coordinates i.x: " << i.x << ", i.y: " << i.y); _printLine_(" Euclidean coordinates r.x: " << r.x << ", r.y: " << r.y); _printLine_(" ReferenceNumber = " << ReferenceNumber); m.Echo(); return; } /*}}}*/ /*FUNCTION BamgVertex::GetReferenceNumber{{{*/ int BamgVertex::GetReferenceNumber() const { return ReferenceNumber; } /*}}}*/ /*FUNCTION BamgVertex::MetricFromHessian{{{*/ void BamgVertex::MetricFromHessian(const double Hxx,const double Hyx, const double Hyy,const double smin,const double smax,const double s,double err,BamgOpts* bamgopts){ /*Compute Metric from Hessian*/ /*get options*/ double power=(bamgopts->power); double anisomax=(bamgopts->anisomax); double CutOff=bamgopts->cutoff; double hmin=(bamgopts->hmin); double hmax=(bamgopts->hmax); double coef=bamgopts->coeff; int Metrictype=(bamgopts->Metrictype); /*Intermediary*/ double ci; /*compute multiplicative coefficient depending on Metric Type (2/9 because it is 2d)*/ //Absolute Error /* * 2 1 *Metric M = --- ------------ Abs(Hessian) * 9 err * coeff^2 */ if (Metrictype==0){ ci= 2.0/9.0 * 1/(err*coef*coef); } //Relative Error /* * 2 1 Abs(Hessian) *Metric M = --- ------------ ---------------------- * 9 err * coeff^2 max( |s| , cutoff*max(|s|) ) * */ else if (Metrictype==1){ ci= 2.0/9.0 * 1/(err*coef*coef) * 1/Max( Abs(s), CutOff*(Max(Abs(smin),Abs(smax)))); } //Rescaled absolute error /* * 2 1 Abs(Hessian) *Metric M = --- ------------ ---------------------- * 9 err * coeff^2 (smax-smin) */ else if (Metrictype==2){ ci= 2.0/9.0 * 1/(err*coef*coef) * 1/(smax-smin); } else{ _error_("Metrictype " << Metrictype << " not supported yet (use 0,1 or 2(default))"); } //initialize metric Miv with ci*H Metric Miv(Hxx*ci,Hyx*ci,Hyy*ci); //Get eigen values and vectors of Miv EigenMetric Vp(Miv); //move eigen valuse to their absolute values Vp.Abs(); //Apply a power if requested by user if(power!=1.0) Vp.pow(power); //modify eigen values according to hmin and hmax Vp.Maxh(hmax); Vp.Minh(hmin); //Bound anisotropy by 1/(anisomax)^2 Vp.BoundAniso2(1/(anisomax*anisomax)); //rebuild Metric from Vp Metric MVp(Vp); //Apply Metric to vertex m.IntersectWith(MVp); } /*}}}*/ /*FUNCTION BamgVertex::Optim {{{*/ long BamgVertex::Optim(int i,int koption){ long ret=0; if ( t && (IndexInTriangle >= 0 ) && (IndexInTriangle <3) ){ ret = t->Optim(IndexInTriangle,koption); if(!i){ t =0; // for no future optime IndexInTriangle= 0; } } return ret; } /*}}}*/ /*FUNCTION BamgVertex::Smoothing{{{*/ double BamgVertex::Smoothing(Mesh &Th,const Mesh &BTh,Triangle* &tstart ,double omega){ /*Original code from Frederic Hecht (BAMG v1.01, Mesh2.cpp/Smoothing)*/ register BamgVertex* s=this; BamgVertex &vP = *s,vPsave=vP; register Triangle* tbegin= t , *tria = t , *ttc; register int k=0,kk=0,j = EdgesVertexTriangle[IndexInTriangle][0],jc; R2 P(s->r),PNew(0,0); do { k++; if (!tria->Hidden(j)){ BamgVertex &vQ = (*tria)[VerticesOfTriangularEdge[j][0]]; R2 Q = vQ,QP(P-Q); double lQP = LengthInterpole(vP,vQ,QP); PNew += Q+QP/Max(lQP,1e-20); kk ++; } ttc = tria->TriangleAdj(j); jc = NextEdge[tria->NuEdgeTriangleAdj(j)]; tria = ttc; j = NextEdge[jc]; if (k>=2000){ _error_("k>=2000 (Maximum number of iterations reached)"); } } while ( tbegin != tria); if (kk<4) return 0; PNew = PNew/(double)kk; R2 Xmove((PNew-P)*omega); PNew = P+Xmove; double delta=Norme2_2(Xmove); Icoor2 deta[3]; I2 IBTh = BTh.R2ToI2(PNew); tstart=BTh.TriangleFindFromCoord(IBTh,deta,tstart); if (tstart->det <0){ // outside double ba,bb; AdjacentTriangle edge= CloseBoundaryEdge(IBTh,tstart,ba,bb) ; tstart = edge; vP.m= Metric(ba,*edge.EdgeVertex(0),bb,*edge.EdgeVertex(1)); } else { // inside double aa[3]; double s = deta[0]+deta[1]+deta[2]; aa[0]=deta[0]/s; aa[1]=deta[1]/s; aa[2]=deta[2]/s; vP.m = Metric(aa,(*tstart)[0],(*tstart)[1],(*tstart)[2]); } // recompute the det of the triangle vP.r = PNew; vP.i = Th.R2ToI2(PNew); BamgVertex vPnew = vP; int ok=1; int loop=1; k=0; while (ok){ ok =0; do { k++; double detold = tria->det; tria->det = bamg::det( (*tria)[0],(*tria)[1] ,(*tria)[2]); if (loop) { BamgVertex *v0,*v1,*v2,*v3; if (tria->det<0) ok =1; else if (tria->Quadrangle(v0,v1,v2,v3)) { vP = vPsave; double qold =QuadQuality(*v0,*v1,*v2,*v3); vP = vPnew; double qnew =QuadQuality(*v0,*v1,*v2,*v3); if (qnewdet < detold/2 ) ok=1; } tria->SetUnMarkUnSwap(0); tria->SetUnMarkUnSwap(1); tria->SetUnMarkUnSwap(2); ttc = tria->TriangleAdj(j); jc = NextEdge[tria->NuEdgeTriangleAdj(j)]; tria = ttc; j = NextEdge[jc]; if (k>=2000){ _error_("k>=2000"); } }while ( tbegin != tria); if (ok && loop) vP=vPsave; // no move loop=0; } return delta; } /*}}}*/ /*Intermediary*/ /*FUNCTION QuadQuality{{{*/ double QuadQuality(const BamgVertex & a,const BamgVertex &b,const BamgVertex &c,const BamgVertex &d) { /*Original code from Frederic Hecht (BAMG v1.01, MeshQuad.cpp/QuadQuality)*/ // calcul de 4 angles -- R2 A((R2)a),B((R2)b),C((R2)c),D((R2)d); R2 AB(B-A),BC(C-B),CD(D-C),DA(A-D); // Move(A),Line(B),Line(C),Line(D),Line(A); const Metric & Ma = a; const Metric & Mb = b; const Metric & Mc = c; const Metric & Md = d; double lAB=Norme2(AB); double lBC=Norme2(BC); double lCD=Norme2(CD); double lDA=Norme2(DA); AB /= lAB; BC /= lBC; CD /= lCD; DA /= lDA; // version aniso double cosDAB= Ma(DA,AB)/(Ma(DA)*Ma(AB)),sinDAB= Det(DA,AB); double cosABC= Mb(AB,BC)/(Mb(AB)*Mb(BC)),sinABC= Det(AB,BC); double cosBCD= Mc(BC,CD)/(Mc(BC)*Mc(CD)),sinBCD= Det(BC,CD); double cosCDA= Md(CD,DA)/(Md(CD)*Md(DA)),sinCDA= Det(CD,DA); double sinmin=Min(Min(sinDAB,sinABC),Min(sinBCD,sinCDA)); if (sinmin<=0) return sinmin; return 1.0-Max(Max(Abs(cosDAB),Abs(cosABC)),Max(Abs(cosBCD),Abs(cosCDA))); } /*}}}*/ }