source: issm/trunk-jpl/src/c/analyses/EnthalpyAnalysis.cpp@ 25763

Last change on this file since 25763 was 25763, checked in by Eric.Larour, 4 years ago

CHG: fixing issues with elastic vs rigid vs rotation.

File size: 67.8 KB
Line 
1#include "./EnthalpyAnalysis.h"
2#include "../toolkits/toolkits.h"
3#include "../classes/classes.h"
4#include "../shared/shared.h"
5#include "../modules/modules.h"
6#include "../solutionsequences/solutionsequences.h"
7#include "../cores/cores.h"
8
9/*Model processing*/
10void EnthalpyAnalysis::CreateConstraints(Constraints* constraints,IoModel* iomodel){/*{{{*/
11
12 /*Intermediary*/
13 int count;
14 int M,N;
15 bool spcpresent = false;
16 int finiteelement;
17 IssmDouble heatcapacity;
18 IssmDouble referencetemperature;
19
20 /*Output*/
21 IssmDouble *spcvector = NULL;
22 IssmDouble *spcvectorstatic = NULL;
23 IssmDouble* times=NULL;
24 IssmDouble* values=NULL;
25 IssmDouble* issurface = NULL;
26
27 /*Fetch parameters: */
28 iomodel->FindConstant(&heatcapacity,"md.materials.heatcapacity");
29 iomodel->FindConstant(&referencetemperature,"md.constants.referencetemperature");
30 iomodel->FindConstant(&finiteelement,"md.thermal.fe");
31
32 /*return if 2d mesh*/
33 if(iomodel->domaintype==Domain2DhorizontalEnum) return;
34
35 /*Fetch data: */
36 iomodel->FetchData(&issurface,&M,&N,"md.mesh.vertexonsurface"); _assert_(N>0); _assert_(M==iomodel->numberofvertices);
37 iomodel->FetchData(&spcvector,&M,&N,"md.thermal.spctemperature");
38 iomodel->FetchData(&spcvectorstatic,&M,&N,"md.thermal.spctemperature");
39
40 /*Specific case for PDD, we want the constaints to be updated by the PDD scheme itself*/
41 bool isdynamic = false;
42 if (iomodel->solution_enum==TransientSolutionEnum){
43 int smb_model;
44 iomodel->FindConstant(&smb_model,"md.smb.model");
45 if(smb_model==SMBpddEnum) isdynamic=true;
46 if(smb_model==SMBd18opddEnum) isdynamic=true;
47 if(smb_model==SMBpddSicopolisEnum) isdynamic=true;
48 }
49
50 /*Convert spcs from temperatures to enthalpy*/
51 _assert_(N>0); _assert_(M>=iomodel->numberofvertices);
52 for(int i=0;i<iomodel->numberofvertices;i++){
53 for(int j=0;j<N;j++){
54 if (isdynamic){
55 if (issurface[i]==1){
56 spcvector[i*N+j] = heatcapacity*(spcvector[i*N+j]-referencetemperature);
57 spcvectorstatic[i*N+j] = NAN;
58 }
59 else{
60 spcvector[i*N+j] = NAN;
61 spcvectorstatic[i*N+j] = heatcapacity*(spcvectorstatic[i*N+j]-referencetemperature);
62 }
63 }
64 else{
65 spcvector[i*N+j] = heatcapacity*(spcvector[i*N+j]-referencetemperature);
66 }
67 }
68 }
69
70 if(isdynamic){
71 IoModelToDynamicConstraintsx(constraints,iomodel,spcvector,iomodel->numberofvertices,1,EnthalpyAnalysisEnum,finiteelement);
72 IoModelToConstraintsx(constraints,iomodel,spcvectorstatic,M,N,EnthalpyAnalysisEnum,finiteelement);
73 }
74 else{
75 IoModelToConstraintsx(constraints,iomodel,spcvector,M,N,EnthalpyAnalysisEnum,finiteelement);
76 }
77
78 /*Free ressources:*/
79 iomodel->DeleteData(spcvector,"md.thermal.spctemperature");
80 iomodel->DeleteData(spcvectorstatic,"md.thermal.spctemperature");
81 iomodel->DeleteData(issurface,"md.mesh.vertexonsurface");
82 xDelete<IssmDouble>(times);
83 xDelete<IssmDouble>(values);
84}/*}}}*/
85void EnthalpyAnalysis::CreateLoads(Loads* loads, IoModel* iomodel){/*{{{*/
86
87 /*No loads */
88}/*}}}*/
89void EnthalpyAnalysis::CreateNodes(Nodes* nodes,IoModel* iomodel,bool isamr){/*{{{*/
90
91 int finiteelement;
92 iomodel->FindConstant(&finiteelement,"md.thermal.fe");
93
94 if(iomodel->domaintype==Domain3DEnum) iomodel->FetchData(2,"md.mesh.vertexonbase","md.mesh.vertexonsurface");
95 ::CreateNodes(nodes,iomodel,EnthalpyAnalysisEnum,finiteelement);
96 iomodel->DeleteData(2,"md.mesh.vertexonbase","md.mesh.vertexonsurface");
97}/*}}}*/
98int EnthalpyAnalysis::DofsPerNode(int** doflist,int domaintype,int approximation){/*{{{*/
99 return 1;
100}/*}}}*/
101void EnthalpyAnalysis::UpdateElements(Elements* elements,Inputs* inputs,IoModel* iomodel,int analysis_counter,int analysis_type){/*{{{*/
102
103 bool dakota_analysis,ismovingfront,isenthalpy;
104 int frictionlaw,basalforcing_model,materialstype;
105 int FrictionCoupling;
106
107 /*Now, is the model 3d? otherwise, do nothing: */
108 if(iomodel->domaintype==Domain2DhorizontalEnum)return;
109
110 /*Is enthalpy requested?*/
111 iomodel->FindConstant(&isenthalpy,"md.thermal.isenthalpy");
112 if(!isenthalpy) return;
113
114 /*Fetch data needed: */
115 iomodel->FetchData(3,"md.initialization.temperature","md.initialization.waterfraction","md.initialization.pressure");
116
117 /*Finite element type*/
118 int finiteelement;
119 iomodel->FindConstant(&finiteelement,"md.thermal.fe");
120
121 /*Update elements: */
122 int counter=0;
123 for(int i=0;i<iomodel->numberofelements;i++){
124 if(iomodel->my_elements[i]){
125 Element* element=(Element*)elements->GetObjectByOffset(counter);
126 element->Update(inputs,i,iomodel,analysis_counter,analysis_type,finiteelement);
127 counter++;
128 }
129 }
130
131 iomodel->FindConstant(&dakota_analysis,"md.qmu.isdakota");
132 iomodel->FindConstant(&ismovingfront,"md.transient.ismovingfront");
133 iomodel->FindConstant(&frictionlaw,"md.friction.law");
134 iomodel->FindConstant(&materialstype,"md.materials.type");
135
136 iomodel->FetchDataToInput(inputs,elements,"md.geometry.thickness",ThicknessEnum);
137 iomodel->FetchDataToInput(inputs,elements,"md.geometry.surface",SurfaceEnum);
138 iomodel->FetchDataToInput(inputs,elements,"md.solidearth.initialsealevel",SealevelEnum,0);
139 iomodel->FetchDataToInput(inputs,elements,"md.geometry.base",BaseEnum);
140 iomodel->FetchDataToInput(inputs,elements,"md.mask.ice_levelset",MaskIceLevelsetEnum);
141 iomodel->FetchDataToInput(inputs,elements,"md.mask.ocean_levelset",MaskOceanLevelsetEnum);
142 if(iomodel->domaintype!=Domain2DhorizontalEnum){
143 iomodel->FetchDataToInput(inputs,elements,"md.mesh.vertexonbase",MeshVertexonbaseEnum);
144 iomodel->FetchDataToInput(inputs,elements,"md.mesh.vertexonsurface",MeshVertexonsurfaceEnum);
145 }
146 iomodel->FetchDataToInput(inputs,elements,"md.initialization.pressure",PressureEnum);
147 iomodel->FetchDataToInput(inputs,elements,"md.initialization.temperature",TemperatureEnum);
148 iomodel->FetchDataToInput(inputs,elements,"md.initialization.waterfraction",WaterfractionEnum);
149 iomodel->FetchDataToInput(inputs,elements,"md.initialization.enthalpy",EnthalpyEnum);
150 iomodel->FetchDataToInput(inputs,elements,"md.initialization.watercolumn",WatercolumnEnum);
151 iomodel->FetchDataToInput(inputs,elements,"md.basalforcings.groundedice_melting_rate",BasalforcingsGroundediceMeltingRateEnum);
152 iomodel->FetchDataToInput(inputs,elements,"md.initialization.vx",VxEnum);
153 iomodel->FetchDataToInput(inputs,elements,"md.initialization.vy",VyEnum);
154 iomodel->FetchDataToInput(inputs,elements,"md.initialization.vz",VzEnum);
155 InputUpdateFromConstantx(inputs,elements,0.,VxMeshEnum);
156 InputUpdateFromConstantx(inputs,elements,0.,VyMeshEnum);
157 InputUpdateFromConstantx(inputs,elements,0.,VzMeshEnum);
158 if(ismovingfront){
159 iomodel->FetchDataToInput(inputs,elements,"md.mesh.vertexonbase",MeshVertexonbaseEnum); // required for updating active nodes
160 }
161
162 /*Basal forcings variables*/
163 iomodel->FindConstant(&basalforcing_model,"md.basalforcings.model");
164 switch(basalforcing_model){
165 case MantlePlumeGeothermalFluxEnum:
166 break;
167 default:
168 iomodel->FetchDataToInput(inputs,elements,"md.basalforcings.geothermalflux",BasalforcingsGeothermalfluxEnum);
169 break;
170 }
171
172 /*Rheology type*/
173 iomodel->FetchDataToInput(inputs,elements,"md.materials.rheology_B",MaterialsRheologyBEnum);
174 switch(materialstype){
175 case MatenhancediceEnum:
176 iomodel->FetchDataToInput(inputs,elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
177 iomodel->FetchDataToInput(inputs,elements,"md.materials.rheology_E",MaterialsRheologyEEnum);
178 break;
179 case MatdamageiceEnum:
180 iomodel->FetchDataToInput(inputs,elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
181 break;
182 case MatestarEnum:
183 iomodel->FetchDataToInput(inputs,elements,"md.materials.rheology_Ec",MaterialsRheologyEcEnum);
184 iomodel->FetchDataToInput(inputs,elements,"md.materials.rheology_Es",MaterialsRheologyEsEnum);
185 break;
186 case MaticeEnum:
187 iomodel->FetchDataToInput(inputs,elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
188 break;
189 default:
190 _error_("not supported");
191 }
192
193 /*Friction law variables*/
194 switch(frictionlaw){
195 case 1:
196 iomodel->FindConstant(&FrictionCoupling,"md.friction.coupling");
197 iomodel->FetchDataToInput(inputs,elements,"md.friction.coefficient",FrictionCoefficientEnum);
198 iomodel->FetchDataToInput(inputs,elements,"md.friction.p",FrictionPEnum);
199 iomodel->FetchDataToInput(inputs,elements,"md.friction.q",FrictionQEnum);
200 if (FrictionCoupling==3){
201 iomodel->FetchDataToInput(inputs,elements,"md.friction.effective_pressure",FrictionEffectivePressureEnum);}
202 else if(FrictionCoupling==4){
203 iomodel->FetchDataToInput(inputs,elements,"md.friction.effective_pressure",EffectivePressureEnum);
204 }
205 break;
206 case 2:
207 iomodel->FetchDataToInput(inputs,elements,"md.friction.C",FrictionCEnum);
208 iomodel->FetchDataToInput(inputs,elements,"md.friction.m",FrictionMEnum);
209 break;
210 case 3:
211 iomodel->FindConstant(&FrictionCoupling,"md.friction.coupling");
212 iomodel->FetchDataToInput(inputs,elements,"md.friction.C",FrictionCEnum);
213 iomodel->FetchDataToInput(inputs,elements,"md.friction.As",FrictionAsEnum);
214 iomodel->FetchDataToInput(inputs,elements,"md.friction.q",FrictionQEnum);
215 if (FrictionCoupling==3){
216 iomodel->FetchDataToInput(inputs,elements,"md.friction.effective_pressure",FrictionEffectivePressureEnum);}
217 else if(FrictionCoupling==4){
218 iomodel->FetchDataToInput(inputs,elements,"md.friction.effective_pressure",EffectivePressureEnum);
219 }
220 break;
221 case 4:
222 iomodel->FetchDataToInput(inputs,elements,"md.friction.coefficient",FrictionCoefficientEnum);
223 iomodel->FetchDataToInput(inputs,elements,"md.friction.p",FrictionPEnum);
224 iomodel->FetchDataToInput(inputs,elements,"md.friction.q",FrictionQEnum);
225 iomodel->FetchDataToInput(inputs,elements,"md.initialization.pressure",PressureEnum);
226 iomodel->FetchDataToInput(inputs,elements,"md.initialization.temperature",TemperatureEnum);
227 iomodel->FindConstant(&FrictionCoupling,"md.friction.coupling");
228 break;
229 case 5:
230 iomodel->FetchDataToInput(inputs,elements,"md.friction.coefficient",FrictionCoefficientEnum);
231 iomodel->FetchDataToInput(inputs,elements,"md.friction.p",FrictionPEnum);
232 iomodel->FetchDataToInput(inputs,elements,"md.friction.q",FrictionQEnum);
233 iomodel->FetchDataToInput(inputs,elements,"md.friction.water_layer",FrictionWaterLayerEnum);
234 break;
235 case 6:
236 iomodel->FetchDataToInput(inputs,elements,"md.friction.C",FrictionCEnum);
237 iomodel->FetchDataToInput(inputs,elements,"md.friction.m",FrictionMEnum);
238 iomodel->FetchDataToInput(inputs,elements,"md.initialization.pressure",PressureEnum);
239 iomodel->FetchDataToInput(inputs,elements,"md.initialization.temperature",TemperatureEnum);
240 break;
241 case 7:
242 iomodel->FindConstant(&FrictionCoupling,"md.friction.coupling");
243 iomodel->FetchDataToInput(inputs,elements,"md.friction.coefficient",FrictionCoefficientEnum);
244 iomodel->FetchDataToInput(inputs,elements,"md.friction.coefficientcoulomb",FrictionCoefficientcoulombEnum);
245 iomodel->FetchDataToInput(inputs,elements,"md.friction.p",FrictionPEnum);
246 iomodel->FetchDataToInput(inputs,elements,"md.friction.q",FrictionQEnum);
247 if (FrictionCoupling==3){
248 iomodel->FetchDataToInput(inputs,elements,"md.friction.effective_pressure",FrictionEffectivePressureEnum);}
249 else if(FrictionCoupling==4){
250 iomodel->FetchDataToInput(inputs,elements,"md.friction.effective_pressure",EffectivePressureEnum);
251 }
252 break;
253 case 9:
254 iomodel->FetchDataToInput(inputs,elements,"md.friction.coefficient",FrictionCoefficientEnum);
255 iomodel->FetchDataToInput(inputs,elements,"md.friction.pressure_adjusted_temperature",FrictionPressureAdjustedTemperatureEnum);
256 InputUpdateFromConstantx(inputs,elements,1.,FrictionPEnum);
257 InputUpdateFromConstantx(inputs,elements,1.,FrictionQEnum);
258 break;
259 default:
260 _error_("friction law not supported");
261 }
262
263 /*Free data: */
264 iomodel->DeleteData(3,"md.initialization.temperature","md.initialization.waterfraction","md.initialization.pressure");
265
266}/*}}}*/
267void EnthalpyAnalysis::UpdateParameters(Parameters* parameters,IoModel* iomodel,int solution_enum,int analysis_enum){/*{{{*/
268
269 int numoutputs;
270 char** requestedoutputs = NULL;
271
272 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.stabilization",ThermalStabilizationEnum));
273 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.maxiter",ThermalMaxiterEnum));
274 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.reltol",ThermalReltolEnum));
275 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.isenthalpy",ThermalIsenthalpyEnum));
276 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.isdynamicbasalspc",ThermalIsdynamicbasalspcEnum));
277 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.isdrainicecolumn",ThermalIsdrainicecolumnEnum));
278 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.watercolumn_upperlimit",ThermalWatercolumnUpperlimitEnum));
279 parameters->AddObject(iomodel->CopyConstantObject("md.friction.law",FrictionLawEnum));
280
281 iomodel->FindConstant(&requestedoutputs,&numoutputs,"md.thermal.requested_outputs");
282 parameters->AddObject(new IntParam(ThermalNumRequestedOutputsEnum,numoutputs));
283 if(numoutputs)parameters->AddObject(new StringArrayParam(ThermalRequestedOutputsEnum,requestedoutputs,numoutputs));
284 iomodel->DeleteData(&requestedoutputs,numoutputs,"md.thermal.requested_outputs");
285
286 /*Deal with friction parameters*/
287 int frictionlaw;
288 iomodel->FindConstant(&frictionlaw,"md.friction.law");
289 if(frictionlaw==6){
290 parameters->AddObject(iomodel->CopyConstantObject("md.friction.gamma",FrictionGammaEnum));
291 }
292 if(frictionlaw==4){
293 parameters->AddObject(iomodel->CopyConstantObject("md.friction.gamma",FrictionGammaEnum));
294 parameters->AddObject(iomodel->CopyConstantObject("md.friction.coupling",FrictionCouplingEnum));
295 parameters->AddObject(iomodel->CopyConstantObject("md.friction.effective_pressure_limit",FrictionEffectivePressureLimitEnum));
296 }
297 if(frictionlaw==1 || frictionlaw==3 || frictionlaw==7){
298 parameters->AddObject(iomodel->CopyConstantObject("md.friction.coupling",FrictionCouplingEnum));
299 parameters->AddObject(iomodel->CopyConstantObject("md.friction.effective_pressure_limit",FrictionEffectivePressureLimitEnum));
300 }
301 if(frictionlaw==9){
302 parameters->AddObject(iomodel->CopyConstantObject("md.friction.gamma",FrictionGammaEnum));
303 parameters->AddObject(iomodel->CopyConstantObject("md.friction.effective_pressure_limit",FrictionEffectivePressureLimitEnum));
304 parameters->AddObject(new IntParam(FrictionCouplingEnum,0));
305 }
306}/*}}}*/
307
308/*Finite Element Analysis*/
309void EnthalpyAnalysis::ApplyBasalConstraints(IssmDouble* serial_spc,Element* element){/*{{{*/
310
311 /* Do not check if ice in element, this may lead to inconsistencies between cpu partitions */
312 /* Only update constraints at the base. */
313 if(!(element->IsOnBase())) return;
314
315 /*Intermediary*/
316 bool isdynamicbasalspc;
317 int numindices;
318 int *indices = NULL;
319 Node* node = NULL;
320 IssmDouble pressure;
321
322 /*Check wether dynamic basal boundary conditions are activated */
323 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
324 if(!isdynamicbasalspc) return;
325
326 /*Get parameters and inputs: */
327 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
328
329 /*Fetch indices of basal & surface nodes for this finite element*/
330 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
331 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
332
333 GaussPenta* gauss=new GaussPenta();
334 for(int i=0;i<numindices;i++){
335 gauss->GaussNode(element->GetElementType(),indices[i]);
336
337 pressure_input->GetInputValue(&pressure,gauss);
338
339 /*apply or release spc*/
340 node=element->GetNode(indices[i]);
341 if(!node->IsActive()) continue;
342 if(serial_spc[node->Sid()]==1.){
343 pressure_input->GetInputValue(&pressure, gauss);
344 node->ApplyConstraint(0,PureIceEnthalpy(element,pressure));
345 }
346 else {
347 node->DofInFSet(0);
348 }
349 }
350
351 /*Free ressources:*/
352 xDelete<int>(indices);
353 delete gauss;
354}/*}}}*/
355void EnthalpyAnalysis::ComputeBasalMeltingrate(FemModel* femmodel){/*{{{*/
356 /*Compute basal melting rates: */
357 for(Object* & object : femmodel->elements->objects){
358 Element* element=xDynamicCast<Element*>(object);
359 ComputeBasalMeltingrate(element);
360 }
361
362 /*extrude inputs*/
363 femmodel->parameters->SetParam(BasalforcingsGroundediceMeltingRateEnum,InputToExtrudeEnum);
364 extrudefrombase_core(femmodel);
365}/*}}}*/
366void EnthalpyAnalysis::ComputeBasalMeltingrate(Element* element){/*{{{*/
367 /*Calculate the basal melt rates of the enthalpy model after Aschwanden 2012*/
368 /* melting rate is positive when melting, negative when refreezing*/
369
370 /* Check if ice in element */
371 if(!element->IsIceInElement()) return;
372
373 /* Only compute melt rates at the base of grounded ice*/
374 if(!element->IsOnBase() || element->IsFloating()) return;
375
376 /* Intermediaries */
377 bool converged;
378 const int dim=3;
379 int i,is,state;
380 int nodedown,nodeup,numnodes,numsegments;
381 int enthalpy_enum;
382 IssmDouble vec_heatflux[dim],normal_base[dim],d1enthalpy[dim],d1pressure[dim];
383 IssmDouble basalfriction,alpha2,geothermalflux,heatflux;
384 IssmDouble dt,yts;
385 IssmDouble melting_overshoot,lambda;
386 IssmDouble vx,vy,vz;
387 IssmDouble *xyz_list = NULL;
388 IssmDouble *xyz_list_base = NULL;
389 int *pairindices = NULL;
390
391 /*Fetch parameters*/
392 element->GetVerticesCoordinates(&xyz_list);
393 element->GetVerticesCoordinatesBase(&xyz_list_base);
394 element->GetInputValue(&converged,ConvergedEnum);
395 element->FindParam(&dt,TimesteppingTimeStepEnum);
396 element->FindParam(&yts, ConstantsYtsEnum);
397
398 if(dt==0. && !converged) enthalpy_enum=EnthalpyPicardEnum;
399 else enthalpy_enum=EnthalpyEnum;
400
401 IssmDouble latentheat = element->FindParam(MaterialsLatentheatEnum);
402 IssmDouble rho_ice = element->FindParam(MaterialsRhoIceEnum);
403 IssmDouble rho_water = element->FindParam(MaterialsRhoFreshwaterEnum);
404 IssmDouble beta = element->FindParam(MaterialsBetaEnum);
405 IssmDouble kappa = EnthalpyDiffusionParameterVolume(element,enthalpy_enum); _assert_(kappa>=0.);
406 IssmDouble kappa_mix;
407
408 /*retrieve inputs*/
409 Input* enthalpy_input = element->GetInput(enthalpy_enum); _assert_(enthalpy_input);
410 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
411 Input* geothermalflux_input = element->GetInput(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input);
412 Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
413 Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
414 Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
415
416 /*Build friction element, needed later: */
417 Friction* friction=new Friction(element,dim);
418
419 /******** MELTING RATES ************************************//*{{{*/
420 element->NormalBase(&normal_base[0],xyz_list_base);
421 element->VerticalSegmentIndicesBase(&pairindices,&numsegments);
422 IssmDouble* meltingrate_enthalpy = xNew<IssmDouble>(numsegments);
423 IssmDouble* heating = xNew<IssmDouble>(numsegments);
424
425 numnodes=element->GetNumberOfNodes();
426 IssmDouble* enthalpies = xNew<IssmDouble>(numnodes);
427 IssmDouble* pressures = xNew<IssmDouble>(numnodes);
428 IssmDouble* watercolumns = xNew<IssmDouble>(numnodes);
429 IssmDouble* basalmeltingrates = xNew<IssmDouble>(numnodes);
430 element->GetInputListOnNodes(enthalpies,enthalpy_enum);
431 element->GetInputListOnNodes(pressures,PressureEnum);
432 element->GetInputListOnNodes(watercolumns,WatercolumnEnum);
433 element->GetInputListOnNodes(basalmeltingrates,BasalforcingsGroundediceMeltingRateEnum);
434
435 IssmDouble watercolumnupperlimit = element->FindParam(ThermalWatercolumnUpperlimitEnum);
436
437 Gauss* gauss=element->NewGauss();
438 for(is=0;is<numsegments;is++){
439 nodedown = pairindices[is*2+0];
440 nodeup = pairindices[is*2+1];
441 gauss->GaussNode(element->GetElementType(),nodedown);
442
443 state=GetThermalBasalCondition(element, enthalpies[nodedown], enthalpies[nodeup], pressures[nodedown], pressures[nodeup], watercolumns[nodedown], basalmeltingrates[nodedown]);
444 switch (state) {
445 case 0:
446 // cold, dry base: apply basal surface forcing
447 for(i=0;i<3;i++) vec_heatflux[i]=0.;
448 break;
449 case 1: case 2: case 3:
450 // case 1 : cold, wet base: keep at pressure melting point
451 // case 2: temperate, thin refreezing base: release spc
452 // case 3: temperate, thin melting base: set spc
453 enthalpy_input->GetInputDerivativeValue(&d1enthalpy[0],xyz_list,gauss);
454 for(i=0;i<3;i++) vec_heatflux[i]=-kappa*d1enthalpy[i];
455 break;
456 case 4:
457 // temperate, thick melting base: set grad H*n=0
458 kappa_mix=GetWetIceConductivity(element, enthalpies[nodedown], pressures[nodedown]);
459 pressure_input->GetInputDerivativeValue(&d1pressure[0],xyz_list,gauss);
460 for(i=0;i<3;i++) vec_heatflux[i]=kappa_mix*beta*d1pressure[i];
461 break;
462 default:
463 _printf0_(" unknown thermal basal state found!");
464 }
465 if(state==0) meltingrate_enthalpy[is]=0.;
466 else{
467 /*heat flux along normal*/
468 heatflux=0.;
469 for(i=0;i<3;i++) heatflux+=(vec_heatflux[i])*normal_base[i];
470
471 /*basal friction*/
472 friction->GetAlpha2(&alpha2,gauss);
473 vx_input->GetInputValue(&vx,gauss); vy_input->GetInputValue(&vy,gauss); vz_input->GetInputValue(&vz,gauss);
474 basalfriction=alpha2*(vx*vx + vy*vy + vz*vz);
475 geothermalflux_input->GetInputValue(&geothermalflux,gauss);
476 /* -Mb= Fb-(q-q_geo)/((1-w)*L*rho), and (1-w)*rho=rho_ice, cf Aschwanden 2012, eqs.1, 2, 66*/
477 heating[is]=(heatflux+basalfriction+geothermalflux);
478 meltingrate_enthalpy[is]=heating[is]/(latentheat*rho_ice); // m/s water equivalent
479 }
480 }/*}}}*/
481
482 /******** UPDATE MELTINGRATES AND WATERCOLUMN **************//*{{{*/
483 for(is=0;is<numsegments;is++){
484 nodedown = pairindices[is*2+0];
485 nodeup = pairindices[is*2+1];
486 if(dt!=0.){
487 if(watercolumns[nodedown]+meltingrate_enthalpy[is]*dt<0.){ // prevent too much freeze on
488 lambda = -watercolumns[nodedown]/(dt*meltingrate_enthalpy[is]); _assert_(lambda>=0.); _assert_(lambda<1.);
489 watercolumns[nodedown]=0.;
490 basalmeltingrates[nodedown]=lambda*meltingrate_enthalpy[is]; // restrict freeze on only to size of watercolumn
491 enthalpies[nodedown]+=(1.-lambda)*dt/yts*meltingrate_enthalpy[is]*latentheat*rho_ice; // use rest of energy to cool down base: dE=L*m, m=(1-lambda)*meltingrate*rho_ice
492 }
493 else{
494 basalmeltingrates[nodedown]=meltingrate_enthalpy[is];
495 watercolumns[nodedown]+=dt*meltingrate_enthalpy[is];
496 }
497 if(watercolumns[nodedown]>watercolumnupperlimit) watercolumns[nodedown]=watercolumnupperlimit;
498 }
499 else{
500 basalmeltingrates[nodedown]=meltingrate_enthalpy[is];
501 if(watercolumns[nodedown]+meltingrate_enthalpy[is]<0.)
502 watercolumns[nodedown]=0.;
503 else
504 watercolumns[nodedown]+=meltingrate_enthalpy[is];
505 }
506 basalmeltingrates[nodedown]*=rho_water/rho_ice; // convert meltingrate from water to ice equivalent
507 _assert_(watercolumns[nodedown]>=0.);
508 }/*}}}*/
509
510 /*feed updated variables back into model*/
511 int finite_element = element->GetElementType(); if(finite_element==P1Enum) finite_element = P1DGEnum;
512 if(dt!=0.){
513 element->AddInput(enthalpy_enum,enthalpies,finite_element);
514 element->AddInput(WatercolumnEnum,watercolumns,finite_element);
515 }
516 element->AddInput(BasalforcingsGroundediceMeltingRateEnum,basalmeltingrates,P1DGEnum);
517
518 /*Clean up and return*/
519 delete gauss;
520 delete friction;
521 xDelete<int>(pairindices);
522 xDelete<IssmDouble>(enthalpies);
523 xDelete<IssmDouble>(pressures);
524 xDelete<IssmDouble>(watercolumns);
525 xDelete<IssmDouble>(basalmeltingrates);
526 xDelete<IssmDouble>(meltingrate_enthalpy);
527 xDelete<IssmDouble>(heating);
528 xDelete<IssmDouble>(xyz_list);
529 xDelete<IssmDouble>(xyz_list_base);
530}/*}}}*/
531void EnthalpyAnalysis::Core(FemModel* femmodel){/*{{{*/
532
533 IssmDouble dt;
534 bool isdynamicbasalspc;
535
536 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
537 femmodel->parameters->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
538
539 if(VerboseSolution()) _printf0_(" computing enthalpy\n");
540 femmodel->SetCurrentConfiguration(EnthalpyAnalysisEnum);
541 if((dt>0.) && isdynamicbasalspc) UpdateBasalConstraints(femmodel);
542 solutionsequence_thermal_nonlinear(femmodel);
543
544 /*transfer enthalpy to enthalpy picard for the next step: */
545 InputDuplicatex(femmodel,EnthalpyEnum,EnthalpyPicardEnum);
546
547 PostProcessing(femmodel);
548
549}/*}}}*/
550ElementVector* EnthalpyAnalysis::CreateDVector(Element* element){/*{{{*/
551 /*Default, return NULL*/
552 return NULL;
553}/*}}}*/
554ElementMatrix* EnthalpyAnalysis::CreateJacobianMatrix(Element* element){/*{{{*/
555_error_("Not implemented");
556}/*}}}*/
557ElementMatrix* EnthalpyAnalysis::CreateKMatrix(Element* element){/*{{{*/
558
559 /* Check if ice in element */
560 if(!element->IsIceInElement()) return NULL;
561
562 /*compute all stiffness matrices for this element*/
563 ElementMatrix* Ke1=CreateKMatrixVolume(element);
564 ElementMatrix* Ke2=CreateKMatrixShelf(element);
565 ElementMatrix* Ke =new ElementMatrix(Ke1,Ke2);
566
567 /*clean-up and return*/
568 delete Ke1;
569 delete Ke2;
570 return Ke;
571}/*}}}*/
572ElementMatrix* EnthalpyAnalysis::CreateKMatrixVolume(Element* element){/*{{{*/
573
574 /* Check if ice in element */
575 if(!element->IsIceInElement()) return NULL;
576
577 /*Intermediaries */
578 int stabilization;
579 IssmDouble Jdet,dt,u,v,w,um,vm,wm,vel;
580 IssmDouble h,hx,hy,hz,vx,vy,vz;
581 IssmDouble tau_parameter,diameter;
582 IssmDouble tau_parameter_anisotropic[2],tau_parameter_hor,tau_parameter_ver;
583 IssmDouble D_scalar;
584 IssmDouble* xyz_list = NULL;
585
586 /*Fetch number of nodes and dof for this finite element*/
587 int numnodes = element->GetNumberOfNodes();
588
589 /*Initialize Element vector and other vectors*/
590 ElementMatrix* Ke = element->NewElementMatrix();
591 IssmDouble* basis = xNew<IssmDouble>(numnodes);
592 IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
593 IssmDouble K[3][3];
594
595 /*Retrieve all inputs and parameters*/
596 element->GetVerticesCoordinates(&xyz_list);
597 element->FindParam(&dt,TimesteppingTimeStepEnum);
598 element->FindParam(&stabilization,ThermalStabilizationEnum);
599 IssmDouble rho_water = element->FindParam(MaterialsRhoSeawaterEnum);
600 IssmDouble rho_ice = element->FindParam(MaterialsRhoIceEnum);
601 IssmDouble gravity = element->FindParam(ConstantsGEnum);
602 IssmDouble heatcapacity = element->FindParam(MaterialsHeatcapacityEnum);
603 IssmDouble thermalconductivity = element->FindParam(MaterialsThermalconductivityEnum);
604 Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
605 Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
606 Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
607 Input* vxm_input = element->GetInput(VxMeshEnum); _assert_(vxm_input);
608 Input* vym_input = element->GetInput(VyMeshEnum); _assert_(vym_input);
609 Input* vzm_input = element->GetInput(VzMeshEnum); _assert_(vzm_input);
610
611 /*Enthalpy diffusion parameter*/
612 IssmDouble kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
613
614 /* Start looping on the number of gaussian points: */
615 Gauss* gauss=element->NewGauss(4);
616 while(gauss->next()){
617
618 element->JacobianDeterminant(&Jdet,xyz_list,gauss);
619 element->NodalFunctions(basis,gauss);
620 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
621
622 D_scalar=gauss->weight*Jdet;
623 if(dt!=0.) D_scalar=D_scalar*dt;
624
625 /*Conduction: */
626 for(int i=0;i<numnodes;i++){
627 for(int j=0;j<numnodes;j++){
628 Ke->values[i*numnodes+j] += D_scalar*kappa/rho_ice*(
629 dbasis[0*numnodes+j]*dbasis[0*numnodes+i] + dbasis[1*numnodes+j]*dbasis[1*numnodes+i] + dbasis[2*numnodes+j]*dbasis[2*numnodes+i]
630 );
631 }
632 }
633
634 /*Advection: */
635 vx_input->GetInputValue(&u,gauss); vxm_input->GetInputValue(&um,gauss); vx=u-um;
636 vy_input->GetInputValue(&v,gauss); vym_input->GetInputValue(&vm,gauss); vy=v-vm;
637 vz_input->GetInputValue(&w,gauss); vzm_input->GetInputValue(&wm,gauss); vz=w-wm;
638 for(int i=0;i<numnodes;i++){
639 for(int j=0;j<numnodes;j++){
640 Ke->values[i*numnodes+j] += D_scalar*(
641 vx*dbasis[0*numnodes+j]*basis[i] + vy*dbasis[1*numnodes+j]*basis[i] +vz*dbasis[2*numnodes+j]*basis[i]
642 );
643 }
644 }
645
646 /*Transient: */
647 if(dt!=0.){
648 D_scalar=gauss->weight*Jdet;
649 for(int i=0;i<numnodes;i++){
650 for(int j=0;j<numnodes;j++){
651 Ke->values[i*numnodes+j] += D_scalar*basis[j]*basis[i];
652 }
653 }
654 D_scalar=D_scalar*dt;
655 }
656
657 /*Artificial diffusivity*/
658 if(stabilization==1){
659 element->ElementSizes(&hx,&hy,&hz);
660 vel=sqrt(vx*vx + vy*vy + vz*vz)+1.e-14;
661 h=sqrt( pow(hx*vx/vel,2) + pow(hy*vy/vel,2) + pow(hz*vz/vel,2));
662 K[0][0]=h/(2.*vel)*fabs(vx*vx); K[0][1]=h/(2.*vel)*fabs(vx*vy); K[0][2]=h/(2.*vel)*fabs(vx*vz);
663 K[1][0]=h/(2.*vel)*fabs(vy*vx); K[1][1]=h/(2.*vel)*fabs(vy*vy); K[1][2]=h/(2.*vel)*fabs(vy*vz);
664 K[2][0]=h/(2.*vel)*fabs(vz*vx); K[2][1]=h/(2.*vel)*fabs(vz*vy); K[2][2]=h/(2.*vel)*fabs(vz*vz);
665 for(int i=0;i<3;i++) for(int j=0;j<3;j++) K[i][j] = D_scalar*K[i][j];
666
667 for(int i=0;i<numnodes;i++){
668 for(int j=0;j<numnodes;j++){
669 Ke->values[i*numnodes+j] += (
670 dbasis[0*numnodes+i] *(K[0][0]*dbasis[0*numnodes+j] + K[0][1]*dbasis[1*numnodes+j]+ K[0][2]*dbasis[2*numnodes+j]) +
671 dbasis[1*numnodes+i] *(K[1][0]*dbasis[0*numnodes+j] + K[1][1]*dbasis[1*numnodes+j]+ K[1][2]*dbasis[2*numnodes+j]) +
672 dbasis[2*numnodes+i] *(K[2][0]*dbasis[0*numnodes+j] + K[2][1]*dbasis[1*numnodes+j]+ K[2][2]*dbasis[2*numnodes+j])
673 );
674 }
675 }
676 }
677 /*SUPG*/
678 else if(stabilization==2){
679 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
680 diameter=element->MinEdgeLength(xyz_list);
681 tau_parameter=element->StabilizationParameter(u-um,v-vm,w-wm,diameter,kappa/rho_ice);
682 for(int i=0;i<numnodes;i++){
683 for(int j=0;j<numnodes;j++){
684 Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*
685 ((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i])*
686 ((u-um)*dbasis[0*numnodes+j]+(v-vm)*dbasis[1*numnodes+j]+(w-wm)*dbasis[2*numnodes+j]);
687 }
688 }
689 if(dt!=0.){
690 D_scalar=gauss->weight*Jdet;
691 for(int i=0;i<numnodes;i++){
692 for(int j=0;j<numnodes;j++){
693 Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*basis[j]*((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i]);
694 }
695 }
696 }
697 }
698 /*anisotropic SUPG*/
699 else if(stabilization==3){
700 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
701 element->ElementSizes(&hx,&hy,&hz);
702 element->StabilizationParameterAnisotropic(&tau_parameter_anisotropic[0],u-um,v-vm,w-wm,hx,hy,hz,kappa/rho_ice);
703 tau_parameter_hor=tau_parameter_anisotropic[0];
704 tau_parameter_ver=tau_parameter_anisotropic[1];
705 for(int i=0;i<numnodes;i++){
706 for(int j=0;j<numnodes;j++){
707 Ke->values[i*numnodes+j]+=D_scalar*
708 (sqrt(tau_parameter_hor)*(u-um)*dbasis[0*numnodes+i]+sqrt(tau_parameter_hor)*(v-vm)*dbasis[1*numnodes+i]+sqrt(tau_parameter_ver)*(w-wm)*dbasis[2*numnodes+i])*
709 (sqrt(tau_parameter_hor)*(u-um)*dbasis[0*numnodes+j]+sqrt(tau_parameter_hor)*(v-vm)*dbasis[1*numnodes+j]+sqrt(tau_parameter_ver)*(w-wm)*dbasis[2*numnodes+j]);
710 }
711 }
712 }
713 }
714
715 /*Clean up and return*/
716 xDelete<IssmDouble>(xyz_list);
717 xDelete<IssmDouble>(basis);
718 xDelete<IssmDouble>(dbasis);
719 delete gauss;
720 return Ke;
721}/*}}}*/
722ElementMatrix* EnthalpyAnalysis::CreateKMatrixShelf(Element* element){/*{{{*/
723
724 /* Check if ice in element */
725 if(!element->IsIceInElement()) return NULL;
726
727 /*Initialize Element matrix and return if necessary*/
728 if(!element->IsOnBase() || !element->IsFloating()) return NULL;
729
730 /*Intermediaries*/
731 IssmDouble dt,Jdet,D;
732 IssmDouble *xyz_list_base = NULL;
733
734 /*Fetch number of nodes for this finite element*/
735 int numnodes = element->GetNumberOfNodes();
736
737 /*Initialize vectors*/
738 ElementMatrix* Ke = element->NewElementMatrix();
739 IssmDouble* basis = xNew<IssmDouble>(numnodes);
740
741 /*Retrieve all inputs and parameters*/
742 element->GetVerticesCoordinatesBase(&xyz_list_base);
743 element->FindParam(&dt,TimesteppingTimeStepEnum);
744 IssmDouble gravity = element->FindParam(ConstantsGEnum);
745 IssmDouble rho_water = element->FindParam(MaterialsRhoSeawaterEnum);
746 IssmDouble rho_ice = element->FindParam(MaterialsRhoIceEnum);
747 IssmDouble heatcapacity = element->FindParam(MaterialsHeatcapacityEnum);
748 IssmDouble mixed_layer_capacity= element->FindParam(MaterialsMixedLayerCapacityEnum);
749 IssmDouble thermal_exchange_vel= element->FindParam(MaterialsThermalExchangeVelocityEnum);
750
751 /* Start looping on the number of gaussian points: */
752 Gauss* gauss=element->NewGaussBase(4);
753 while(gauss->next()){
754
755 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
756 element->NodalFunctions(basis,gauss);
757
758 D=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel/(heatcapacity*rho_ice);
759 if(reCast<bool,IssmDouble>(dt)) D=dt*D;
760 for(int i=0;i<numnodes;i++) for(int j=0;j<numnodes;j++) Ke->values[i*numnodes+j] += D*basis[i]*basis[j];
761 }
762
763 /*Clean up and return*/
764 delete gauss;
765 xDelete<IssmDouble>(basis);
766 xDelete<IssmDouble>(xyz_list_base);
767 return Ke;
768}/*}}}*/
769ElementVector* EnthalpyAnalysis::CreatePVector(Element* element){/*{{{*/
770
771 /* Check if ice in element */
772 if(!element->IsIceInElement()) return NULL;
773
774 /*compute all load vectors for this element*/
775 ElementVector* pe1=CreatePVectorVolume(element);
776 ElementVector* pe2=CreatePVectorSheet(element);
777 ElementVector* pe3=CreatePVectorShelf(element);
778 ElementVector* pe =new ElementVector(pe1,pe2,pe3);
779
780 /*clean-up and return*/
781 delete pe1;
782 delete pe2;
783 delete pe3;
784 return pe;
785}/*}}}*/
786ElementVector* EnthalpyAnalysis::CreatePVectorVolume(Element* element){/*{{{*/
787
788 /* Check if ice in element */
789 if(!element->IsIceInElement()) return NULL;
790
791 /*Intermediaries*/
792 int i, stabilization;
793 IssmDouble Jdet,phi,dt;
794 IssmDouble enthalpy, Hpmp;
795 IssmDouble enthalpypicard, d1enthalpypicard[3];
796 IssmDouble pressure, d1pressure[3], d2pressure;
797 IssmDouble waterfractionpicard;
798 IssmDouble kappa,tau_parameter,diameter,hx,hy,hz,kappa_w;
799 IssmDouble tau_parameter_anisotropic[2],tau_parameter_hor,tau_parameter_ver;
800 IssmDouble u,v,w;
801 IssmDouble scalar_def, scalar_sens ,scalar_transient;
802 IssmDouble* xyz_list = NULL;
803 IssmDouble d1H_d1P, d1P2;
804
805 /*Fetch number of nodes and dof for this finite element*/
806 int numnodes = element->GetNumberOfNodes();
807 int numvertices = element->GetNumberOfVertices();
808
809 /*Initialize Element vector*/
810 ElementVector* pe = element->NewElementVector();
811 IssmDouble* basis = xNew<IssmDouble>(numnodes);
812 IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
813
814 /*Retrieve all inputs and parameters*/
815 element->GetVerticesCoordinates(&xyz_list);
816 IssmDouble rho_ice = element->FindParam(MaterialsRhoIceEnum);
817 IssmDouble heatcapacity = element->FindParam(MaterialsHeatcapacityEnum);
818 IssmDouble thermalconductivity = element->FindParam(MaterialsThermalconductivityEnum);
819 IssmDouble temperateiceconductivity = element->FindParam(MaterialsTemperateiceconductivityEnum);
820 IssmDouble beta = element->FindParam(MaterialsBetaEnum);
821 IssmDouble latentheat = element->FindParam(MaterialsLatentheatEnum);
822 element->FindParam(&dt,TimesteppingTimeStepEnum);
823 element->FindParam(&stabilization,ThermalStabilizationEnum);
824 Input* vx_input=element->GetInput(VxEnum); _assert_(vx_input);
825 Input* vy_input=element->GetInput(VyEnum); _assert_(vy_input);
826 Input* vz_input=element->GetInput(VzEnum); _assert_(vz_input);
827 Input* enthalpypicard_input=element->GetInput(EnthalpyPicardEnum); _assert_(enthalpypicard_input);
828 Input* pressure_input=element->GetInput(PressureEnum); _assert_(pressure_input);
829 Input* enthalpy_input=NULL;
830 if(dt>0.){
831 enthalpy_input = element->GetInput(EnthalpyEnum); _assert_(enthalpy_input);
832 }
833
834 /* Start looping on the number of gaussian points: */
835 Gauss* gauss=element->NewGauss(4);
836 while(gauss->next()){
837
838 element->JacobianDeterminant(&Jdet,xyz_list,gauss);
839 element->NodalFunctions(basis,gauss);
840
841 /*viscous dissipation*/
842 element->ViscousHeating(&phi,xyz_list,gauss,vx_input,vy_input,vz_input);
843
844 scalar_def=phi/rho_ice*Jdet*gauss->weight;
845 if(dt!=0.) scalar_def=scalar_def*dt;
846
847 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_def*basis[i];
848
849 /*sensible heat flux in temperate ice*/
850 enthalpypicard_input->GetInputValue(&enthalpypicard,gauss);
851 pressure_input->GetInputValue(&pressure,gauss);
852 Hpmp=this->PureIceEnthalpy(element, pressure);
853
854 if(enthalpypicard>=Hpmp){
855 enthalpypicard_input->GetInputDerivativeValue(&d1enthalpypicard[0],xyz_list,gauss);
856 pressure_input->GetInputDerivativeValue(&d1pressure[0],xyz_list,gauss);
857 d2pressure=0.; // for linear elements, 2nd derivative is zero
858
859 d1H_d1P=0.;
860 for(i=0;i<3;i++) d1H_d1P+=d1enthalpypicard[i]*d1pressure[i];
861 d1P2=0.;
862 for(i=0;i<3;i++) d1P2+=pow(d1pressure[i],2.);
863
864 scalar_sens=-beta*((temperateiceconductivity - thermalconductivity)/latentheat*(d1H_d1P + beta*heatcapacity*d1P2))/rho_ice;
865 if(dt!=0.) scalar_sens=scalar_sens*dt;
866 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_sens*basis[i];
867 }
868
869 /* Build transient now */
870 if(dt>0.){
871 enthalpy_input->GetInputValue(&enthalpy, gauss);
872 scalar_transient=enthalpy*Jdet*gauss->weight;
873 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_transient*basis[i];
874 }
875
876 /* SUPG */
877 if(stabilization==2){
878 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
879 diameter=element->MinEdgeLength(xyz_list);
880 kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
881 vx_input->GetInputValue(&u,gauss);
882 vy_input->GetInputValue(&v,gauss);
883 vz_input->GetInputValue(&w,gauss);
884 tau_parameter=element->StabilizationParameter(u,v,w,diameter,kappa/rho_ice);
885
886 for(i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_def*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]);
887
888 if(dt!=0.){
889 for(i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_transient*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]);
890 }
891 }
892 /* anisotropic SUPG */
893 else if(stabilization==3){
894 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
895 element->ElementSizes(&hx,&hy,&hz);
896 kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
897 vx_input->GetInputValue(&u,gauss);
898 vy_input->GetInputValue(&v,gauss);
899 vz_input->GetInputValue(&w,gauss);
900 element->StabilizationParameterAnisotropic(&tau_parameter_anisotropic[0],u,v,w,hx,hy,hz,kappa/rho_ice);
901 tau_parameter_hor=tau_parameter_anisotropic[0];
902 tau_parameter_ver=tau_parameter_anisotropic[1];
903
904 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_def*(tau_parameter_hor*u*dbasis[0*numnodes+i]+tau_parameter_hor*v*dbasis[1*numnodes+i]+tau_parameter_ver*w*dbasis[2*numnodes+i]);
905 }
906 }
907
908 /*Clean up and return*/
909 xDelete<IssmDouble>(basis);
910 xDelete<IssmDouble>(dbasis);
911 xDelete<IssmDouble>(xyz_list);
912 delete gauss;
913 return pe;
914
915}/*}}}*/
916ElementVector* EnthalpyAnalysis::CreatePVectorSheet(Element* element){/*{{{*/
917
918 /* Check if ice in element */
919 if(!element->IsIceInElement()) return NULL;
920
921 /* implementation of the basal condition decision chart of Aschwanden 2012, Fig.5 */
922 if(!element->IsOnBase() || element->IsFloating()) return NULL;
923
924 bool converged, isdynamicbasalspc;
925 int i, state;
926 int enthalpy_enum;
927 IssmDouble dt,Jdet,scalar;
928 IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
929 IssmDouble vx,vy,vz;
930 IssmDouble alpha2,basalfriction,geothermalflux,heatflux;
931 IssmDouble *xyz_list_base = NULL;
932
933 /*Fetch number of nodes for this finite element*/
934 int numnodes = element->GetNumberOfNodes();
935
936 /*Initialize vectors*/
937 ElementVector* pe = element->NewElementVector();
938 IssmDouble* basis = xNew<IssmDouble>(numnodes);
939
940 /*Retrieve all inputs and parameters*/
941 element->GetVerticesCoordinatesBase(&xyz_list_base);
942 element->FindParam(&dt,TimesteppingTimeStepEnum);
943 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
944 element->GetInputValue(&converged,ConvergedEnum);
945 if(dt==0. && !converged) enthalpy_enum=EnthalpyPicardEnum; // use enthalpy from last iteration
946 else enthalpy_enum=EnthalpyEnum; // use enthalpy from last time step
947 Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
948 Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
949 Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
950 Input* enthalpy_input = element->GetInput(enthalpy_enum); _assert_(enthalpy_input);
951 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
952 Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
953 Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
954 Input* geothermalflux_input = element->GetInput(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input);
955 IssmDouble rho_ice = element->FindParam(MaterialsRhoIceEnum);
956
957 /*Build friction element, needed later: */
958 Friction* friction=new Friction(element,3);
959
960 /* Start looping on the number of gaussian points: */
961 Gauss* gauss=element->NewGaussBase(4);
962 Gauss* gaussup=element->NewGaussTop(4);
963 while(gauss->next() && gaussup->next()){
964
965 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
966 element->NodalFunctions(basis,gauss);
967
968 if(isdynamicbasalspc){
969 enthalpy_input->GetInputValue(&enthalpy,gauss);
970 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
971 pressure_input->GetInputValue(&pressure,gauss);
972 pressure_input->GetInputValue(&pressureup,gaussup);
973 watercolumn_input->GetInputValue(&watercolumn,gauss);
974 meltingrate_input->GetInputValue(&meltingrate,gauss);
975 state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
976 }
977 else
978 state=0;
979
980 switch (state) {
981 case 0: case 1: case 2: case 3:
982 // cold, dry base; cold, wet base; refreezing temperate base; thin temperate base:
983 // Apply basal surface forcing.
984 // Interpolated values of enthalpy on gauss nodes may indicate cold base,
985 // although one node might have become temperate. So keep heat flux switched on.
986 geothermalflux_input->GetInputValue(&geothermalflux,gauss);
987 friction->GetAlpha2(&alpha2,gauss);
988 vx_input->GetInputValue(&vx,gauss);
989 vy_input->GetInputValue(&vy,gauss);
990 vz_input->GetInputValue(&vz,gauss);
991 basalfriction=alpha2*(vx*vx+vy*vy+vz*vz);
992 heatflux=(basalfriction+geothermalflux)/(rho_ice);
993 scalar=gauss->weight*Jdet*heatflux;
994 if(dt!=0.) scalar=dt*scalar;
995 for(i=0;i<numnodes;i++)
996 pe->values[i]+=scalar*basis[i];
997 break;
998 case 4:
999 // temperate, thick melting base: set grad H*n=0
1000 for(i=0;i<numnodes;i++)
1001 pe->values[i]+=0.;
1002 break;
1003 default:
1004 _printf0_(" unknown thermal basal state found!");
1005 }
1006 }
1007
1008 /*Clean up and return*/
1009 delete gauss;
1010 delete gaussup;
1011 delete friction;
1012 xDelete<IssmDouble>(basis);
1013 xDelete<IssmDouble>(xyz_list_base);
1014 return pe;
1015
1016}/*}}}*/
1017ElementVector* EnthalpyAnalysis::CreatePVectorShelf(Element* element){/*{{{*/
1018
1019 /* Check if ice in element */
1020 if(!element->IsIceInElement()) return NULL;
1021
1022 /*Get basal element*/
1023 if(!element->IsOnBase() || !element->IsFloating()) return NULL;
1024
1025 IssmDouble Hpmp,dt,Jdet,scalar_ocean,pressure;
1026 IssmDouble *xyz_list_base = NULL;
1027
1028 /*Fetch number of nodes for this finite element*/
1029 int numnodes = element->GetNumberOfNodes();
1030
1031 /*Initialize vectors*/
1032 ElementVector* pe = element->NewElementVector();
1033 IssmDouble* basis = xNew<IssmDouble>(numnodes);
1034
1035 /*Retrieve all inputs and parameters*/
1036 element->GetVerticesCoordinatesBase(&xyz_list_base);
1037 element->FindParam(&dt,TimesteppingTimeStepEnum);
1038 Input* pressure_input=element->GetInput(PressureEnum); _assert_(pressure_input);
1039 IssmDouble gravity = element->FindParam(ConstantsGEnum);
1040 IssmDouble rho_water = element->FindParam(MaterialsRhoSeawaterEnum);
1041 IssmDouble rho_ice = element->FindParam(MaterialsRhoIceEnum);
1042 IssmDouble heatcapacity = element->FindParam(MaterialsHeatcapacityEnum);
1043 IssmDouble mixed_layer_capacity= element->FindParam(MaterialsMixedLayerCapacityEnum);
1044 IssmDouble thermal_exchange_vel= element->FindParam(MaterialsThermalExchangeVelocityEnum);
1045
1046 /* Start looping on the number of gaussian points: */
1047 Gauss* gauss=element->NewGaussBase(4);
1048 while(gauss->next()){
1049
1050 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
1051 element->NodalFunctions(basis,gauss);
1052
1053 pressure_input->GetInputValue(&pressure,gauss);
1054 Hpmp=element->PureIceEnthalpy(pressure);
1055
1056 scalar_ocean=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel*Hpmp/(heatcapacity*rho_ice);
1057 if(reCast<bool,IssmDouble>(dt)) scalar_ocean=dt*scalar_ocean;
1058
1059 for(int i=0;i<numnodes;i++) pe->values[i]+=scalar_ocean*basis[i];
1060 }
1061
1062 /*Clean up and return*/
1063 delete gauss;
1064 xDelete<IssmDouble>(basis);
1065 xDelete<IssmDouble>(xyz_list_base);
1066 return pe;
1067}/*}}}*/
1068void EnthalpyAnalysis::DrainWaterfraction(FemModel* femmodel){/*{{{*/
1069 /*Drain excess water fraction in ice column: */
1070 ComputeWaterfractionDrainage(femmodel);
1071 DrainageUpdateWatercolumn(femmodel);
1072 DrainageUpdateEnthalpy(femmodel);
1073}/*}}}*/
1074void EnthalpyAnalysis::ComputeWaterfractionDrainage(FemModel* femmodel){/*{{{*/
1075
1076 int k,numnodes;
1077 IssmDouble dt;
1078 Element* element= NULL;
1079
1080 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
1081
1082 for(Object* & object : femmodel->elements->objects){
1083 element=xDynamicCast<Element*>(object);
1084 numnodes=element->GetNumberOfNodes();
1085 IssmDouble* waterfractions= xNew<IssmDouble>(numnodes);
1086 IssmDouble* drainage= xNew<IssmDouble>(numnodes);
1087
1088 element->GetInputListOnNodes(waterfractions,WaterfractionEnum);
1089 for(k=0; k<numnodes;k++){
1090 drainage[k]=DrainageFunctionWaterfraction(waterfractions[k], dt);
1091 }
1092 int finite_element = element->GetElementType(); if(finite_element==P1Enum) finite_element = P1DGEnum;
1093 element->AddInput(WaterfractionDrainageEnum,drainage,finite_element);
1094
1095 xDelete<IssmDouble>(waterfractions);
1096 xDelete<IssmDouble>(drainage);
1097 }
1098}/*}}}*/
1099void EnthalpyAnalysis::DrainageUpdateWatercolumn(FemModel* femmodel){/*{{{*/
1100
1101 int k,numnodes, numbasalnodes;
1102 IssmDouble dt;
1103 int* basalnodeindices=NULL;
1104 Element* element= NULL;
1105
1106 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
1107
1108 /*depth-integrate the drained water fraction */
1109 femmodel->parameters->SetParam(WaterfractionDrainageEnum,InputToDepthaverageInEnum);
1110 femmodel->parameters->SetParam(WaterfractionDrainageIntegratedEnum,InputToDepthaverageOutEnum);
1111 depthaverage_core(femmodel);
1112 femmodel->parameters->SetParam(WaterfractionDrainageIntegratedEnum,InputToExtrudeEnum);
1113 extrudefrombase_core(femmodel);
1114 /*multiply depth-average by ice thickness*/
1115 for(Object* & object : femmodel->elements->objects){
1116 element=xDynamicCast<Element*>(object);
1117 numnodes=element->GetNumberOfNodes();
1118 IssmDouble* drainage_int= xNew<IssmDouble>(numnodes);
1119 IssmDouble* thicknesses= xNew<IssmDouble>(numnodes);
1120
1121 element->GetInputListOnNodes(drainage_int,WaterfractionDrainageIntegratedEnum);
1122 element->GetInputListOnNodes(thicknesses,ThicknessEnum);
1123 for(k=0;k<numnodes;k++){
1124 drainage_int[k]*=thicknesses[k];
1125 }
1126 int finite_element = element->GetElementType(); if(finite_element==P1Enum) finite_element = P1DGEnum;
1127 element->AddInput(WaterfractionDrainageIntegratedEnum, drainage_int,finite_element);
1128
1129 xDelete<IssmDouble>(drainage_int);
1130 xDelete<IssmDouble>(thicknesses);
1131 }
1132
1133 /*update water column*/
1134 for(Object* & object : femmodel->elements->objects){
1135 element=xDynamicCast<Element*>(object);
1136 /* Check if ice in element */
1137 if(!element->IsIceInElement()) continue;
1138 if(!element->IsOnBase()) continue;
1139
1140 numnodes=element->GetNumberOfNodes();
1141 IssmDouble* watercolumn= xNew<IssmDouble>(numnodes);
1142 IssmDouble* drainage_int= xNew<IssmDouble>(numnodes);
1143 element->GetInputListOnNodes(watercolumn,WatercolumnEnum);
1144 element->GetInputListOnNodes(drainage_int,WaterfractionDrainageIntegratedEnum);
1145
1146 element->BasalNodeIndices(&numbasalnodes,&basalnodeindices,element->GetElementType());
1147 for(k=0;k<numbasalnodes;k++){
1148 watercolumn[basalnodeindices[k]]+=dt*drainage_int[basalnodeindices[k]];
1149 }
1150 int finite_element = element->GetElementType(); if(finite_element==P1Enum) finite_element = P1DGEnum;
1151 element->AddInput(WatercolumnEnum, watercolumn,finite_element);
1152
1153 xDelete<IssmDouble>(watercolumn);
1154 xDelete<IssmDouble>(drainage_int);
1155 xDelete<int>(basalnodeindices);
1156 }
1157}/*}}}*/
1158void EnthalpyAnalysis::DrainageUpdateEnthalpy(FemModel* femmodel){/*{{{*/
1159
1160 int k,numnodes;
1161 IssmDouble dt;
1162 Element* element= NULL;
1163 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
1164
1165 for(Object* & object : femmodel->elements->objects){
1166 element=xDynamicCast<Element*>(object);
1167 numnodes=element->GetNumberOfNodes();
1168 IssmDouble* enthalpies= xNew<IssmDouble>(numnodes);
1169 IssmDouble* pressures= xNew<IssmDouble>(numnodes);
1170 IssmDouble* temperatures= xNew<IssmDouble>(numnodes);
1171 IssmDouble* waterfractions= xNew<IssmDouble>(numnodes);
1172 IssmDouble* drainage= xNew<IssmDouble>(numnodes);
1173
1174 element->GetInputListOnNodes(pressures,PressureEnum);
1175 element->GetInputListOnNodes(temperatures,TemperatureEnum);
1176 element->GetInputListOnNodes(waterfractions,WaterfractionEnum);
1177 element->GetInputListOnNodes(drainage,WaterfractionDrainageEnum);
1178
1179 for(k=0;k<numnodes;k++){
1180 if(dt==0.)
1181 waterfractions[k]-=drainage[k];
1182 else
1183 waterfractions[k]-=dt*drainage[k];
1184
1185 element->ThermalToEnthalpy(&enthalpies[k], temperatures[k], waterfractions[k], pressures[k]);
1186 }
1187 int finite_element = element->GetElementType(); if(finite_element==P1Enum) finite_element = P1DGEnum;
1188 element->AddInput(WaterfractionEnum,waterfractions,finite_element);
1189 element->AddInput(EnthalpyEnum,enthalpies,finite_element);
1190
1191 xDelete<IssmDouble>(enthalpies);
1192 xDelete<IssmDouble>(pressures);
1193 xDelete<IssmDouble>(temperatures);
1194 xDelete<IssmDouble>(waterfractions);
1195 xDelete<IssmDouble>(drainage);
1196 }
1197}/*}}}*/
1198IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameter(Element* element,IssmDouble enthalpy,IssmDouble pressure){/*{{{*/
1199
1200 IssmDouble heatcapacity = element->FindParam(MaterialsHeatcapacityEnum);
1201 IssmDouble temperateiceconductivity = element->FindParam(MaterialsTemperateiceconductivityEnum);
1202 IssmDouble thermalconductivity = element->FindParam(MaterialsThermalconductivityEnum);
1203
1204 if(enthalpy < PureIceEnthalpy(element,pressure))
1205 return thermalconductivity/heatcapacity;
1206 else
1207 return temperateiceconductivity/heatcapacity;
1208}/*}}}*/
1209IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameterVolume(Element* element,int enthalpy_enum){/*{{{*/
1210
1211 int iv;
1212 IssmDouble lambda; /* fraction of cold ice */
1213 IssmDouble kappa,kappa_c,kappa_t; /* enthalpy conductivities */
1214 IssmDouble Hc,Ht;
1215
1216 /*Get pressures and enthalpies on vertices*/
1217 int numvertices = element->GetNumberOfVertices();
1218 int effectiveconductivity_averaging;
1219 IssmDouble* pressures = xNew<IssmDouble>(numvertices);
1220 IssmDouble* enthalpies = xNew<IssmDouble>(numvertices);
1221 IssmDouble* PIE = xNew<IssmDouble>(numvertices);
1222 IssmDouble* dHpmp = xNew<IssmDouble>(numvertices);
1223 element->GetInputListOnVertices(pressures,PressureEnum);
1224 element->GetInputListOnVertices(enthalpies,enthalpy_enum);
1225 element->FindParam(&effectiveconductivity_averaging,MaterialsEffectiveconductivityAveragingEnum);
1226
1227 for(iv=0;iv<numvertices;iv++){
1228 PIE[iv] = PureIceEnthalpy(element,pressures[iv]);
1229 dHpmp[iv] = enthalpies[iv]-PIE[iv];
1230 }
1231
1232 bool allequalsign = true;
1233 if(dHpmp[0]<0.){
1234 for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]<0.));
1235 }
1236 else{
1237 for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]>=0.));
1238 }
1239
1240 if(allequalsign){
1241 kappa = EnthalpyDiffusionParameter(element,enthalpies[0],pressures[0]);
1242 }
1243 else{
1244 kappa_c = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)-1.,0.);
1245 kappa_t = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)+1.,0.);
1246
1247 Hc=0.; Ht=0.;
1248 for(iv=0; iv<numvertices;iv++){
1249 if(enthalpies[iv]<PIE[iv])
1250 Hc+=(PIE[iv]-enthalpies[iv]);
1251 else
1252 Ht+=(enthalpies[iv]-PIE[iv]);
1253 }
1254 _assert_((Hc+Ht)>0.);
1255 lambda = Hc/(Hc+Ht);
1256 _assert_(lambda>=0.);
1257 _assert_(lambda<=1.);
1258
1259 if(effectiveconductivity_averaging==0){
1260 /* return arithmetic mean (volume average) of thermal conductivities, weighted by fraction of cold/temperate ice */
1261 kappa=kappa_c*lambda+(1.-lambda)*kappa_t;
1262 }
1263 else if(effectiveconductivity_averaging==1){
1264 /* return harmonic mean (reciprocal avarage) of thermal conductivities, weighted by fraction of cold/temperate ice, cf Patankar 1980, pp44 */
1265 kappa=kappa_c*kappa_t/(lambda*kappa_t+(1.-lambda)*kappa_c);
1266 }
1267 else if(effectiveconductivity_averaging==2){
1268 /* return geometric mean (power law) of thermal conductivities, weighted by fraction of cold/temperate ice */
1269 kappa=pow(kappa_c,lambda)*pow(kappa_t,1.-lambda);
1270 }
1271 else{
1272 _error_("effectiveconductivity_averaging not supported yet");
1273 }
1274 }
1275
1276 /*Clean up and return*/
1277 xDelete<IssmDouble>(PIE);
1278 xDelete<IssmDouble>(dHpmp);
1279 xDelete<IssmDouble>(pressures);
1280 xDelete<IssmDouble>(enthalpies);
1281 return kappa;
1282}/*}}}*/
1283void EnthalpyAnalysis::GetBasalConstraints(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
1284
1285 /*Intermediary*/
1286 bool isdynamicbasalspc;
1287 IssmDouble dt;
1288
1289 /*Check wether dynamic basal boundary conditions are activated */
1290 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
1291 if(!isdynamicbasalspc) return;
1292
1293 element->FindParam(&dt,TimesteppingTimeStepEnum);
1294 if(dt==0.){
1295 GetBasalConstraintsSteadystate(vec_spc,element);
1296 }
1297 else{
1298 GetBasalConstraintsTransient(vec_spc,element);
1299 }
1300}/*}}}*/
1301void EnthalpyAnalysis::GetBasalConstraintsSteadystate(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
1302
1303 /* Check if ice in element */
1304 if(!element->IsIceInElement()) return;
1305
1306 /* Only update constraints at the base.
1307 * Floating ice is not affected by basal BC decision chart. */
1308 if(!(element->IsOnBase()) || element->IsFloating()) return;
1309
1310 /*Intermediary*/
1311 int numindices, numindicesup, state;
1312 int *indices = NULL, *indicesup = NULL;
1313 IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
1314
1315 /*Get parameters and inputs: */
1316 Input* enthalpy_input = element->GetInput(EnthalpyPicardEnum); _assert_(enthalpy_input);
1317 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
1318 Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
1319 Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
1320
1321 /*Fetch indices of basal & surface nodes for this finite element*/
1322 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
1323 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
1324 penta->SurfaceNodeIndices(&numindicesup,&indicesup,element->GetElementType()); _assert_(numindices==numindicesup);
1325
1326 GaussPenta* gauss=new GaussPenta();
1327 GaussPenta* gaussup=new GaussPenta();
1328 for(int i=0;i<numindices;i++){
1329 gauss->GaussNode(element->GetElementType(),indices[i]);
1330 gaussup->GaussNode(element->GetElementType(),indicesup[i]);
1331
1332 enthalpy_input->GetInputValue(&enthalpy,gauss);
1333 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
1334 pressure_input->GetInputValue(&pressure,gauss);
1335 pressure_input->GetInputValue(&pressureup,gaussup);
1336 watercolumn_input->GetInputValue(&watercolumn,gauss);
1337 meltingrate_input->GetInputValue(&meltingrate,gauss);
1338
1339 state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
1340 switch (state) {
1341 case 0:
1342 // cold, dry base: apply basal surface forcing
1343 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
1344 break;
1345 case 1:
1346 // cold, wet base: keep at pressure melting point
1347 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1348 break;
1349 case 2:
1350 // temperate, thin refreezing base:
1351 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1352 break;
1353 case 3:
1354 // temperate, thin melting base: set spc
1355 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1356 break;
1357 case 4:
1358 // temperate, thick melting base:
1359 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1360 break;
1361 default:
1362 _printf0_(" unknown thermal basal state found!");
1363 }
1364 }
1365
1366 /*Free ressources:*/
1367 xDelete<int>(indices);
1368 xDelete<int>(indicesup);
1369 delete gauss;
1370 delete gaussup;
1371}/*}}}*/
1372void EnthalpyAnalysis::GetBasalConstraintsTransient(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
1373
1374 /* Check if ice in element */
1375 if(!element->IsIceInElement()) return;
1376
1377 /* Only update constraints at the base.
1378 * Floating ice is not affected by basal BC decision chart.*/
1379 if(!(element->IsOnBase()) || element->IsFloating()) return;
1380
1381 /*Intermediary*/
1382 int numindices, numindicesup, state;
1383 int *indices = NULL, *indicesup = NULL;
1384 IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
1385
1386 /*Get parameters and inputs: */
1387 Input* enthalpy_input = element->GetInput(EnthalpyEnum); _assert_(enthalpy_input); //TODO: check EnthalpyPicard?
1388 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
1389 Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
1390 Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
1391
1392 /*Fetch indices of basal & surface nodes for this finite element*/
1393 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
1394 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
1395 penta->SurfaceNodeIndices(&numindicesup,&indicesup,element->GetElementType()); _assert_(numindices==numindicesup);
1396
1397 GaussPenta* gauss=new GaussPenta();
1398 GaussPenta* gaussup=new GaussPenta();
1399
1400 for(int i=0;i<numindices;i++){
1401 gauss->GaussNode(element->GetElementType(),indices[i]);
1402 gaussup->GaussNode(element->GetElementType(),indicesup[i]);
1403
1404 enthalpy_input->GetInputValue(&enthalpy,gauss);
1405 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
1406 pressure_input->GetInputValue(&pressure,gauss);
1407 pressure_input->GetInputValue(&pressureup,gaussup);
1408 watercolumn_input->GetInputValue(&watercolumn,gauss);
1409 meltingrate_input->GetInputValue(&meltingrate,gauss);
1410
1411 state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
1412
1413 switch (state) {
1414 case 0:
1415 // cold, dry base: apply basal surface forcing
1416 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
1417 break;
1418 case 1:
1419 // cold, wet base: keep at pressure melting point
1420 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1421 break;
1422 case 2:
1423 // temperate, thin refreezing base: release spc
1424 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
1425 break;
1426 case 3:
1427 // temperate, thin melting base: set spc
1428 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1429 break;
1430 case 4:
1431 // temperate, thick melting base: set grad H*n=0
1432 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
1433 break;
1434 default:
1435 _printf0_(" unknown thermal basal state found!");
1436 }
1437
1438 }
1439
1440 /*Free ressources:*/
1441 xDelete<int>(indices);
1442 xDelete<int>(indicesup);
1443 delete gauss;
1444 delete gaussup;
1445}/*}}}*/
1446void EnthalpyAnalysis::GetBConduct(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
1447 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*1.
1448 * For node i, Bi' can be expressed in the actual coordinate system
1449 * by:
1450 * Bi_conduct=[ dh/dx ]
1451 * [ dh/dy ]
1452 * [ dh/dz ]
1453 * where h is the interpolation function for node i.
1454 *
1455 * We assume B has been allocated already, of size: 3x(1*numnodes)
1456 */
1457
1458 /*Fetch number of nodes for this finite element*/
1459 int numnodes = element->GetNumberOfNodes();
1460
1461 /*Get nodal functions derivatives*/
1462 IssmDouble* dbasis=xNew<IssmDouble>(3*numnodes);
1463 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
1464
1465 /*Build B: */
1466 for(int i=0;i<numnodes;i++){
1467 B[numnodes*0+i] = dbasis[0*numnodes+i];
1468 B[numnodes*1+i] = dbasis[1*numnodes+i];
1469 B[numnodes*2+i] = dbasis[2*numnodes+i];
1470 }
1471
1472 /*Clean-up*/
1473 xDelete<IssmDouble>(dbasis);
1474}/*}}}*/
1475void EnthalpyAnalysis::GetSolutionFromInputs(Vector<IssmDouble>* solution,Element* element){/*{{{*/
1476 element->GetSolutionFromInputsOneDof(solution,EnthalpyEnum);
1477}/*}}}*/
1478int EnthalpyAnalysis::GetThermalBasalCondition(Element* element, IssmDouble enthalpy, IssmDouble enthalpyup, IssmDouble pressure, IssmDouble pressureup, IssmDouble watercolumn, IssmDouble meltingrate){/*{{{*/
1479
1480 /* Check if ice in element */
1481 if(!element->IsIceInElement()) return -1;
1482
1483 /* Only update Constraints at the base of grounded ice*/
1484 if(!(element->IsOnBase())) return -1;
1485
1486 /*Intermediary*/
1487 int state=-1;
1488 IssmDouble dt;
1489
1490 /*Get parameters and inputs: */
1491 element->FindParam(&dt,TimesteppingTimeStepEnum);
1492
1493 if(enthalpy<PureIceEnthalpy(element,pressure)){
1494 if(watercolumn<=0.) state=0; // cold, dry base
1495 else state=1; // cold, wet base (refreezing)
1496 }
1497 else{
1498 if(enthalpyup<PureIceEnthalpy(element,pressureup)){
1499 if((dt==0.) && (meltingrate<0.)) state=2; // refreezing temperate base (non-physical, only for steadystate solver)
1500 else state=3; // temperate base, but no temperate layer
1501 }
1502 else state=4; // temperate layer with positive thickness
1503 }
1504
1505 _assert_(state>=0);
1506 return state;
1507}/*}}}*/
1508IssmDouble EnthalpyAnalysis::GetWetIceConductivity(Element* element, IssmDouble enthalpy, IssmDouble pressure){/*{{{*/
1509
1510 IssmDouble temperature, waterfraction;
1511 IssmDouble kappa_w = 0.6; // thermal conductivity of water (in W/m/K)
1512 IssmDouble kappa_i = element->FindParam(MaterialsThermalconductivityEnum);
1513 element->EnthalpyToThermal(&temperature, &waterfraction, enthalpy, pressure);
1514
1515 return (1.-waterfraction)*kappa_i + waterfraction*kappa_w;
1516}/*}}}*/
1517void EnthalpyAnalysis::GradientJ(Vector<IssmDouble>* gradient,Element* element,int control_type,int control_interp,int control_index){/*{{{*/
1518 _error_("Not implemented yet");
1519}/*}}}*/
1520void EnthalpyAnalysis::InputUpdateFromSolution(IssmDouble* solution,Element* element){/*{{{*/
1521
1522 bool converged;
1523 int i,rheology_law;
1524 IssmDouble B_average,s_average,T_average=0.,P_average=0.;
1525 int *doflist = NULL;
1526 IssmDouble *xyz_list = NULL;
1527
1528 /*Fetch number of nodes and dof for this finite element*/
1529 int numnodes = element->GetNumberOfNodes();
1530
1531 /*Fetch dof list and allocate solution vector*/
1532 element->GetDofListLocal(&doflist,NoneApproximationEnum,GsetEnum);
1533 IssmDouble* values = xNew<IssmDouble>(numnodes);
1534 IssmDouble* pressure = xNew<IssmDouble>(numnodes);
1535 IssmDouble* surface = xNew<IssmDouble>(numnodes);
1536 IssmDouble* B = xNew<IssmDouble>(numnodes);
1537 IssmDouble* temperature = xNew<IssmDouble>(numnodes);
1538 IssmDouble* waterfraction = xNew<IssmDouble>(numnodes);
1539
1540 /*Use the dof list to index into the solution vector: */
1541 for(i=0;i<numnodes;i++){
1542 values[i]=solution[doflist[i]];
1543
1544 /*Check solution*/
1545 if(xIsNan<IssmDouble>(values[i])) _error_("NaN found in solution vector");
1546 if(xIsInf<IssmDouble>(values[i])) _error_("Inf found in solution vector");
1547 }
1548
1549 /*Get all inputs and parameters*/
1550 element->GetInputValue(&converged,ConvergedEnum);
1551 element->GetInputListOnNodes(&pressure[0],PressureEnum);
1552 int finite_element = element->GetElementType(); if(finite_element==P1Enum) finite_element = P1DGEnum;
1553 if(converged){
1554 for(i=0;i<numnodes;i++){
1555 element->EnthalpyToThermal(&temperature[i],&waterfraction[i],values[i],pressure[i]);
1556 if(waterfraction[i]<0.) _error_("Negative water fraction found in solution vector");
1557 //if(waterfraction[i]>1.) _error_("Water fraction >1 found in solution vector");
1558 }
1559 element->AddInput(EnthalpyEnum,values,finite_element);
1560 element->AddInput(WaterfractionEnum,waterfraction,finite_element);
1561 element->AddInput(TemperatureEnum,temperature,finite_element);
1562
1563 IssmDouble* n = xNew<IssmDouble>(numnodes);
1564 if(element->material->ObjectEnum()==MatestarEnum){
1565 for(i=0;i<numnodes;i++) n[i]=3.;
1566 }
1567 else{
1568 element->GetInputListOnNodes(&n[0],MaterialsRheologyNEnum);
1569 }
1570
1571 /*Update Rheology only if converged (we must make sure that the temperature is below melting point
1572 * otherwise the rheology could be negative*/
1573 element->FindParam(&rheology_law,MaterialsRheologyLawEnum);
1574 element->GetInputListOnNodes(&surface[0],SurfaceEnum);
1575 switch(rheology_law){
1576 case NoneEnum:
1577 /*Do nothing: B is not temperature dependent*/
1578 break;
1579 case BuddJackaEnum:
1580 for(i=0;i<numnodes;i++) B[i]=BuddJacka(temperature[i]);
1581 element->AddInput(MaterialsRheologyBEnum,&B[0],finite_element);
1582 break;
1583 case CuffeyEnum:
1584 for(i=0;i<numnodes;i++) B[i]=Cuffey(temperature[i]);
1585 element->AddInput(MaterialsRheologyBEnum,&B[0],finite_element);
1586 break;
1587 case CuffeyTemperateEnum:
1588 for(i=0;i<numnodes;i++) B[i]=CuffeyTemperate(temperature[i], waterfraction[i],n[i]);
1589 element->AddInput(MaterialsRheologyBEnum,&B[0],finite_element);
1590 break;
1591 case PatersonEnum:
1592 for(i=0;i<numnodes;i++) B[i]=Paterson(temperature[i]);
1593 element->AddInput(MaterialsRheologyBEnum,&B[0],finite_element);
1594 break;
1595 case NyeH2OEnum:
1596 for(i=0;i<numnodes;i++) B[i]=NyeH2O(values[i]);
1597 element->AddInput(MaterialsRheologyBEnum,&B[0],finite_element);
1598 break;
1599 case NyeCO2Enum:
1600 for(i=0;i<numnodes;i++) B[i]=NyeCO2(values[i]);
1601 element->AddInput(MaterialsRheologyBEnum,&B[0],finite_element);
1602 break;
1603 case ArrheniusEnum:{
1604 element->GetVerticesCoordinates(&xyz_list);
1605 for(i=0;i<numnodes;i++) B[i]=Arrhenius(temperature[i],surface[i]-xyz_list[i*3+2],n[i]);
1606 element->AddInput(MaterialsRheologyBEnum,&B[0],finite_element);
1607 break;
1608 }
1609 case LliboutryDuvalEnum:{
1610 for(i=0;i<numnodes;i++) B[i]=LliboutryDuval(values[i],pressure[i],n[i],element->FindParam(MaterialsBetaEnum),element->FindParam(ConstantsReferencetemperatureEnum),element->FindParam(MaterialsHeatcapacityEnum),element->FindParam(MaterialsLatentheatEnum));
1611 element->AddInput(MaterialsRheologyBEnum,&B[0],finite_element);
1612 break;
1613 }
1614 default: _error_("Rheology law " << EnumToStringx(rheology_law) << " not supported yet");
1615 }
1616 xDelete<IssmDouble>(n);
1617 }
1618 else{
1619 element->AddInput(EnthalpyPicardEnum,values,finite_element);
1620 }
1621
1622 /*Free ressources:*/
1623 xDelete<IssmDouble>(values);
1624 xDelete<IssmDouble>(pressure);
1625 xDelete<IssmDouble>(surface);
1626 xDelete<IssmDouble>(B);
1627 xDelete<IssmDouble>(temperature);
1628 xDelete<IssmDouble>(waterfraction);
1629 xDelete<IssmDouble>(xyz_list);
1630 xDelete<int>(doflist);
1631}/*}}}*/
1632void EnthalpyAnalysis::PostProcessing(FemModel* femmodel){/*{{{*/
1633
1634 /*Intermediaries*/
1635 bool computebasalmeltingrates=true;
1636 bool isdrainicecolumn;
1637 IssmDouble dt;
1638
1639 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
1640 femmodel->parameters->FindParam(&isdrainicecolumn,ThermalIsdrainicecolumnEnum);
1641
1642 if(isdrainicecolumn){
1643 DrainWaterfraction(femmodel);
1644 }
1645 if(computebasalmeltingrates){
1646 ComputeBasalMeltingrate(femmodel);
1647 }
1648
1649}/*}}}*/
1650IssmDouble EnthalpyAnalysis::PureIceEnthalpy(Element* element,IssmDouble pressure){/*{{{*/
1651
1652 IssmDouble heatcapacity = element->FindParam(MaterialsHeatcapacityEnum);
1653 IssmDouble referencetemperature = element->FindParam(ConstantsReferencetemperatureEnum);
1654
1655 return heatcapacity*(TMeltingPoint(element,pressure)-referencetemperature);
1656}/*}}}*/
1657IssmDouble EnthalpyAnalysis::TMeltingPoint(Element* element,IssmDouble pressure){/*{{{*/
1658
1659 IssmDouble meltingpoint = element->FindParam(MaterialsMeltingpointEnum);
1660 IssmDouble beta = element->FindParam(MaterialsBetaEnum);
1661
1662 return meltingpoint-beta*pressure;
1663}/*}}}*/
1664void EnthalpyAnalysis::UpdateBasalConstraints(FemModel* femmodel){/*{{{*/
1665
1666 /*Update basal dirichlet BCs for enthalpy: */
1667 Vector<IssmDouble>* spc = NULL;
1668 IssmDouble* serial_spc = NULL;
1669
1670 spc=new Vector<IssmDouble>(femmodel->nodes->NumberOfNodes());
1671 /*First create a vector to figure out what elements should be constrained*/
1672 for(Object* & object : femmodel->elements->objects){
1673 Element* element=xDynamicCast<Element*>(object);
1674 GetBasalConstraints(spc,element);
1675 }
1676
1677 /*Assemble and serialize*/
1678 spc->Assemble();
1679 serial_spc=spc->ToMPISerial();
1680 delete spc;
1681
1682 /*Then update basal constraints nodes accordingly*/
1683 for(Object* & object : femmodel->elements->objects){
1684 Element* element=xDynamicCast<Element*>(object);
1685 ApplyBasalConstraints(serial_spc,element);
1686 }
1687
1688 femmodel->UpdateConstraintsx();
1689
1690 /*Delete*/
1691 xDelete<IssmDouble>(serial_spc);
1692}/*}}}*/
1693void EnthalpyAnalysis::UpdateConstraints(FemModel* femmodel){/*{{{*/
1694 SetActiveNodesLSMx(femmodel);
1695}/*}}}*/
Note: See TracBrowser for help on using the repository browser.