1 | #include "./HydrologyShreveAnalysis.h"
|
---|
2 | #include "../toolkits/toolkits.h"
|
---|
3 | #include "../classes/classes.h"
|
---|
4 | #include "../shared/shared.h"
|
---|
5 | #include "../modules/modules.h"
|
---|
6 |
|
---|
7 | /*Model processing*/
|
---|
8 | void HydrologyShreveAnalysis::CreateConstraints(Constraints* constraints,IoModel* iomodel){/*{{{*/
|
---|
9 |
|
---|
10 | /*retrieve some parameters: */
|
---|
11 | int hydrology_model;
|
---|
12 | iomodel->FindConstant(&hydrology_model,"md.hydrology.model");
|
---|
13 |
|
---|
14 | if(hydrology_model!=HydrologyshreveEnum) return;
|
---|
15 |
|
---|
16 | IoModelToConstraintsx(constraints,iomodel,"md.hydrologyshreve.spcwatercolumn",HydrologyShreveAnalysisEnum,P1Enum);
|
---|
17 |
|
---|
18 | }/*}}}*/
|
---|
19 | void HydrologyShreveAnalysis::CreateLoads(Loads* loads, IoModel* iomodel){/*{{{*/
|
---|
20 | /*No loads*/
|
---|
21 | }/*}}}*/
|
---|
22 | void HydrologyShreveAnalysis::CreateNodes(Nodes* nodes,IoModel* iomodel,bool isamr){/*{{{*/
|
---|
23 |
|
---|
24 | /*Fetch parameters: */
|
---|
25 | int hydrology_model;
|
---|
26 | iomodel->FindConstant(&hydrology_model,"md.hydrology.model");
|
---|
27 |
|
---|
28 | /*Now, do we really want Shreve?*/
|
---|
29 | if(hydrology_model!=HydrologyshreveEnum) return;
|
---|
30 |
|
---|
31 | if(iomodel->domaintype==Domain3DEnum) iomodel->FetchData(2,"md.mesh.vertexonbase","md.mesh.vertexonsurface");
|
---|
32 | ::CreateNodes(nodes,iomodel,HydrologyShreveAnalysisEnum,P1Enum);
|
---|
33 | iomodel->DeleteData(2,"md.mesh.vertexonbase","md.mesh.vertexonsurface");
|
---|
34 | }/*}}}*/
|
---|
35 | int HydrologyShreveAnalysis::DofsPerNode(int** doflist,int domaintype,int approximation){/*{{{*/
|
---|
36 | return 1;
|
---|
37 | }/*}}}*/
|
---|
38 | void HydrologyShreveAnalysis::UpdateElements(Elements* elements,Inputs2* inputs2,IoModel* iomodel,int analysis_counter,int analysis_type){/*{{{*/
|
---|
39 |
|
---|
40 | /*Fetch data needed: */
|
---|
41 | int hydrology_model;
|
---|
42 | iomodel->FindConstant(&hydrology_model,"md.hydrology.model");
|
---|
43 |
|
---|
44 | /*Now, do we really want Shreve?*/
|
---|
45 | if(hydrology_model!=HydrologyshreveEnum) return;
|
---|
46 |
|
---|
47 | /*Update elements: */
|
---|
48 | int counter=0;
|
---|
49 | for(int i=0;i<iomodel->numberofelements;i++){
|
---|
50 | if(iomodel->my_elements[i]){
|
---|
51 | Element* element=(Element*)elements->GetObjectByOffset(counter);
|
---|
52 | element->Update(inputs2,i,iomodel,analysis_counter,analysis_type,P1Enum);
|
---|
53 | counter++;
|
---|
54 | }
|
---|
55 | }
|
---|
56 |
|
---|
57 | iomodel->FetchDataToInput(inputs2,elements,"md.geometry.thickness",ThicknessEnum);
|
---|
58 | iomodel->FetchDataToInput(inputs2,elements,"md.geometry.surface",SurfaceEnum);
|
---|
59 | iomodel->FetchDataToInput(inputs2,elements,"md.geometry.base",BaseEnum);
|
---|
60 | iomodel->FetchDataToInput(inputs2,elements,"md.solidearth.sealevel",SealevelEnum,0);
|
---|
61 | if(iomodel->domaintype!=Domain2DhorizontalEnum){
|
---|
62 | iomodel->FetchDataToInput(inputs2,elements,"md.mesh.vertexonbase",MeshVertexonbaseEnum);
|
---|
63 | iomodel->FetchDataToInput(inputs2,elements,"md.mesh.vertexonsurface",MeshVertexonsurfaceEnum);
|
---|
64 | }
|
---|
65 | iomodel->FetchDataToInput(inputs2,elements,"md.mask.ice_levelset",MaskIceLevelsetEnum);
|
---|
66 | iomodel->FetchDataToInput(inputs2,elements,"md.mask.ocean_levelset",MaskOceanLevelsetEnum);
|
---|
67 | iomodel->FetchDataToInput(inputs2,elements,"md.basalforcings.groundedice_melting_rate",BasalforcingsGroundediceMeltingRateEnum);
|
---|
68 | iomodel->FetchDataToInput(inputs2,elements,"md.initialization.watercolumn",WatercolumnEnum);
|
---|
69 |
|
---|
70 | inputs2->DuplicateInput(WatercolumnEnum,WaterColumnOldEnum);
|
---|
71 | }/*}}}*/
|
---|
72 | void HydrologyShreveAnalysis::UpdateParameters(Parameters* parameters,IoModel* iomodel,int solution_enum,int analysis_enum){/*{{{*/
|
---|
73 |
|
---|
74 | /*retrieve some parameters: */
|
---|
75 | int hydrology_model;
|
---|
76 | int numoutputs;
|
---|
77 | char** requestedoutputs = NULL;
|
---|
78 | iomodel->FindConstant(&hydrology_model,"md.hydrology.model");
|
---|
79 |
|
---|
80 | /*Now, do we really want Shreve?*/
|
---|
81 | if(hydrology_model!=HydrologyshreveEnum) return;
|
---|
82 |
|
---|
83 | parameters->AddObject(new IntParam(HydrologyModelEnum,hydrology_model));
|
---|
84 | parameters->AddObject(iomodel->CopyConstantObject("md.hydrology.stabilization",HydrologyshreveStabilizationEnum));
|
---|
85 | /*Requested outputs*/
|
---|
86 | iomodel->FindConstant(&requestedoutputs,&numoutputs,"md.hydrology.requested_outputs");
|
---|
87 | parameters->AddObject(new IntParam(HydrologyNumRequestedOutputsEnum,numoutputs));
|
---|
88 | if(numoutputs)parameters->AddObject(new StringArrayParam(HydrologyRequestedOutputsEnum,requestedoutputs,numoutputs));
|
---|
89 | iomodel->DeleteData(&requestedoutputs,numoutputs,"md.hydrology.requested_outputs");
|
---|
90 |
|
---|
91 | }/*}}}*/
|
---|
92 |
|
---|
93 | /*Finite Element Analysis*/
|
---|
94 | void HydrologyShreveAnalysis::Core(FemModel* femmodel){/*{{{*/
|
---|
95 | _error_("not implemented");
|
---|
96 | }/*}}}*/
|
---|
97 | ElementVector* HydrologyShreveAnalysis::CreateDVector(Element* element){/*{{{*/
|
---|
98 | /*Default, return NULL*/
|
---|
99 | return NULL;
|
---|
100 | }/*}}}*/
|
---|
101 | void HydrologyShreveAnalysis::CreateHydrologyWaterVelocityInput(Element* element){/*{{{*/
|
---|
102 |
|
---|
103 | /*Intermediaries*/
|
---|
104 | IssmDouble dsdx,dsdy,dbdx,dbdy,w;
|
---|
105 |
|
---|
106 | /*Retrieve all inputs and parameters*/
|
---|
107 | IssmDouble rho_ice = element->FindParam(MaterialsRhoIceEnum);
|
---|
108 | IssmDouble rho_water = element->FindParam(MaterialsRhoSeawaterEnum);
|
---|
109 | IssmDouble g = element->FindParam(ConstantsGEnum);
|
---|
110 | IssmDouble mu_water = element->FindParam(MaterialsMuWaterEnum);
|
---|
111 | Input2* surfaceslopex_input = element->GetInput2(SurfaceSlopeXEnum); _assert_(surfaceslopex_input);
|
---|
112 | Input2* surfaceslopey_input = element->GetInput2(SurfaceSlopeYEnum); _assert_(surfaceslopey_input);
|
---|
113 | Input2* bedslopex_input = element->GetInput2(BedSlopeXEnum); _assert_(bedslopex_input);
|
---|
114 | Input2* bedslopey_input = element->GetInput2(BedSlopeYEnum); _assert_(bedslopey_input);
|
---|
115 | Input2* watercolumn_input = element->GetInput2(WatercolumnEnum); _assert_(watercolumn_input);
|
---|
116 |
|
---|
117 | /*Fetch number of vertices and allocate output*/
|
---|
118 | int numvertices = element->GetNumberOfVertices();
|
---|
119 | IssmDouble* vx = xNew<IssmDouble>(numvertices);
|
---|
120 | IssmDouble* vy = xNew<IssmDouble>(numvertices);
|
---|
121 |
|
---|
122 | Gauss* gauss=element->NewGauss();
|
---|
123 | for(int iv=0;iv<numvertices;iv++){
|
---|
124 | gauss->GaussVertex(iv);
|
---|
125 | surfaceslopex_input->GetInputValue(&dsdx,gauss);
|
---|
126 | surfaceslopey_input->GetInputValue(&dsdy,gauss);
|
---|
127 | bedslopex_input->GetInputValue(&dbdx,gauss);
|
---|
128 | bedslopey_input->GetInputValue(&dbdy,gauss);
|
---|
129 | watercolumn_input->GetInputValue(&w,gauss);
|
---|
130 |
|
---|
131 | /* Water velocity x and y components */
|
---|
132 | vx[iv]= - w*w/(12 * mu_water)*(rho_ice*g*dsdx+(rho_water-rho_ice)*g*dbdx);
|
---|
133 | vy[iv]= - w*w/(12 * mu_water)*(rho_ice*g*dsdy+(rho_water-rho_ice)*g*dbdy);
|
---|
134 | }
|
---|
135 |
|
---|
136 | /*clean-up*/
|
---|
137 | delete gauss;
|
---|
138 |
|
---|
139 | /*Add to inputs*/
|
---|
140 | element->AddInput2(HydrologyWaterVxEnum,vx,P1Enum);
|
---|
141 | element->AddInput2(HydrologyWaterVyEnum,vy,P1Enum);
|
---|
142 | xDelete<IssmDouble>(vx);
|
---|
143 | xDelete<IssmDouble>(vy);
|
---|
144 | }/*}}}*/
|
---|
145 | ElementMatrix* HydrologyShreveAnalysis::CreateJacobianMatrix(Element* element){/*{{{*/
|
---|
146 | _error_("Not implemented");
|
---|
147 | }/*}}}*/
|
---|
148 | ElementMatrix* HydrologyShreveAnalysis::CreateKMatrix(Element* element){/*{{{*/
|
---|
149 |
|
---|
150 | /*Intermediaries */
|
---|
151 | IssmDouble diffusivity;
|
---|
152 | IssmDouble Jdet,D_scalar,dt,h;
|
---|
153 | IssmDouble vx,vy,vel,dvxdx,dvydy;
|
---|
154 | IssmDouble dvx[2],dvy[2];
|
---|
155 | IssmDouble* xyz_list = NULL;
|
---|
156 |
|
---|
157 | /*Fetch number of nodes and dof for this finite element*/
|
---|
158 | int numnodes = element->GetNumberOfNodes();
|
---|
159 |
|
---|
160 | /*Initialize Element vector and other vectors*/
|
---|
161 | ElementMatrix* Ke = element->NewElementMatrix();
|
---|
162 | IssmDouble* basis = xNew<IssmDouble>(numnodes);
|
---|
163 | IssmDouble* B = xNew<IssmDouble>(2*numnodes);
|
---|
164 | IssmDouble* Bprime = xNew<IssmDouble>(2*numnodes);
|
---|
165 | IssmDouble D[2][2]={0.};
|
---|
166 |
|
---|
167 | /*Create water velocity vx and vy from current inputs*/
|
---|
168 | CreateHydrologyWaterVelocityInput(element);
|
---|
169 |
|
---|
170 | /*Retrieve all inputs and parameters*/
|
---|
171 | element->GetVerticesCoordinates(&xyz_list);
|
---|
172 | element->FindParam(&dt,TimesteppingTimeStepEnum);
|
---|
173 | element->FindParam(&diffusivity,HydrologyshreveStabilizationEnum);
|
---|
174 | Input2* vx_input=element->GetInput2(HydrologyWaterVxEnum); _assert_(vx_input);
|
---|
175 | Input2* vy_input=element->GetInput2(HydrologyWaterVyEnum); _assert_(vy_input);
|
---|
176 | h = element->CharacteristicLength();
|
---|
177 |
|
---|
178 | /* Start looping on the number of gaussian points: */
|
---|
179 | Gauss* gauss=element->NewGauss(2);
|
---|
180 | for(int ig=gauss->begin();ig<gauss->end();ig++){
|
---|
181 | gauss->GaussPoint(ig);
|
---|
182 |
|
---|
183 | element->JacobianDeterminant(&Jdet,xyz_list,gauss);
|
---|
184 | element->NodalFunctions(basis,gauss);
|
---|
185 |
|
---|
186 | vx_input->GetInputValue(&vx,gauss);
|
---|
187 | vy_input->GetInputValue(&vy,gauss);
|
---|
188 | vx_input->GetInputDerivativeValue(&dvx[0],xyz_list,gauss);
|
---|
189 | vy_input->GetInputDerivativeValue(&dvy[0],xyz_list,gauss);
|
---|
190 |
|
---|
191 | D_scalar=gauss->weight*Jdet;
|
---|
192 |
|
---|
193 | TripleMultiply(basis,1,numnodes,1,
|
---|
194 | &D_scalar,1,1,0,
|
---|
195 | basis,1,numnodes,0,
|
---|
196 | Ke->values,1);
|
---|
197 |
|
---|
198 | GetB(B,element,xyz_list,gauss);
|
---|
199 | GetBprime(Bprime,element,xyz_list,gauss);
|
---|
200 |
|
---|
201 | dvxdx=dvx[0];
|
---|
202 | dvydy=dvy[1];
|
---|
203 | D_scalar=dt*gauss->weight*Jdet;
|
---|
204 |
|
---|
205 | D[0][0]=D_scalar*dvxdx;
|
---|
206 | D[1][1]=D_scalar*dvydy;
|
---|
207 | TripleMultiply(B,2,numnodes,1,
|
---|
208 | &D[0][0],2,2,0,
|
---|
209 | B,2,numnodes,0,
|
---|
210 | &Ke->values[0],1);
|
---|
211 |
|
---|
212 | D[0][0]=D_scalar*vx;
|
---|
213 | D[1][1]=D_scalar*vy;
|
---|
214 | TripleMultiply(B,2,numnodes,1,
|
---|
215 | &D[0][0],2,2,0,
|
---|
216 | Bprime,2,numnodes,0,
|
---|
217 | &Ke->values[0],1);
|
---|
218 |
|
---|
219 | /*Artificial diffusivity*/
|
---|
220 | vel=sqrt(vx*vx+vy*vy);
|
---|
221 | D[0][0]=D_scalar*diffusivity*h/(2*vel)*vx*vx;
|
---|
222 | D[1][0]=D_scalar*diffusivity*h/(2*vel)*vy*vx;
|
---|
223 | D[0][1]=D_scalar*diffusivity*h/(2*vel)*vx*vy;
|
---|
224 | D[1][1]=D_scalar*diffusivity*h/(2*vel)*vy*vy;
|
---|
225 | TripleMultiply(Bprime,2,numnodes,1,
|
---|
226 | &D[0][0],2,2,0,
|
---|
227 | Bprime,2,numnodes,0,
|
---|
228 | &Ke->values[0],1);
|
---|
229 | }
|
---|
230 |
|
---|
231 | /*Clean up and return*/
|
---|
232 | xDelete<IssmDouble>(xyz_list);
|
---|
233 | xDelete<IssmDouble>(basis);
|
---|
234 | xDelete<IssmDouble>(B);
|
---|
235 | xDelete<IssmDouble>(Bprime);
|
---|
236 | delete gauss;
|
---|
237 | return Ke;
|
---|
238 | }/*}}}*/
|
---|
239 | ElementVector* HydrologyShreveAnalysis::CreatePVector(Element* element){/*{{{*/
|
---|
240 |
|
---|
241 | /*Skip if water or ice shelf element*/
|
---|
242 | if(element->IsFloating()) return NULL;
|
---|
243 |
|
---|
244 | /*Intermediaries */
|
---|
245 | IssmDouble Jdet,dt;
|
---|
246 | IssmDouble mb,oldw;
|
---|
247 | IssmDouble* xyz_list = NULL;
|
---|
248 |
|
---|
249 | /*Fetch number of nodes and dof for this finite element*/
|
---|
250 | int numnodes = element->GetNumberOfNodes();
|
---|
251 |
|
---|
252 | /*Initialize Element vector and other vectors*/
|
---|
253 | ElementVector* pe = element->NewElementVector();
|
---|
254 | IssmDouble* basis = xNew<IssmDouble>(numnodes);
|
---|
255 |
|
---|
256 | /*Retrieve all inputs and parameters*/
|
---|
257 | element->GetVerticesCoordinates(&xyz_list);
|
---|
258 | element->FindParam(&dt,TimesteppingTimeStepEnum);
|
---|
259 | Input2* mb_input = element->GetInput2(BasalforcingsGroundediceMeltingRateEnum); _assert_(mb_input);
|
---|
260 | Input2* oldw_input = element->GetInput2(WaterColumnOldEnum); _assert_(oldw_input);
|
---|
261 |
|
---|
262 | /*Initialize mb_correction to 0, do not forget!:*/
|
---|
263 | /* Start looping on the number of gaussian points: */
|
---|
264 | Gauss* gauss=element->NewGauss(2);
|
---|
265 | for(int ig=gauss->begin();ig<gauss->end();ig++){
|
---|
266 | gauss->GaussPoint(ig);
|
---|
267 |
|
---|
268 | element->JacobianDeterminant(&Jdet,xyz_list,gauss);
|
---|
269 | element->NodalFunctions(basis,gauss);
|
---|
270 |
|
---|
271 | mb_input->GetInputValue(&mb,gauss);
|
---|
272 | oldw_input->GetInputValue(&oldw,gauss);
|
---|
273 |
|
---|
274 | if(dt!=0.){
|
---|
275 | for(int i=0;i<numnodes;i++) pe->values[i]+=Jdet*gauss->weight*(oldw+dt*mb)*basis[i];
|
---|
276 | }
|
---|
277 | else{
|
---|
278 | for(int i=0;i<numnodes;i++) pe->values[i]+=Jdet*gauss->weight*mb*basis[i];
|
---|
279 | }
|
---|
280 | }
|
---|
281 |
|
---|
282 | /*Clean up and return*/
|
---|
283 | xDelete<IssmDouble>(xyz_list);
|
---|
284 | xDelete<IssmDouble>(basis);
|
---|
285 | delete gauss;
|
---|
286 | return pe;
|
---|
287 | }/*}}}*/
|
---|
288 | void HydrologyShreveAnalysis::GetB(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
|
---|
289 | /*Compute B matrix. B=[B1 B2 B3] where Bi is of size 3*2.
|
---|
290 | * For node i, Bi can be expressed in the actual coordinate system
|
---|
291 | * by:
|
---|
292 | * Bi=[ N ]
|
---|
293 | * [ N ]
|
---|
294 | * where N is the finiteelement function for node i.
|
---|
295 | *
|
---|
296 | * We assume B_prog has been allocated already, of size: 2x(1*numnodes)
|
---|
297 | */
|
---|
298 |
|
---|
299 | /*Fetch number of nodes for this finite element*/
|
---|
300 | int numnodes = element->GetNumberOfNodes();
|
---|
301 |
|
---|
302 | /*Get nodal functions*/
|
---|
303 | IssmDouble* basis=xNew<IssmDouble>(numnodes);
|
---|
304 | element->NodalFunctions(basis,gauss);
|
---|
305 |
|
---|
306 | /*Build B: */
|
---|
307 | for(int i=0;i<numnodes;i++){
|
---|
308 | B[numnodes*0+i] = basis[i];
|
---|
309 | B[numnodes*1+i] = basis[i];
|
---|
310 | }
|
---|
311 |
|
---|
312 | /*Clean-up*/
|
---|
313 | xDelete<IssmDouble>(basis);
|
---|
314 | }/*}}}*/
|
---|
315 | void HydrologyShreveAnalysis::GetBprime(IssmDouble* Bprime,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
|
---|
316 | /*Compute B' matrix. B'=[B1' B2' B3'] where Bi' is of size 3*2.
|
---|
317 | * For node i, Bi' can be expressed in the actual coordinate system
|
---|
318 | * by:
|
---|
319 | * Bi_prime=[ dN/dx ]
|
---|
320 | * [ dN/dy ]
|
---|
321 | * where N is the finiteelement function for node i.
|
---|
322 | *
|
---|
323 | * We assume B' has been allocated already, of size: 3x(2*numnodes)
|
---|
324 | */
|
---|
325 |
|
---|
326 | /*Fetch number of nodes for this finite element*/
|
---|
327 | int numnodes = element->GetNumberOfNodes();
|
---|
328 |
|
---|
329 | /*Get nodal functions derivatives*/
|
---|
330 | IssmDouble* dbasis=xNew<IssmDouble>(2*numnodes);
|
---|
331 | element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
|
---|
332 |
|
---|
333 | /*Build B': */
|
---|
334 | for(int i=0;i<numnodes;i++){
|
---|
335 | Bprime[numnodes*0+i] = dbasis[0*numnodes+i];
|
---|
336 | Bprime[numnodes*1+i] = dbasis[1*numnodes+i];
|
---|
337 | }
|
---|
338 |
|
---|
339 | /*Clean-up*/
|
---|
340 | xDelete<IssmDouble>(dbasis);
|
---|
341 |
|
---|
342 | }/*}}}*/
|
---|
343 | void HydrologyShreveAnalysis::GetSolutionFromInputs(Vector<IssmDouble>* solution,Element* element){/*{{{*/
|
---|
344 | element->GetSolutionFromInputsOneDof(solution,WatercolumnEnum);
|
---|
345 | }/*}}}*/
|
---|
346 | void HydrologyShreveAnalysis::GradientJ(Vector<IssmDouble>* gradient,Element* element,int control_type,int control_index){/*{{{*/
|
---|
347 | _error_("Not implemented yet");
|
---|
348 | }/*}}}*/
|
---|
349 | void HydrologyShreveAnalysis::InputUpdateFromSolution(IssmDouble* solution,Element* element){/*{{{*/
|
---|
350 |
|
---|
351 | /*Intermediary*/
|
---|
352 | int* doflist = NULL;
|
---|
353 |
|
---|
354 | /*Fetch number of nodes for this finite element*/
|
---|
355 | int numnodes = element->GetNumberOfNodes();
|
---|
356 |
|
---|
357 | /*Fetch dof list and allocate solution vector*/
|
---|
358 | element->GetDofListLocal(&doflist,NoneApproximationEnum,GsetEnum);
|
---|
359 | IssmDouble* values = xNew<IssmDouble>(numnodes);
|
---|
360 |
|
---|
361 | /*Use the dof list to index into the solution vector: */
|
---|
362 | for(int i=0;i<numnodes;i++){
|
---|
363 | values[i]=solution[doflist[i]];
|
---|
364 | if(xIsNan<IssmDouble>(values[i])) _error_("NaN found in solution vector");
|
---|
365 | if(xIsInf<IssmDouble>(values[i])) _error_("Inf found in solution vector");
|
---|
366 | if (values[i]<10e-10) values[i]=10e-10; //correcting the water column to positive values
|
---|
367 | }
|
---|
368 |
|
---|
369 | /*Add input to the element: */
|
---|
370 | element->AddInput2(WatercolumnEnum,values,element->GetElementType());
|
---|
371 |
|
---|
372 | /*Free ressources:*/
|
---|
373 | xDelete<IssmDouble>(values);
|
---|
374 | xDelete<int>(doflist);
|
---|
375 | }/*}}}*/
|
---|
376 | void HydrologyShreveAnalysis::UpdateConstraints(FemModel* femmodel){/*{{{*/
|
---|
377 | /*Default, do nothing*/
|
---|
378 | return;
|
---|
379 | }/*}}}*/
|
---|
380 |
|
---|
381 | /*Needed changes to switch to the Johnson formulation*//*{{{*/
|
---|
382 | /*All the changes are to be done in the velocity computation.
|
---|
383 | The new velocity needs some new parameter that should be introduce in the hydrologyshreve class:
|
---|
384 | 'p' and 'q' which are the exponent of the Manning formula for laminar (p=2,q=1) or turbulent (p=2/3,q=1/2) flow
|
---|
385 | 'R' the hydraulic radius
|
---|
386 | 'n' the manning roughness coeficient
|
---|
387 |
|
---|
388 | With these, the velocity reads ;
|
---|
389 |
|
---|
390 | v= - (1/n)* pow(R,p)*pow((grad phi(rho_water*g)),q)
|
---|
391 |
|
---|
392 | you should also redefine the water pressure potential 'phi' with respect to the effective pressure deffinition given in Johson:
|
---|
393 | phi=(rho_ice*g*( surface + ((rho_water/rho_ice)-1)*base - k_n*((thickness* grad(base))/omega) )
|
---|
394 |
|
---|
395 | where
|
---|
396 | 'omega' is the fractional area of the base occupied by the water film
|
---|
397 | 'k_n' is a parameter
|
---|
398 | This last equation derives from the effective pressure definition developped in Alley 1989
|
---|
399 | */
|
---|
400 | /*}}}*/
|
---|