source: issm/trunk-jpl/src/c/analyses/EnthalpyAnalysis.cpp@ 24933

Last change on this file since 24933 was 24933, checked in by Mathieu Morlighem, 5 years ago

CHG: cleaning up NDOFx

File size: 70.3 KB
Line 
1#include "./EnthalpyAnalysis.h"
2#include "../toolkits/toolkits.h"
3#include "../classes/classes.h"
4#include "../shared/shared.h"
5#include "../modules/modules.h"
6#include "../solutionsequences/solutionsequences.h"
7#include "../cores/cores.h"
8
9/*Model processing*/
10void EnthalpyAnalysis::CreateConstraints(Constraints* constraints,IoModel* iomodel){/*{{{*/
11
12 /*Intermediary*/
13 int count;
14 int M,N;
15 bool spcpresent = false;
16 int finiteelement;
17 IssmDouble heatcapacity;
18 IssmDouble referencetemperature;
19
20 /*Output*/
21 IssmDouble *spcvector = NULL;
22 IssmDouble *spcvectorstatic = NULL;
23 IssmDouble* times=NULL;
24 IssmDouble* values=NULL;
25 IssmDouble* issurface = NULL;
26
27 /*Fetch parameters: */
28 iomodel->FindConstant(&heatcapacity,"md.materials.heatcapacity");
29 iomodel->FindConstant(&referencetemperature,"md.constants.referencetemperature");
30 iomodel->FindConstant(&finiteelement,"md.thermal.fe");
31
32 /*return if 2d mesh*/
33 if(iomodel->domaintype==Domain2DhorizontalEnum) return;
34
35 /*Fetch data: */
36 iomodel->FetchData(&issurface,&M,&N,"md.mesh.vertexonsurface"); _assert_(N>0); _assert_(M==iomodel->numberofvertices);
37 iomodel->FetchData(&spcvector,&M,&N,"md.thermal.spctemperature");
38 iomodel->FetchData(&spcvectorstatic,&M,&N,"md.thermal.spctemperature");
39
40 /*Specific case for PDD, we want the constaints to be updated by the PDD scheme itself*/
41 bool isdynamic = false;
42 if (iomodel->solution_enum==TransientSolutionEnum){
43 int smb_model;
44 iomodel->FindConstant(&smb_model,"md.smb.model");
45 if(smb_model==SMBpddEnum) isdynamic=true;
46 if(smb_model==SMBd18opddEnum) isdynamic=true;
47 if(smb_model==SMBpddSicopolisEnum) isdynamic=true;
48 }
49
50 /*Convert spcs from temperatures to enthalpy*/
51 _assert_(N>0); _assert_(M>=iomodel->numberofvertices);
52 for(int i=0;i<iomodel->numberofvertices;i++){
53 for(int j=0;j<N;j++){
54 if (isdynamic){
55 if (issurface[i]==1){
56 spcvector[i*N+j] = heatcapacity*(spcvector[i*N+j]-referencetemperature);
57 spcvectorstatic[i*N+j] = NAN;
58 }
59 else{
60 spcvector[i*N+j] = NAN;
61 spcvectorstatic[i*N+j] = heatcapacity*(spcvectorstatic[i*N+j]-referencetemperature);
62 }
63 }
64 else{
65 spcvector[i*N+j] = heatcapacity*(spcvector[i*N+j]-referencetemperature);
66 }
67 }
68 }
69
70 if(isdynamic){
71 IoModelToDynamicConstraintsx(constraints,iomodel,spcvector,iomodel->numberofvertices,1,EnthalpyAnalysisEnum,finiteelement);
72 IoModelToConstraintsx(constraints,iomodel,spcvectorstatic,M,N,EnthalpyAnalysisEnum,finiteelement);
73 }
74 else{
75 IoModelToConstraintsx(constraints,iomodel,spcvector,M,N,EnthalpyAnalysisEnum,finiteelement);
76 }
77
78 /*Free ressources:*/
79 iomodel->DeleteData(spcvector,"md.thermal.spctemperature");
80 iomodel->DeleteData(spcvectorstatic,"md.thermal.spctemperature");
81 iomodel->DeleteData(issurface,"md.mesh.vertexonsurface");
82 xDelete<IssmDouble>(times);
83 xDelete<IssmDouble>(values);
84}/*}}}*/
85void EnthalpyAnalysis::CreateLoads(Loads* loads, IoModel* iomodel){/*{{{*/
86
87 /*No loads */
88}/*}}}*/
89void EnthalpyAnalysis::CreateNodes(Nodes* nodes,IoModel* iomodel,bool isamr){/*{{{*/
90
91 int finiteelement;
92 iomodel->FindConstant(&finiteelement,"md.thermal.fe");
93
94 if(iomodel->domaintype==Domain3DEnum) iomodel->FetchData(2,"md.mesh.vertexonbase","md.mesh.vertexonsurface");
95 ::CreateNodes(nodes,iomodel,EnthalpyAnalysisEnum,finiteelement);
96 iomodel->DeleteData(2,"md.mesh.vertexonbase","md.mesh.vertexonsurface");
97}/*}}}*/
98int EnthalpyAnalysis::DofsPerNode(int** doflist,int domaintype,int approximation){/*{{{*/
99 return 1;
100}/*}}}*/
101void EnthalpyAnalysis::UpdateElements(Elements* elements,Inputs2* inputs2,IoModel* iomodel,int analysis_counter,int analysis_type){/*{{{*/
102
103 bool dakota_analysis,ismovingfront,isenthalpy;
104 int frictionlaw,basalforcing_model,materialstype;
105 int FrictionCoupling;
106
107 /*Now, is the model 3d? otherwise, do nothing: */
108 if(iomodel->domaintype==Domain2DhorizontalEnum)return;
109
110 /*Is enthalpy requested?*/
111 iomodel->FindConstant(&isenthalpy,"md.thermal.isenthalpy");
112 if(!isenthalpy) return;
113
114 /*Fetch data needed: */
115 iomodel->FetchData(3,"md.initialization.temperature","md.initialization.waterfraction","md.initialization.pressure");
116
117 /*Finite element type*/
118 int finiteelement;
119 iomodel->FindConstant(&finiteelement,"md.thermal.fe");
120
121 /*Update elements: */
122 int counter=0;
123 for(int i=0;i<iomodel->numberofelements;i++){
124 if(iomodel->my_elements[i]){
125 Element* element=(Element*)elements->GetObjectByOffset(counter);
126 element->Update(inputs2,i,iomodel,analysis_counter,analysis_type,finiteelement);
127 counter++;
128 }
129 }
130
131 iomodel->FindConstant(&dakota_analysis,"md.qmu.isdakota");
132 iomodel->FindConstant(&ismovingfront,"md.transient.ismovingfront");
133 iomodel->FindConstant(&frictionlaw,"md.friction.law");
134 iomodel->FindConstant(&materialstype,"md.materials.type");
135
136 iomodel->FetchDataToInput(inputs2,elements,"md.geometry.thickness",ThicknessEnum);
137 iomodel->FetchDataToInput(inputs2,elements,"md.geometry.surface",SurfaceEnum);
138 iomodel->FetchDataToInput(inputs2,elements,"md.slr.sealevel",SealevelEnum,0);
139 iomodel->FetchDataToInput(inputs2,elements,"md.geometry.base",BaseEnum);
140 iomodel->FetchDataToInput(inputs2,elements,"md.mask.ice_levelset",MaskIceLevelsetEnum);
141 iomodel->FetchDataToInput(inputs2,elements,"md.mask.ocean_levelset",MaskOceanLevelsetEnum);
142 if(iomodel->domaintype!=Domain2DhorizontalEnum){
143 iomodel->FetchDataToInput(inputs2,elements,"md.mesh.vertexonbase",MeshVertexonbaseEnum);
144 iomodel->FetchDataToInput(inputs2,elements,"md.mesh.vertexonsurface",MeshVertexonsurfaceEnum);
145 }
146 iomodel->FetchDataToInput(inputs2,elements,"md.initialization.pressure",PressureEnum);
147 iomodel->FetchDataToInput(inputs2,elements,"md.initialization.temperature",TemperatureEnum);
148 iomodel->FetchDataToInput(inputs2,elements,"md.initialization.waterfraction",WaterfractionEnum);
149 iomodel->FetchDataToInput(inputs2,elements,"md.initialization.enthalpy",EnthalpyEnum);
150 iomodel->FetchDataToInput(inputs2,elements,"md.initialization.watercolumn",WatercolumnEnum);
151 iomodel->FetchDataToInput(inputs2,elements,"md.basalforcings.groundedice_melting_rate",BasalforcingsGroundediceMeltingRateEnum);
152 iomodel->FetchDataToInput(inputs2,elements,"md.initialization.vx",VxEnum);
153 iomodel->FetchDataToInput(inputs2,elements,"md.initialization.vy",VyEnum);
154 iomodel->FetchDataToInput(inputs2,elements,"md.initialization.vz",VzEnum);
155 InputUpdateFromConstantx(inputs2,elements,0.,VxMeshEnum);
156 InputUpdateFromConstantx(inputs2,elements,0.,VyMeshEnum);
157 InputUpdateFromConstantx(inputs2,elements,0.,VzMeshEnum);
158 if(ismovingfront){
159 iomodel->FetchDataToInput(inputs2,elements,"md.mesh.vertexonbase",MeshVertexonbaseEnum); // required for updating active nodes
160 }
161
162 /*Basal forcings variables*/
163 iomodel->FindConstant(&basalforcing_model,"md.basalforcings.model");
164 switch(basalforcing_model){
165 case MantlePlumeGeothermalFluxEnum:
166 break;
167 default:
168 iomodel->FetchDataToInput(inputs2,elements,"md.basalforcings.geothermalflux",BasalforcingsGeothermalfluxEnum);
169 break;
170 }
171
172 /*Rheology type*/
173 iomodel->FetchDataToInput(inputs2,elements,"md.materials.rheology_B",MaterialsRheologyBEnum);
174 switch(materialstype){
175 case MatenhancediceEnum:
176 iomodel->FetchDataToInput(inputs2,elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
177 iomodel->FetchDataToInput(inputs2,elements,"md.materials.rheology_E",MaterialsRheologyEEnum);
178 break;
179 case MatdamageiceEnum:
180 iomodel->FetchDataToInput(inputs2,elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
181 break;
182 case MatestarEnum:
183 iomodel->FetchDataToInput(inputs2,elements,"md.materials.rheology_Ec",MaterialsRheologyEcEnum);
184 iomodel->FetchDataToInput(inputs2,elements,"md.materials.rheology_Es",MaterialsRheologyEsEnum);
185 break;
186 case MaticeEnum:
187 iomodel->FetchDataToInput(inputs2,elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
188 break;
189 default:
190 _error_("not supported");
191 }
192
193 /*Friction law variables*/
194 switch(frictionlaw){
195 case 1:
196 iomodel->FindConstant(&FrictionCoupling,"md.friction.coupling");
197 iomodel->FetchDataToInput(inputs2,elements,"md.friction.coefficient",FrictionCoefficientEnum);
198 iomodel->FetchDataToInput(inputs2,elements,"md.friction.p",FrictionPEnum);
199 iomodel->FetchDataToInput(inputs2,elements,"md.friction.q",FrictionQEnum);
200 if (FrictionCoupling==3){
201 iomodel->FetchDataToInput(inputs2,elements,"md.friction.effective_pressure",FrictionEffectivePressureEnum);}
202 else if(FrictionCoupling==4){
203 iomodel->FetchDataToInput(inputs2,elements,"md.friction.effective_pressure",EffectivePressureEnum);
204 }
205 break;
206 case 2:
207 iomodel->FetchDataToInput(inputs2,elements,"md.friction.C",FrictionCEnum);
208 iomodel->FetchDataToInput(inputs2,elements,"md.friction.m",FrictionMEnum);
209 break;
210 case 3:
211 iomodel->FindConstant(&FrictionCoupling,"md.friction.coupling");
212 iomodel->FetchDataToInput(inputs2,elements,"md.friction.C",FrictionCEnum);
213 iomodel->FetchDataToInput(inputs2,elements,"md.friction.As",FrictionAsEnum);
214 iomodel->FetchDataToInput(inputs2,elements,"md.friction.q",FrictionQEnum);
215 if (FrictionCoupling==3){
216 iomodel->FetchDataToInput(inputs2,elements,"md.friction.effective_pressure",FrictionEffectivePressureEnum);}
217 else if(FrictionCoupling==4){
218 iomodel->FetchDataToInput(inputs2,elements,"md.friction.effective_pressure",EffectivePressureEnum);
219 }
220 break;
221 case 4:
222 iomodel->FetchDataToInput(inputs2,elements,"md.friction.coefficient",FrictionCoefficientEnum);
223 iomodel->FetchDataToInput(inputs2,elements,"md.friction.p",FrictionPEnum);
224 iomodel->FetchDataToInput(inputs2,elements,"md.friction.q",FrictionQEnum);
225 iomodel->FetchDataToInput(inputs2,elements,"md.initialization.pressure",PressureEnum);
226 iomodel->FetchDataToInput(inputs2,elements,"md.initialization.temperature",TemperatureEnum);
227 iomodel->FindConstant(&FrictionCoupling,"md.friction.coupling");
228 break;
229 case 5:
230 iomodel->FetchDataToInput(inputs2,elements,"md.friction.coefficient",FrictionCoefficientEnum);
231 iomodel->FetchDataToInput(inputs2,elements,"md.friction.p",FrictionPEnum);
232 iomodel->FetchDataToInput(inputs2,elements,"md.friction.q",FrictionQEnum);
233 iomodel->FetchDataToInput(inputs2,elements,"md.friction.water_layer",FrictionWaterLayerEnum);
234 break;
235 case 6:
236 iomodel->FetchDataToInput(inputs2,elements,"md.friction.C",FrictionCEnum);
237 iomodel->FetchDataToInput(inputs2,elements,"md.friction.m",FrictionMEnum);
238 iomodel->FetchDataToInput(inputs2,elements,"md.initialization.pressure",PressureEnum);
239 iomodel->FetchDataToInput(inputs2,elements,"md.initialization.temperature",TemperatureEnum);
240 break;
241 case 7:
242 iomodel->FindConstant(&FrictionCoupling,"md.friction.coupling");
243 iomodel->FetchDataToInput(inputs2,elements,"md.friction.coefficient",FrictionCoefficientEnum);
244 iomodel->FetchDataToInput(inputs2,elements,"md.friction.coefficientcoulomb",FrictionCoefficientcoulombEnum);
245 iomodel->FetchDataToInput(inputs2,elements,"md.friction.p",FrictionPEnum);
246 iomodel->FetchDataToInput(inputs2,elements,"md.friction.q",FrictionQEnum);
247 if (FrictionCoupling==3){
248 iomodel->FetchDataToInput(inputs2,elements,"md.friction.effective_pressure",FrictionEffectivePressureEnum);}
249 else if(FrictionCoupling==4){
250 iomodel->FetchDataToInput(inputs2,elements,"md.friction.effective_pressure",EffectivePressureEnum);
251 }
252 break;
253 case 9:
254 iomodel->FetchDataToInput(inputs2,elements,"md.friction.coefficient",FrictionCoefficientEnum);
255 iomodel->FetchDataToInput(inputs2,elements,"md.friction.pressure_adjusted_temperature",FrictionPressureAdjustedTemperatureEnum);
256 InputUpdateFromConstantx(inputs2,elements,1.,FrictionPEnum);
257 InputUpdateFromConstantx(inputs2,elements,1.,FrictionQEnum);
258 break;
259 default:
260 _error_("friction law not supported");
261 }
262
263 /*Free data: */
264 iomodel->DeleteData(3,"md.initialization.temperature","md.initialization.waterfraction","md.initialization.pressure");
265
266}/*}}}*/
267void EnthalpyAnalysis::UpdateParameters(Parameters* parameters,IoModel* iomodel,int solution_enum,int analysis_enum){/*{{{*/
268
269 int numoutputs;
270 char** requestedoutputs = NULL;
271
272 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.stabilization",ThermalStabilizationEnum));
273 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.maxiter",ThermalMaxiterEnum));
274 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.reltol",ThermalReltolEnum));
275 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.isenthalpy",ThermalIsenthalpyEnum));
276 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.isdynamicbasalspc",ThermalIsdynamicbasalspcEnum));
277 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.isdrainicecolumn",ThermalIsdrainicecolumnEnum));
278 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.watercolumn_upperlimit",ThermalWatercolumnUpperlimitEnum));
279 parameters->AddObject(iomodel->CopyConstantObject("md.friction.law",FrictionLawEnum));
280
281 iomodel->FindConstant(&requestedoutputs,&numoutputs,"md.thermal.requested_outputs");
282 parameters->AddObject(new IntParam(ThermalNumRequestedOutputsEnum,numoutputs));
283 if(numoutputs)parameters->AddObject(new StringArrayParam(ThermalRequestedOutputsEnum,requestedoutputs,numoutputs));
284 iomodel->DeleteData(&requestedoutputs,numoutputs,"md.thermal.requested_outputs");
285
286 /*Deal with friction parameters*/
287 int frictionlaw;
288 iomodel->FindConstant(&frictionlaw,"md.friction.law");
289 if(frictionlaw==6){
290 parameters->AddObject(iomodel->CopyConstantObject("md.friction.gamma",FrictionGammaEnum));
291 }
292 if(frictionlaw==4){
293 parameters->AddObject(iomodel->CopyConstantObject("md.friction.gamma",FrictionGammaEnum));
294 parameters->AddObject(iomodel->CopyConstantObject("md.friction.coupling",FrictionCouplingEnum));
295 parameters->AddObject(iomodel->CopyConstantObject("md.friction.effective_pressure_limit",FrictionEffectivePressureLimitEnum));
296 }
297 if(frictionlaw==1 || frictionlaw==3 || frictionlaw==7){
298 parameters->AddObject(iomodel->CopyConstantObject("md.friction.coupling",FrictionCouplingEnum));
299 parameters->AddObject(iomodel->CopyConstantObject("md.friction.effective_pressure_limit",FrictionEffectivePressureLimitEnum));
300 }
301 if(frictionlaw==9){
302 parameters->AddObject(iomodel->CopyConstantObject("md.friction.gamma",FrictionGammaEnum));
303 parameters->AddObject(iomodel->CopyConstantObject("md.friction.effective_pressure_limit",FrictionEffectivePressureLimitEnum));
304 parameters->AddObject(new IntParam(FrictionCouplingEnum,0));
305 }
306}/*}}}*/
307
308/*Finite Element Analysis*/
309void EnthalpyAnalysis::ApplyBasalConstraints(IssmDouble* serial_spc,Element* element){/*{{{*/
310
311 /* Do not check if ice in element, this may lead to inconsistencies between cpu partitions */
312 /* Only update constraints at the base. */
313 if(!(element->IsOnBase())) return;
314
315 /*Intermediary*/
316 bool isdynamicbasalspc;
317 int numindices;
318 int *indices = NULL;
319 Node* node = NULL;
320 IssmDouble pressure;
321
322 /*Check wether dynamic basal boundary conditions are activated */
323 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
324 if(!isdynamicbasalspc) return;
325
326 /*Get parameters and inputs: */
327 Input2* pressure_input = element->GetInput2(PressureEnum); _assert_(pressure_input);
328
329 /*Fetch indices of basal & surface nodes for this finite element*/
330 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
331 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
332
333 GaussPenta* gauss=new GaussPenta();
334 for(int i=0;i<numindices;i++){
335 gauss->GaussNode(element->GetElementType(),indices[i]);
336
337 pressure_input->GetInputValue(&pressure,gauss);
338
339 /*apply or release spc*/
340 node=element->GetNode(indices[i]);
341 if(!node->IsActive()) continue;
342 if(serial_spc[node->Sid()]==1.){
343 pressure_input->GetInputValue(&pressure, gauss);
344 node->ApplyConstraint(0,PureIceEnthalpy(element,pressure));
345 }
346 else {
347 node->DofInFSet(0);
348 }
349 }
350
351 /*Free ressources:*/
352 xDelete<int>(indices);
353 delete gauss;
354}/*}}}*/
355void EnthalpyAnalysis::ComputeBasalMeltingrate(FemModel* femmodel){/*{{{*/
356 /*Compute basal melting rates: */
357 for(int i=0;i<femmodel->elements->Size();i++){
358 Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
359 ComputeBasalMeltingrate(element);
360 }
361
362 /*extrude inputs*/
363 femmodel->parameters->SetParam(BasalforcingsGroundediceMeltingRateEnum,InputToExtrudeEnum);
364 extrudefrombase_core(femmodel);
365}/*}}}*/
366void EnthalpyAnalysis::ComputeBasalMeltingrate(Element* element){/*{{{*/
367 /*Calculate the basal melt rates of the enthalpy model after Aschwanden 2012*/
368 /* melting rate is positive when melting, negative when refreezing*/
369
370 /* Check if ice in element */
371 if(!element->IsIceInElement()) return;
372
373 /* Only compute melt rates at the base of grounded ice*/
374 if(!element->IsOnBase() || element->IsFloating()) return;
375
376 /* Intermediaries */
377 bool converged;
378 const int dim=3;
379 int i,is,state;
380 int nodedown,nodeup,numnodes,numsegments;
381 int enthalpy_enum;
382 IssmDouble vec_heatflux[dim],normal_base[dim],d1enthalpy[dim],d1pressure[dim];
383 IssmDouble basalfriction,alpha2,geothermalflux,heatflux;
384 IssmDouble dt,yts;
385 IssmDouble melting_overshoot,lambda;
386 IssmDouble vx,vy,vz;
387 IssmDouble *xyz_list = NULL;
388 IssmDouble *xyz_list_base = NULL;
389 int *pairindices = NULL;
390
391 /*Fetch parameters*/
392 element->GetVerticesCoordinates(&xyz_list);
393 element->GetVerticesCoordinatesBase(&xyz_list_base);
394 element->GetInputValue(&converged,ConvergedEnum);
395 element->FindParam(&dt,TimesteppingTimeStepEnum);
396 element->FindParam(&yts, ConstantsYtsEnum);
397
398 if(dt==0. && !converged) enthalpy_enum=EnthalpyPicardEnum;
399 else enthalpy_enum=EnthalpyEnum;
400
401 IssmDouble latentheat = element->FindParam(MaterialsLatentheatEnum);
402 IssmDouble rho_ice = element->FindParam(MaterialsRhoIceEnum);
403 IssmDouble rho_water = element->FindParam(MaterialsRhoFreshwaterEnum);
404 IssmDouble beta = element->FindParam(MaterialsBetaEnum);
405 IssmDouble kappa = EnthalpyDiffusionParameterVolume(element,enthalpy_enum); _assert_(kappa>=0.);
406 IssmDouble kappa_mix;
407
408 /*retrieve inputs*/
409 Input2* enthalpy_input = element->GetInput2(enthalpy_enum); _assert_(enthalpy_input);
410 Input2* pressure_input = element->GetInput2(PressureEnum); _assert_(pressure_input);
411 Input2* geothermalflux_input = element->GetInput2(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input);
412 Input2* vx_input = element->GetInput2(VxEnum); _assert_(vx_input);
413 Input2* vy_input = element->GetInput2(VyEnum); _assert_(vy_input);
414 Input2* vz_input = element->GetInput2(VzEnum); _assert_(vz_input);
415
416 /*Build friction element, needed later: */
417 Friction* friction=new Friction(element,dim);
418
419 /******** MELTING RATES ************************************//*{{{*/
420 element->NormalBase(&normal_base[0],xyz_list_base);
421 element->VerticalSegmentIndicesBase(&pairindices,&numsegments);
422 IssmDouble* meltingrate_enthalpy = xNew<IssmDouble>(numsegments);
423 IssmDouble* heating = xNew<IssmDouble>(numsegments);
424
425 numnodes=element->GetNumberOfNodes();
426 IssmDouble* enthalpies = xNew<IssmDouble>(numnodes);
427 IssmDouble* pressures = xNew<IssmDouble>(numnodes);
428 IssmDouble* watercolumns = xNew<IssmDouble>(numnodes);
429 IssmDouble* basalmeltingrates = xNew<IssmDouble>(numnodes);
430 element->GetInputListOnNodes(enthalpies,enthalpy_enum);
431 element->GetInputListOnNodes(pressures,PressureEnum);
432 element->GetInputListOnNodes(watercolumns,WatercolumnEnum);
433 element->GetInputListOnNodes(basalmeltingrates,BasalforcingsGroundediceMeltingRateEnum);
434
435 IssmDouble watercolumnupperlimit = element->FindParam(ThermalWatercolumnUpperlimitEnum);
436
437 Gauss* gauss=element->NewGauss();
438 for(is=0;is<numsegments;is++){
439 nodedown = pairindices[is*2+0];
440 nodeup = pairindices[is*2+1];
441 gauss->GaussNode(element->GetElementType(),nodedown);
442
443 state=GetThermalBasalCondition(element, enthalpies[nodedown], enthalpies[nodeup], pressures[nodedown], pressures[nodeup], watercolumns[nodedown], basalmeltingrates[nodedown]);
444 switch (state) {
445 case 0:
446 // cold, dry base: apply basal surface forcing
447 for(i=0;i<3;i++) vec_heatflux[i]=0.;
448 break;
449 case 1: case 2: case 3:
450 // case 1 : cold, wet base: keep at pressure melting point
451 // case 2: temperate, thin refreezing base: release spc
452 // case 3: temperate, thin melting base: set spc
453 enthalpy_input->GetInputDerivativeValue(&d1enthalpy[0],xyz_list,gauss);
454 for(i=0;i<3;i++) vec_heatflux[i]=-kappa*d1enthalpy[i];
455 break;
456 case 4:
457 // temperate, thick melting base: set grad H*n=0
458 kappa_mix=GetWetIceConductivity(element, enthalpies[nodedown], pressures[nodedown]);
459 pressure_input->GetInputDerivativeValue(&d1pressure[0],xyz_list,gauss);
460 for(i=0;i<3;i++) vec_heatflux[i]=kappa_mix*beta*d1pressure[i];
461 break;
462 default:
463 _printf0_(" unknown thermal basal state found!");
464 }
465 if(state==0) meltingrate_enthalpy[is]=0.;
466 else{
467 /*heat flux along normal*/
468 heatflux=0.;
469 for(i=0;i<3;i++) heatflux+=(vec_heatflux[i])*normal_base[i];
470
471 /*basal friction*/
472 friction->GetAlpha2(&alpha2,gauss);
473 vx_input->GetInputValue(&vx,gauss); vy_input->GetInputValue(&vy,gauss); vz_input->GetInputValue(&vz,gauss);
474 basalfriction=alpha2*(vx*vx + vy*vy + vz*vz);
475 geothermalflux_input->GetInputValue(&geothermalflux,gauss);
476 /* -Mb= Fb-(q-q_geo)/((1-w)*L*rho), and (1-w)*rho=rho_ice, cf Aschwanden 2012, eqs.1, 2, 66*/
477 heating[is]=(heatflux+basalfriction+geothermalflux);
478 meltingrate_enthalpy[is]=heating[is]/(latentheat*rho_ice); // m/s water equivalent
479 }
480 }/*}}}*/
481
482 /******** UPDATE MELTINGRATES AND WATERCOLUMN **************//*{{{*/
483 for(is=0;is<numsegments;is++){
484 nodedown = pairindices[is*2+0];
485 nodeup = pairindices[is*2+1];
486 if(dt!=0.){
487 if(watercolumns[nodedown]+meltingrate_enthalpy[is]*dt<0.){ // prevent too much freeze on
488 lambda = -watercolumns[nodedown]/(dt*meltingrate_enthalpy[is]); _assert_(lambda>=0.); _assert_(lambda<1.);
489 watercolumns[nodedown]=0.;
490 basalmeltingrates[nodedown]=lambda*meltingrate_enthalpy[is]; // restrict freeze on only to size of watercolumn
491 enthalpies[nodedown]+=(1.-lambda)*dt/yts*meltingrate_enthalpy[is]*latentheat*rho_ice; // use rest of energy to cool down base: dE=L*m, m=(1-lambda)*meltingrate*rho_ice
492 }
493 else{
494 basalmeltingrates[nodedown]=meltingrate_enthalpy[is];
495 watercolumns[nodedown]+=dt*meltingrate_enthalpy[is];
496 }
497 if(watercolumns[nodedown]>watercolumnupperlimit) watercolumns[nodedown]=watercolumnupperlimit;
498 }
499 else{
500 basalmeltingrates[nodedown]=meltingrate_enthalpy[is];
501 if(watercolumns[nodedown]+meltingrate_enthalpy[is]<0.)
502 watercolumns[nodedown]=0.;
503 else
504 watercolumns[nodedown]+=meltingrate_enthalpy[is];
505 }
506 basalmeltingrates[nodedown]*=rho_water/rho_ice; // convert meltingrate from water to ice equivalent
507 _assert_(watercolumns[nodedown]>=0.);
508 }/*}}}*/
509
510 /*feed updated variables back into model*/
511 int finite_element = element->GetElementType(); if(finite_element==P1Enum) finite_element = P1DGEnum;
512 if(dt!=0.){
513 element->AddInput2(enthalpy_enum,enthalpies,finite_element);
514 element->AddInput2(WatercolumnEnum,watercolumns,finite_element);
515 }
516 element->AddInput2(BasalforcingsGroundediceMeltingRateEnum,basalmeltingrates,P1DGEnum);
517
518 /*Clean up and return*/
519 delete gauss;
520 delete friction;
521 xDelete<int>(pairindices);
522 xDelete<IssmDouble>(enthalpies);
523 xDelete<IssmDouble>(pressures);
524 xDelete<IssmDouble>(watercolumns);
525 xDelete<IssmDouble>(basalmeltingrates);
526 xDelete<IssmDouble>(meltingrate_enthalpy);
527 xDelete<IssmDouble>(heating);
528 xDelete<IssmDouble>(xyz_list);
529 xDelete<IssmDouble>(xyz_list_base);
530}/*}}}*/
531void EnthalpyAnalysis::Core(FemModel* femmodel){/*{{{*/
532
533 IssmDouble dt;
534 bool isdynamicbasalspc;
535
536 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
537 femmodel->parameters->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
538
539 if(VerboseSolution()) _printf0_(" computing enthalpy\n");
540 femmodel->SetCurrentConfiguration(EnthalpyAnalysisEnum);
541 if((dt>0.) && isdynamicbasalspc) UpdateBasalConstraints(femmodel);
542 solutionsequence_thermal_nonlinear(femmodel);
543
544 /*transfer enthalpy to enthalpy picard for the next step: */
545 InputDuplicatex(femmodel,EnthalpyEnum,EnthalpyPicardEnum);
546
547 PostProcessing(femmodel);
548
549}/*}}}*/
550ElementVector* EnthalpyAnalysis::CreateDVector(Element* element){/*{{{*/
551 /*Default, return NULL*/
552 return NULL;
553}/*}}}*/
554ElementMatrix* EnthalpyAnalysis::CreateJacobianMatrix(Element* element){/*{{{*/
555_error_("Not implemented");
556}/*}}}*/
557ElementMatrix* EnthalpyAnalysis::CreateKMatrix(Element* element){/*{{{*/
558
559 /* Check if ice in element */
560 if(!element->IsIceInElement()) return NULL;
561
562 /*compute all stiffness matrices for this element*/
563 ElementMatrix* Ke1=CreateKMatrixVolume(element);
564 ElementMatrix* Ke2=CreateKMatrixShelf(element);
565 ElementMatrix* Ke =new ElementMatrix(Ke1,Ke2);
566
567 /*clean-up and return*/
568 delete Ke1;
569 delete Ke2;
570 return Ke;
571}/*}}}*/
572ElementMatrix* EnthalpyAnalysis::CreateKMatrixVolume(Element* element){/*{{{*/
573
574 /* Check if ice in element */
575 if(!element->IsIceInElement()) return NULL;
576
577 /*Intermediaries */
578 int stabilization;
579 IssmDouble Jdet,dt,u,v,w,um,vm,wm,vel;
580 IssmDouble h,hx,hy,hz,vx,vy,vz;
581 IssmDouble tau_parameter,diameter;
582 IssmDouble tau_parameter_anisotropic[2],tau_parameter_hor,tau_parameter_ver;
583 IssmDouble D_scalar;
584 IssmDouble* xyz_list = NULL;
585
586 /*Fetch number of nodes and dof for this finite element*/
587 int numnodes = element->GetNumberOfNodes();
588
589 /*Initialize Element vector and other vectors*/
590 ElementMatrix* Ke = element->NewElementMatrix();
591 IssmDouble* basis = xNew<IssmDouble>(numnodes);
592 IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
593 IssmDouble K[3][3];
594
595 /*Retrieve all inputs and parameters*/
596 element->GetVerticesCoordinates(&xyz_list);
597 element->FindParam(&dt,TimesteppingTimeStepEnum);
598 element->FindParam(&stabilization,ThermalStabilizationEnum);
599 IssmDouble rho_water = element->FindParam(MaterialsRhoSeawaterEnum);
600 IssmDouble rho_ice = element->FindParam(MaterialsRhoIceEnum);
601 IssmDouble gravity = element->FindParam(ConstantsGEnum);
602 IssmDouble heatcapacity = element->FindParam(MaterialsHeatcapacityEnum);
603 IssmDouble thermalconductivity = element->FindParam(MaterialsThermalconductivityEnum);
604 Input2* vx_input = element->GetInput2(VxEnum); _assert_(vx_input);
605 Input2* vy_input = element->GetInput2(VyEnum); _assert_(vy_input);
606 Input2* vz_input = element->GetInput2(VzEnum); _assert_(vz_input);
607 Input2* vxm_input = element->GetInput2(VxMeshEnum); _assert_(vxm_input);
608 Input2* vym_input = element->GetInput2(VyMeshEnum); _assert_(vym_input);
609 Input2* vzm_input = element->GetInput2(VzMeshEnum); _assert_(vzm_input);
610
611 /*Enthalpy diffusion parameter*/
612 IssmDouble kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
613
614 /* Start looping on the number of gaussian points: */
615 Gauss* gauss=element->NewGauss(4);
616 for(int ig=gauss->begin();ig<gauss->end();ig++){
617 gauss->GaussPoint(ig);
618
619 element->JacobianDeterminant(&Jdet,xyz_list,gauss);
620 element->NodalFunctions(basis,gauss);
621 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
622
623 D_scalar=gauss->weight*Jdet;
624 if(dt!=0.) D_scalar=D_scalar*dt;
625
626 /*Conduction: */
627 for(int i=0;i<numnodes;i++){
628 for(int j=0;j<numnodes;j++){
629 Ke->values[i*numnodes+j] += D_scalar*kappa/rho_ice*(
630 dbasis[0*numnodes+j]*dbasis[0*numnodes+i] + dbasis[1*numnodes+j]*dbasis[1*numnodes+i] + dbasis[2*numnodes+j]*dbasis[2*numnodes+i]
631 );
632 }
633 }
634
635 /*Advection: */
636 vx_input->GetInputValue(&u,gauss); vxm_input->GetInputValue(&um,gauss); vx=u-um;
637 vy_input->GetInputValue(&v,gauss); vym_input->GetInputValue(&vm,gauss); vy=v-vm;
638 vz_input->GetInputValue(&w,gauss); vzm_input->GetInputValue(&wm,gauss); vz=w-wm;
639 for(int i=0;i<numnodes;i++){
640 for(int j=0;j<numnodes;j++){
641 Ke->values[i*numnodes+j] += D_scalar*(
642 vx*dbasis[0*numnodes+j]*basis[i] + vy*dbasis[1*numnodes+j]*basis[i] +vz*dbasis[2*numnodes+j]*basis[i]
643 );
644 }
645 }
646
647 /*Transient: */
648 if(dt!=0.){
649 D_scalar=gauss->weight*Jdet;
650 for(int i=0;i<numnodes;i++){
651 for(int j=0;j<numnodes;j++){
652 Ke->values[i*numnodes+j] += D_scalar*basis[j]*basis[i];
653 }
654 }
655 D_scalar=D_scalar*dt;
656 }
657
658 /*Artificial diffusivity*/
659 if(stabilization==1){
660 element->ElementSizes(&hx,&hy,&hz);
661 vel=sqrt(vx*vx + vy*vy + vz*vz)+1.e-14;
662 h=sqrt( pow(hx*vx/vel,2) + pow(hy*vy/vel,2) + pow(hz*vz/vel,2));
663 K[0][0]=h/(2.*vel)*fabs(vx*vx); K[0][1]=h/(2.*vel)*fabs(vx*vy); K[0][2]=h/(2.*vel)*fabs(vx*vz);
664 K[1][0]=h/(2.*vel)*fabs(vy*vx); K[1][1]=h/(2.*vel)*fabs(vy*vy); K[1][2]=h/(2.*vel)*fabs(vy*vz);
665 K[2][0]=h/(2.*vel)*fabs(vz*vx); K[2][1]=h/(2.*vel)*fabs(vz*vy); K[2][2]=h/(2.*vel)*fabs(vz*vz);
666 for(int i=0;i<3;i++) for(int j=0;j<3;j++) K[i][j] = D_scalar*K[i][j];
667
668 for(int i=0;i<numnodes;i++){
669 for(int j=0;j<numnodes;j++){
670 Ke->values[i*numnodes+j] += (
671 dbasis[0*numnodes+i] *(K[0][0]*dbasis[0*numnodes+j] + K[0][1]*dbasis[1*numnodes+j]+ K[0][2]*dbasis[2*numnodes+j]) +
672 dbasis[1*numnodes+i] *(K[1][0]*dbasis[0*numnodes+j] + K[1][1]*dbasis[1*numnodes+j]+ K[1][2]*dbasis[2*numnodes+j]) +
673 dbasis[2*numnodes+i] *(K[2][0]*dbasis[0*numnodes+j] + K[2][1]*dbasis[1*numnodes+j]+ K[2][2]*dbasis[2*numnodes+j])
674 );
675 }
676 }
677 }
678 /*SUPG*/
679 else if(stabilization==2){
680 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
681 diameter=element->MinEdgeLength(xyz_list);
682 tau_parameter=element->StabilizationParameter(u-um,v-vm,w-wm,diameter,kappa/rho_ice);
683 for(int i=0;i<numnodes;i++){
684 for(int j=0;j<numnodes;j++){
685 Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*
686 ((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i])*
687 ((u-um)*dbasis[0*numnodes+j]+(v-vm)*dbasis[1*numnodes+j]+(w-wm)*dbasis[2*numnodes+j]);
688 }
689 }
690 if(dt!=0.){
691 D_scalar=gauss->weight*Jdet;
692 for(int i=0;i<numnodes;i++){
693 for(int j=0;j<numnodes;j++){
694 Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*basis[j]*((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i]);
695 }
696 }
697 }
698 }
699 /*anisotropic SUPG*/
700 else if(stabilization==3){
701 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
702 element->ElementSizes(&hx,&hy,&hz);
703 element->StabilizationParameterAnisotropic(&tau_parameter_anisotropic[0],u-um,v-vm,w-wm,hx,hy,hz,kappa/rho_ice);
704 tau_parameter_hor=tau_parameter_anisotropic[0];
705 tau_parameter_ver=tau_parameter_anisotropic[1];
706 for(int i=0;i<numnodes;i++){
707 for(int j=0;j<numnodes;j++){
708 Ke->values[i*numnodes+j]+=D_scalar*
709 (sqrt(tau_parameter_hor)*(u-um)*dbasis[0*numnodes+i]+sqrt(tau_parameter_hor)*(v-vm)*dbasis[1*numnodes+i]+sqrt(tau_parameter_ver)*(w-wm)*dbasis[2*numnodes+i])*
710 (sqrt(tau_parameter_hor)*(u-um)*dbasis[0*numnodes+j]+sqrt(tau_parameter_hor)*(v-vm)*dbasis[1*numnodes+j]+sqrt(tau_parameter_ver)*(w-wm)*dbasis[2*numnodes+j]);
711 }
712 }
713 }
714 }
715
716 /*Clean up and return*/
717 xDelete<IssmDouble>(xyz_list);
718 xDelete<IssmDouble>(basis);
719 xDelete<IssmDouble>(dbasis);
720 delete gauss;
721 return Ke;
722}/*}}}*/
723ElementMatrix* EnthalpyAnalysis::CreateKMatrixShelf(Element* element){/*{{{*/
724
725 /* Check if ice in element */
726 if(!element->IsIceInElement()) return NULL;
727
728 /*Initialize Element matrix and return if necessary*/
729 if(!element->IsOnBase() || !element->IsFloating()) return NULL;
730
731 /*Intermediaries*/
732 IssmDouble dt,Jdet,D;
733 IssmDouble *xyz_list_base = NULL;
734
735 /*Fetch number of nodes for this finite element*/
736 int numnodes = element->GetNumberOfNodes();
737
738 /*Initialize vectors*/
739 ElementMatrix* Ke = element->NewElementMatrix();
740 IssmDouble* basis = xNew<IssmDouble>(numnodes);
741
742 /*Retrieve all inputs and parameters*/
743 element->GetVerticesCoordinatesBase(&xyz_list_base);
744 element->FindParam(&dt,TimesteppingTimeStepEnum);
745 IssmDouble gravity = element->FindParam(ConstantsGEnum);
746 IssmDouble rho_water = element->FindParam(MaterialsRhoSeawaterEnum);
747 IssmDouble rho_ice = element->FindParam(MaterialsRhoIceEnum);
748 IssmDouble heatcapacity = element->FindParam(MaterialsHeatcapacityEnum);
749 IssmDouble mixed_layer_capacity= element->FindParam(MaterialsMixedLayerCapacityEnum);
750 IssmDouble thermal_exchange_vel= element->FindParam(MaterialsThermalExchangeVelocityEnum);
751
752 /* Start looping on the number of gaussian points: */
753 Gauss* gauss=element->NewGaussBase(4);
754 for(int ig=gauss->begin();ig<gauss->end();ig++){
755 gauss->GaussPoint(ig);
756
757 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
758 element->NodalFunctions(basis,gauss);
759
760 D=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel/(heatcapacity*rho_ice);
761 if(reCast<bool,IssmDouble>(dt)) D=dt*D;
762 for(int i=0;i<numnodes;i++) for(int j=0;j<numnodes;j++) Ke->values[i*numnodes+j] += D*basis[i]*basis[j];
763 }
764
765 /*Clean up and return*/
766 delete gauss;
767 xDelete<IssmDouble>(basis);
768 xDelete<IssmDouble>(xyz_list_base);
769 return Ke;
770}/*}}}*/
771ElementVector* EnthalpyAnalysis::CreatePVector(Element* element){/*{{{*/
772
773 /* Check if ice in element */
774 if(!element->IsIceInElement()) return NULL;
775
776 /*compute all load vectors for this element*/
777 ElementVector* pe1=CreatePVectorVolume(element);
778 ElementVector* pe2=CreatePVectorSheet(element);
779 ElementVector* pe3=CreatePVectorShelf(element);
780 ElementVector* pe =new ElementVector(pe1,pe2,pe3);
781
782 /*clean-up and return*/
783 delete pe1;
784 delete pe2;
785 delete pe3;
786 return pe;
787}/*}}}*/
788ElementVector* EnthalpyAnalysis::CreatePVectorVolume(Element* element){/*{{{*/
789
790 /* Check if ice in element */
791 if(!element->IsIceInElement()) return NULL;
792
793 /*Intermediaries*/
794 int i, stabilization;
795 IssmDouble Jdet,phi,dt;
796 IssmDouble enthalpy, Hpmp;
797 IssmDouble enthalpypicard, d1enthalpypicard[3];
798 IssmDouble pressure, d1pressure[3], d2pressure;
799 IssmDouble waterfractionpicard;
800 IssmDouble kappa,tau_parameter,diameter,hx,hy,hz,kappa_w;
801 IssmDouble tau_parameter_anisotropic[2],tau_parameter_hor,tau_parameter_ver;
802 IssmDouble u,v,w;
803 IssmDouble scalar_def, scalar_sens ,scalar_transient;
804 IssmDouble* xyz_list = NULL;
805 IssmDouble d1H_d1P, d1P2;
806
807 /*Fetch number of nodes and dof for this finite element*/
808 int numnodes = element->GetNumberOfNodes();
809 int numvertices = element->GetNumberOfVertices();
810
811 /*Initialize Element vector*/
812 ElementVector* pe = element->NewElementVector();
813 IssmDouble* basis = xNew<IssmDouble>(numnodes);
814 IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
815
816 /*Retrieve all inputs and parameters*/
817 element->GetVerticesCoordinates(&xyz_list);
818 IssmDouble rho_ice = element->FindParam(MaterialsRhoIceEnum);
819 IssmDouble heatcapacity = element->FindParam(MaterialsHeatcapacityEnum);
820 IssmDouble thermalconductivity = element->FindParam(MaterialsThermalconductivityEnum);
821 IssmDouble temperateiceconductivity = element->FindParam(MaterialsTemperateiceconductivityEnum);
822 IssmDouble beta = element->FindParam(MaterialsBetaEnum);
823 IssmDouble latentheat = element->FindParam(MaterialsLatentheatEnum);
824 element->FindParam(&dt,TimesteppingTimeStepEnum);
825 element->FindParam(&stabilization,ThermalStabilizationEnum);
826 Input2* vx_input=element->GetInput2(VxEnum); _assert_(vx_input);
827 Input2* vy_input=element->GetInput2(VyEnum); _assert_(vy_input);
828 Input2* vz_input=element->GetInput2(VzEnum); _assert_(vz_input);
829 Input2* enthalpypicard_input=element->GetInput2(EnthalpyPicardEnum); _assert_(enthalpypicard_input);
830 Input2* pressure_input=element->GetInput2(PressureEnum); _assert_(pressure_input);
831 Input2* enthalpy_input=NULL;
832 if(dt>0.){
833 enthalpy_input = element->GetInput2(EnthalpyEnum); _assert_(enthalpy_input);
834 }
835
836 /* Start looping on the number of gaussian points: */
837 Gauss* gauss=element->NewGauss(4);
838 for(int ig=gauss->begin();ig<gauss->end();ig++){
839 gauss->GaussPoint(ig);
840
841 element->JacobianDeterminant(&Jdet,xyz_list,gauss);
842 element->NodalFunctions(basis,gauss);
843
844 /*viscous dissipation*/
845 element->ViscousHeating(&phi,xyz_list,gauss,vx_input,vy_input,vz_input);
846
847 scalar_def=phi/rho_ice*Jdet*gauss->weight;
848 if(dt!=0.) scalar_def=scalar_def*dt;
849
850 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_def*basis[i];
851
852 /*sensible heat flux in temperate ice*/
853 enthalpypicard_input->GetInputValue(&enthalpypicard,gauss);
854 pressure_input->GetInputValue(&pressure,gauss);
855 Hpmp=this->PureIceEnthalpy(element, pressure);
856
857 if(enthalpypicard>=Hpmp){
858 enthalpypicard_input->GetInputDerivativeValue(&d1enthalpypicard[0],xyz_list,gauss);
859 pressure_input->GetInputDerivativeValue(&d1pressure[0],xyz_list,gauss);
860 d2pressure=0.; // for linear elements, 2nd derivative is zero
861
862 d1H_d1P=0.;
863 for(i=0;i<3;i++) d1H_d1P+=d1enthalpypicard[i]*d1pressure[i];
864 d1P2=0.;
865 for(i=0;i<3;i++) d1P2+=pow(d1pressure[i],2.);
866
867 scalar_sens=-beta*((temperateiceconductivity - thermalconductivity)/latentheat*(d1H_d1P + beta*heatcapacity*d1P2))/rho_ice;
868 if(dt!=0.) scalar_sens=scalar_sens*dt;
869 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_sens*basis[i];
870 }
871
872 /* Build transient now */
873 if(dt>0.){
874 enthalpy_input->GetInputValue(&enthalpy, gauss);
875 scalar_transient=enthalpy*Jdet*gauss->weight;
876 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_transient*basis[i];
877 }
878
879 /* SUPG */
880 if(stabilization==2){
881 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
882 diameter=element->MinEdgeLength(xyz_list);
883 kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
884 vx_input->GetInputValue(&u,gauss);
885 vy_input->GetInputValue(&v,gauss);
886 vz_input->GetInputValue(&w,gauss);
887 tau_parameter=element->StabilizationParameter(u,v,w,diameter,kappa/rho_ice);
888
889 for(i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_def*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]);
890
891 if(dt!=0.){
892 for(i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_transient*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]);
893 }
894 }
895 /* anisotropic SUPG */
896 else if(stabilization==3){
897 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
898 element->ElementSizes(&hx,&hy,&hz);
899 kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
900 vx_input->GetInputValue(&u,gauss);
901 vy_input->GetInputValue(&v,gauss);
902 vz_input->GetInputValue(&w,gauss);
903 element->StabilizationParameterAnisotropic(&tau_parameter_anisotropic[0],u,v,w,hx,hy,hz,kappa/rho_ice);
904 tau_parameter_hor=tau_parameter_anisotropic[0];
905 tau_parameter_ver=tau_parameter_anisotropic[1];
906
907 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_def*(tau_parameter_hor*u*dbasis[0*numnodes+i]+tau_parameter_hor*v*dbasis[1*numnodes+i]+tau_parameter_ver*w*dbasis[2*numnodes+i]);
908 }
909 }
910
911 /*Clean up and return*/
912 xDelete<IssmDouble>(basis);
913 xDelete<IssmDouble>(dbasis);
914 xDelete<IssmDouble>(xyz_list);
915 delete gauss;
916 return pe;
917
918}/*}}}*/
919ElementVector* EnthalpyAnalysis::CreatePVectorSheet(Element* element){/*{{{*/
920
921 /* Check if ice in element */
922 if(!element->IsIceInElement()) return NULL;
923
924 /* implementation of the basal condition decision chart of Aschwanden 2012, Fig.5 */
925 if(!element->IsOnBase() || element->IsFloating()) return NULL;
926
927 bool converged, isdynamicbasalspc;
928 int i, state;
929 int enthalpy_enum;
930 IssmDouble dt,Jdet,scalar;
931 IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
932 IssmDouble vx,vy,vz;
933 IssmDouble alpha2,basalfriction,geothermalflux,heatflux;
934 IssmDouble *xyz_list_base = NULL;
935
936 /*Fetch number of nodes for this finite element*/
937 int numnodes = element->GetNumberOfNodes();
938
939 /*Initialize vectors*/
940 ElementVector* pe = element->NewElementVector();
941 IssmDouble* basis = xNew<IssmDouble>(numnodes);
942
943 /*Retrieve all inputs and parameters*/
944 element->GetVerticesCoordinatesBase(&xyz_list_base);
945 element->FindParam(&dt,TimesteppingTimeStepEnum);
946 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
947 element->GetInputValue(&converged,ConvergedEnum);
948 if(dt==0. && !converged) enthalpy_enum=EnthalpyPicardEnum; // use enthalpy from last iteration
949 else enthalpy_enum=EnthalpyEnum; // use enthalpy from last time step
950 Input2* vx_input = element->GetInput2(VxEnum); _assert_(vx_input);
951 Input2* vy_input = element->GetInput2(VyEnum); _assert_(vy_input);
952 Input2* vz_input = element->GetInput2(VzEnum); _assert_(vz_input);
953 Input2* enthalpy_input = element->GetInput2(enthalpy_enum); _assert_(enthalpy_input);
954 Input2* pressure_input = element->GetInput2(PressureEnum); _assert_(pressure_input);
955 Input2* watercolumn_input = element->GetInput2(WatercolumnEnum); _assert_(watercolumn_input);
956 Input2* meltingrate_input = element->GetInput2(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
957 Input2* geothermalflux_input = element->GetInput2(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input);
958 IssmDouble rho_ice = element->FindParam(MaterialsRhoIceEnum);
959
960 /*Build friction element, needed later: */
961 Friction* friction=new Friction(element,3);
962
963 /* Start looping on the number of gaussian points: */
964 Gauss* gauss=element->NewGaussBase(4);
965 Gauss* gaussup=element->NewGaussTop(4);
966 for(int ig=gauss->begin();ig<gauss->end();ig++){
967 gauss->GaussPoint(ig);
968 gaussup->GaussPoint(ig);
969
970 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
971 element->NodalFunctions(basis,gauss);
972
973 if(isdynamicbasalspc){
974 enthalpy_input->GetInputValue(&enthalpy,gauss);
975 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
976 pressure_input->GetInputValue(&pressure,gauss);
977 pressure_input->GetInputValue(&pressureup,gaussup);
978 watercolumn_input->GetInputValue(&watercolumn,gauss);
979 meltingrate_input->GetInputValue(&meltingrate,gauss);
980 state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
981 }
982 else
983 state=0;
984
985 switch (state) {
986 case 0: case 1: case 2: case 3:
987 // cold, dry base; cold, wet base; refreezing temperate base; thin temperate base:
988 // Apply basal surface forcing.
989 // Interpolated values of enthalpy on gauss nodes may indicate cold base,
990 // although one node might have become temperate. So keep heat flux switched on.
991 geothermalflux_input->GetInputValue(&geothermalflux,gauss);
992 friction->GetAlpha2(&alpha2,gauss);
993 vx_input->GetInputValue(&vx,gauss);
994 vy_input->GetInputValue(&vy,gauss);
995 vz_input->GetInputValue(&vz,gauss);
996 basalfriction=alpha2*(vx*vx+vy*vy+vz*vz);
997 heatflux=(basalfriction+geothermalflux)/(rho_ice);
998 scalar=gauss->weight*Jdet*heatflux;
999 if(dt!=0.) scalar=dt*scalar;
1000 for(i=0;i<numnodes;i++)
1001 pe->values[i]+=scalar*basis[i];
1002 break;
1003 case 4:
1004 // temperate, thick melting base: set grad H*n=0
1005 for(i=0;i<numnodes;i++)
1006 pe->values[i]+=0.;
1007 break;
1008 default:
1009 _printf0_(" unknown thermal basal state found!");
1010 }
1011 }
1012
1013 /*Clean up and return*/
1014 delete gauss;
1015 delete gaussup;
1016 delete friction;
1017 xDelete<IssmDouble>(basis);
1018 xDelete<IssmDouble>(xyz_list_base);
1019 return pe;
1020
1021}/*}}}*/
1022ElementVector* EnthalpyAnalysis::CreatePVectorShelf(Element* element){/*{{{*/
1023
1024 /* Check if ice in element */
1025 if(!element->IsIceInElement()) return NULL;
1026
1027 /*Get basal element*/
1028 if(!element->IsOnBase() || !element->IsFloating()) return NULL;
1029
1030 IssmDouble Hpmp,dt,Jdet,scalar_ocean,pressure;
1031 IssmDouble *xyz_list_base = NULL;
1032
1033 /*Fetch number of nodes for this finite element*/
1034 int numnodes = element->GetNumberOfNodes();
1035
1036 /*Initialize vectors*/
1037 ElementVector* pe = element->NewElementVector();
1038 IssmDouble* basis = xNew<IssmDouble>(numnodes);
1039
1040 /*Retrieve all inputs and parameters*/
1041 element->GetVerticesCoordinatesBase(&xyz_list_base);
1042 element->FindParam(&dt,TimesteppingTimeStepEnum);
1043 Input2* pressure_input=element->GetInput2(PressureEnum); _assert_(pressure_input);
1044 IssmDouble gravity = element->FindParam(ConstantsGEnum);
1045 IssmDouble rho_water = element->FindParam(MaterialsRhoSeawaterEnum);
1046 IssmDouble rho_ice = element->FindParam(MaterialsRhoIceEnum);
1047 IssmDouble heatcapacity = element->FindParam(MaterialsHeatcapacityEnum);
1048 IssmDouble mixed_layer_capacity= element->FindParam(MaterialsMixedLayerCapacityEnum);
1049 IssmDouble thermal_exchange_vel= element->FindParam(MaterialsThermalExchangeVelocityEnum);
1050
1051 /* Start looping on the number of gaussian points: */
1052 Gauss* gauss=element->NewGaussBase(4);
1053 for(int ig=gauss->begin();ig<gauss->end();ig++){
1054 gauss->GaussPoint(ig);
1055
1056 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
1057 element->NodalFunctions(basis,gauss);
1058
1059 pressure_input->GetInputValue(&pressure,gauss);
1060 Hpmp=element->PureIceEnthalpy(pressure);
1061
1062 scalar_ocean=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel*Hpmp/(heatcapacity*rho_ice);
1063 if(reCast<bool,IssmDouble>(dt)) scalar_ocean=dt*scalar_ocean;
1064
1065 for(int i=0;i<numnodes;i++) pe->values[i]+=scalar_ocean*basis[i];
1066 }
1067
1068 /*Clean up and return*/
1069 delete gauss;
1070 xDelete<IssmDouble>(basis);
1071 xDelete<IssmDouble>(xyz_list_base);
1072 return pe;
1073}/*}}}*/
1074void EnthalpyAnalysis::DrainWaterfraction(FemModel* femmodel){/*{{{*/
1075 /*Drain excess water fraction in ice column: */
1076 ComputeWaterfractionDrainage(femmodel);
1077 DrainageUpdateWatercolumn(femmodel);
1078 DrainageUpdateEnthalpy(femmodel);
1079}/*}}}*/
1080void EnthalpyAnalysis::ComputeWaterfractionDrainage(FemModel* femmodel){/*{{{*/
1081
1082 int i,k,numnodes;
1083 IssmDouble dt;
1084 Element* element= NULL;
1085
1086 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
1087
1088 for(i=0;i<femmodel->elements->Size();i++){
1089 element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1090 numnodes=element->GetNumberOfNodes();
1091 IssmDouble* waterfractions= xNew<IssmDouble>(numnodes);
1092 IssmDouble* drainage= xNew<IssmDouble>(numnodes);
1093
1094 element->GetInputListOnNodes(waterfractions,WaterfractionEnum);
1095 for(k=0; k<numnodes;k++){
1096 drainage[k]=DrainageFunctionWaterfraction(waterfractions[k], dt);
1097 }
1098 int finite_element = element->GetElementType(); if(finite_element==P1Enum) finite_element = P1DGEnum;
1099 element->AddInput2(WaterfractionDrainageEnum,drainage,finite_element);
1100
1101 xDelete<IssmDouble>(waterfractions);
1102 xDelete<IssmDouble>(drainage);
1103 }
1104}/*}}}*/
1105void EnthalpyAnalysis::DrainageUpdateWatercolumn(FemModel* femmodel){/*{{{*/
1106
1107 int i,k,numnodes, numbasalnodes;
1108 IssmDouble dt;
1109 int* basalnodeindices=NULL;
1110 Element* element= NULL;
1111
1112 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
1113
1114 /*depth-integrate the drained water fraction */
1115 femmodel->parameters->SetParam(WaterfractionDrainageEnum,InputToDepthaverageInEnum);
1116 femmodel->parameters->SetParam(WaterfractionDrainageIntegratedEnum,InputToDepthaverageOutEnum);
1117 depthaverage_core(femmodel);
1118 femmodel->parameters->SetParam(WaterfractionDrainageIntegratedEnum,InputToExtrudeEnum);
1119 extrudefrombase_core(femmodel);
1120 /*multiply depth-average by ice thickness*/
1121 for(i=0;i<femmodel->elements->Size();i++){
1122 element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1123 numnodes=element->GetNumberOfNodes();
1124 IssmDouble* drainage_int= xNew<IssmDouble>(numnodes);
1125 IssmDouble* thicknesses= xNew<IssmDouble>(numnodes);
1126
1127 element->GetInputListOnNodes(drainage_int,WaterfractionDrainageIntegratedEnum);
1128 element->GetInputListOnNodes(thicknesses,ThicknessEnum);
1129 for(k=0;k<numnodes;k++){
1130 drainage_int[k]*=thicknesses[k];
1131 }
1132 int finite_element = element->GetElementType(); if(finite_element==P1Enum) finite_element = P1DGEnum;
1133 element->AddInput2(WaterfractionDrainageIntegratedEnum, drainage_int,finite_element);
1134
1135 xDelete<IssmDouble>(drainage_int);
1136 xDelete<IssmDouble>(thicknesses);
1137 }
1138
1139 /*update water column*/
1140 for(i=0;i<femmodel->elements->Size();i++){
1141 element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1142 /* Check if ice in element */
1143 if(!element->IsIceInElement()) continue;
1144 if(!element->IsOnBase()) continue;
1145
1146 numnodes=element->GetNumberOfNodes();
1147 IssmDouble* watercolumn= xNew<IssmDouble>(numnodes);
1148 IssmDouble* drainage_int= xNew<IssmDouble>(numnodes);
1149 element->GetInputListOnNodes(watercolumn,WatercolumnEnum);
1150 element->GetInputListOnNodes(drainage_int,WaterfractionDrainageIntegratedEnum);
1151
1152 element->BasalNodeIndices(&numbasalnodes,&basalnodeindices,element->GetElementType());
1153 for(k=0;k<numbasalnodes;k++){
1154 watercolumn[basalnodeindices[k]]+=dt*drainage_int[basalnodeindices[k]];
1155 }
1156 int finite_element = element->GetElementType(); if(finite_element==P1Enum) finite_element = P1DGEnum;
1157 element->AddInput2(WatercolumnEnum, watercolumn,finite_element);
1158
1159 xDelete<IssmDouble>(watercolumn);
1160 xDelete<IssmDouble>(drainage_int);
1161 xDelete<int>(basalnodeindices);
1162 }
1163}/*}}}*/
1164void EnthalpyAnalysis::DrainageUpdateEnthalpy(FemModel* femmodel){/*{{{*/
1165
1166 int i,k,numnodes;
1167 IssmDouble dt;
1168 Element* element= NULL;
1169 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
1170
1171 for(i=0;i<femmodel->elements->Size();i++){
1172 element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1173 numnodes=element->GetNumberOfNodes();
1174 IssmDouble* enthalpies= xNew<IssmDouble>(numnodes);
1175 IssmDouble* pressures= xNew<IssmDouble>(numnodes);
1176 IssmDouble* temperatures= xNew<IssmDouble>(numnodes);
1177 IssmDouble* waterfractions= xNew<IssmDouble>(numnodes);
1178 IssmDouble* drainage= xNew<IssmDouble>(numnodes);
1179
1180 element->GetInputListOnNodes(pressures,PressureEnum);
1181 element->GetInputListOnNodes(temperatures,TemperatureEnum);
1182 element->GetInputListOnNodes(waterfractions,WaterfractionEnum);
1183 element->GetInputListOnNodes(drainage,WaterfractionDrainageEnum);
1184
1185 for(k=0;k<numnodes;k++){
1186 if(dt==0.)
1187 waterfractions[k]-=drainage[k];
1188 else
1189 waterfractions[k]-=dt*drainage[k];
1190
1191 element->ThermalToEnthalpy(&enthalpies[k], temperatures[k], waterfractions[k], pressures[k]);
1192 }
1193 int finite_element = element->GetElementType(); if(finite_element==P1Enum) finite_element = P1DGEnum;
1194 element->AddInput2(WaterfractionEnum,waterfractions,finite_element);
1195 element->AddInput2(EnthalpyEnum,enthalpies,finite_element);
1196
1197 xDelete<IssmDouble>(enthalpies);
1198 xDelete<IssmDouble>(pressures);
1199 xDelete<IssmDouble>(temperatures);
1200 xDelete<IssmDouble>(waterfractions);
1201 xDelete<IssmDouble>(drainage);
1202 }
1203}/*}}}*/
1204IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameter(Element* element,IssmDouble enthalpy,IssmDouble pressure){/*{{{*/
1205
1206 IssmDouble heatcapacity = element->FindParam(MaterialsHeatcapacityEnum);
1207 IssmDouble temperateiceconductivity = element->FindParam(MaterialsTemperateiceconductivityEnum);
1208 IssmDouble thermalconductivity = element->FindParam(MaterialsThermalconductivityEnum);
1209
1210 if(enthalpy < PureIceEnthalpy(element,pressure))
1211 return thermalconductivity/heatcapacity;
1212 else
1213 return temperateiceconductivity/heatcapacity;
1214}/*}}}*/
1215IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameterVolume(Element* element,int enthalpy_enum){/*{{{*/
1216
1217 int iv;
1218 IssmDouble lambda; /* fraction of cold ice */
1219 IssmDouble kappa,kappa_c,kappa_t; /* enthalpy conductivities */
1220 IssmDouble Hc,Ht;
1221
1222 /*Get pressures and enthalpies on vertices*/
1223 int numvertices = element->GetNumberOfVertices();
1224 int effectiveconductivity_averaging;
1225 IssmDouble* pressures = xNew<IssmDouble>(numvertices);
1226 IssmDouble* enthalpies = xNew<IssmDouble>(numvertices);
1227 IssmDouble* PIE = xNew<IssmDouble>(numvertices);
1228 IssmDouble* dHpmp = xNew<IssmDouble>(numvertices);
1229 element->GetInputListOnVertices(pressures,PressureEnum);
1230 element->GetInputListOnVertices(enthalpies,enthalpy_enum);
1231 element->FindParam(&effectiveconductivity_averaging,MaterialsEffectiveconductivityAveragingEnum);
1232
1233 for(iv=0;iv<numvertices;iv++){
1234 PIE[iv] = PureIceEnthalpy(element,pressures[iv]);
1235 dHpmp[iv] = enthalpies[iv]-PIE[iv];
1236 }
1237
1238 bool allequalsign = true;
1239 if(dHpmp[0]<0.){
1240 for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]<0.));
1241 }
1242 else{
1243 for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]>=0.));
1244 }
1245
1246 if(allequalsign){
1247 kappa = EnthalpyDiffusionParameter(element,enthalpies[0],pressures[0]);
1248 }
1249 else{
1250 kappa_c = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)-1.,0.);
1251 kappa_t = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)+1.,0.);
1252
1253 Hc=0.; Ht=0.;
1254 for(iv=0; iv<numvertices;iv++){
1255 if(enthalpies[iv]<PIE[iv])
1256 Hc+=(PIE[iv]-enthalpies[iv]);
1257 else
1258 Ht+=(enthalpies[iv]-PIE[iv]);
1259 }
1260 _assert_((Hc+Ht)>0.);
1261 lambda = Hc/(Hc+Ht);
1262 _assert_(lambda>=0.);
1263 _assert_(lambda<=1.);
1264
1265 if(effectiveconductivity_averaging==0){
1266 /* return arithmetic mean (volume average) of thermal conductivities, weighted by fraction of cold/temperate ice */
1267 kappa=kappa_c*lambda+(1.-lambda)*kappa_t;
1268 }
1269 else if(effectiveconductivity_averaging==1){
1270 /* return harmonic mean (reciprocal avarage) of thermal conductivities, weighted by fraction of cold/temperate ice, cf Patankar 1980, pp44 */
1271 kappa=kappa_c*kappa_t/(lambda*kappa_t+(1.-lambda)*kappa_c);
1272 }
1273 else if(effectiveconductivity_averaging==2){
1274 /* return geometric mean (power law) of thermal conductivities, weighted by fraction of cold/temperate ice */
1275 kappa=pow(kappa_c,lambda)*pow(kappa_t,1.-lambda);
1276 }
1277 else{
1278 _error_("effectiveconductivity_averaging not supported yet");
1279 }
1280 }
1281
1282 /*Clean up and return*/
1283 xDelete<IssmDouble>(PIE);
1284 xDelete<IssmDouble>(dHpmp);
1285 xDelete<IssmDouble>(pressures);
1286 xDelete<IssmDouble>(enthalpies);
1287 return kappa;
1288}/*}}}*/
1289void EnthalpyAnalysis::GetBAdvec(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
1290 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*1.
1291 * For node i, Bi' can be expressed in the actual coordinate system
1292 * by:
1293 * Bi_advec =[ h ]
1294 * [ h ]
1295 * [ h ]
1296 * where h is the interpolation function for node i.
1297 *
1298 * We assume B has been allocated already, of size: 3x(1*NUMNODESP1)
1299 */
1300
1301 /*Fetch number of nodes for this finite element*/
1302 int numnodes = element->GetNumberOfNodes();
1303
1304 /*Get nodal functions*/
1305 IssmDouble* basis=xNew<IssmDouble>(numnodes);
1306 element->NodalFunctions(basis,gauss);
1307
1308 /*Build B: */
1309 for(int i=0;i<numnodes;i++){
1310 B[numnodes*0+i] = basis[i];
1311 B[numnodes*1+i] = basis[i];
1312 B[numnodes*2+i] = basis[i];
1313 }
1314
1315 /*Clean-up*/
1316 xDelete<IssmDouble>(basis);
1317}/*}}}*/
1318void EnthalpyAnalysis::GetBAdvecprime(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
1319 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*1.
1320 * For node i, Bi' can be expressed in the actual coordinate system
1321 * by:
1322 * Biprime_advec=[ dh/dx ]
1323 * [ dh/dy ]
1324 * [ dh/dz ]
1325 * where h is the interpolation function for node i.
1326 *
1327 * We assume B has been allocated already, of size: 3x(1*numnodes)
1328 */
1329
1330 /*Fetch number of nodes for this finite element*/
1331 int numnodes = element->GetNumberOfNodes();
1332
1333 /*Get nodal functions derivatives*/
1334 IssmDouble* dbasis=xNew<IssmDouble>(3*numnodes);
1335 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
1336
1337 /*Build B: */
1338 for(int i=0;i<numnodes;i++){
1339 B[numnodes*0+i] = dbasis[0*numnodes+i];
1340 B[numnodes*1+i] = dbasis[1*numnodes+i];
1341 B[numnodes*2+i] = dbasis[2*numnodes+i];
1342 }
1343
1344 /*Clean-up*/
1345 xDelete<IssmDouble>(dbasis);
1346}/*}}}*/
1347void EnthalpyAnalysis::GetBasalConstraints(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
1348
1349 /*Intermediary*/
1350 bool isdynamicbasalspc;
1351 IssmDouble dt;
1352
1353 /*Check wether dynamic basal boundary conditions are activated */
1354 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
1355 if(!isdynamicbasalspc) return;
1356
1357 element->FindParam(&dt,TimesteppingTimeStepEnum);
1358 if(dt==0.){
1359 GetBasalConstraintsSteadystate(vec_spc,element);
1360 }
1361 else{
1362 GetBasalConstraintsTransient(vec_spc,element);
1363 }
1364}/*}}}*/
1365void EnthalpyAnalysis::GetBasalConstraintsSteadystate(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
1366
1367 /* Check if ice in element */
1368 if(!element->IsIceInElement()) return;
1369
1370 /* Only update constraints at the base.
1371 * Floating ice is not affected by basal BC decision chart. */
1372 if(!(element->IsOnBase()) || element->IsFloating()) return;
1373
1374 /*Intermediary*/
1375 int numindices, numindicesup, state;
1376 int *indices = NULL, *indicesup = NULL;
1377 IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
1378
1379 /*Get parameters and inputs: */
1380 Input2* enthalpy_input = element->GetInput2(EnthalpyPicardEnum); _assert_(enthalpy_input);
1381 Input2* pressure_input = element->GetInput2(PressureEnum); _assert_(pressure_input);
1382 Input2* watercolumn_input = element->GetInput2(WatercolumnEnum); _assert_(watercolumn_input);
1383 Input2* meltingrate_input = element->GetInput2(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
1384
1385 /*Fetch indices of basal & surface nodes for this finite element*/
1386 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
1387 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
1388 penta->SurfaceNodeIndices(&numindicesup,&indicesup,element->GetElementType()); _assert_(numindices==numindicesup);
1389
1390 GaussPenta* gauss=new GaussPenta();
1391 GaussPenta* gaussup=new GaussPenta();
1392 for(int i=0;i<numindices;i++){
1393 gauss->GaussNode(element->GetElementType(),indices[i]);
1394 gaussup->GaussNode(element->GetElementType(),indicesup[i]);
1395
1396 enthalpy_input->GetInputValue(&enthalpy,gauss);
1397 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
1398 pressure_input->GetInputValue(&pressure,gauss);
1399 pressure_input->GetInputValue(&pressureup,gaussup);
1400 watercolumn_input->GetInputValue(&watercolumn,gauss);
1401 meltingrate_input->GetInputValue(&meltingrate,gauss);
1402
1403 state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
1404 switch (state) {
1405 case 0:
1406 // cold, dry base: apply basal surface forcing
1407 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
1408 break;
1409 case 1:
1410 // cold, wet base: keep at pressure melting point
1411 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1412 break;
1413 case 2:
1414 // temperate, thin refreezing base:
1415 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1416 break;
1417 case 3:
1418 // temperate, thin melting base: set spc
1419 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1420 break;
1421 case 4:
1422 // temperate, thick melting base:
1423 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1424 break;
1425 default:
1426 _printf0_(" unknown thermal basal state found!");
1427 }
1428 }
1429
1430 /*Free ressources:*/
1431 xDelete<int>(indices);
1432 xDelete<int>(indicesup);
1433 delete gauss;
1434 delete gaussup;
1435}/*}}}*/
1436void EnthalpyAnalysis::GetBasalConstraintsTransient(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
1437
1438 /* Check if ice in element */
1439 if(!element->IsIceInElement()) return;
1440
1441 /* Only update constraints at the base.
1442 * Floating ice is not affected by basal BC decision chart.*/
1443 if(!(element->IsOnBase()) || element->IsFloating()) return;
1444
1445 /*Intermediary*/
1446 int numindices, numindicesup, state;
1447 int *indices = NULL, *indicesup = NULL;
1448 IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
1449
1450 /*Get parameters and inputs: */
1451 Input2* enthalpy_input = element->GetInput2(EnthalpyEnum); _assert_(enthalpy_input); //TODO: check EnthalpyPicard?
1452 Input2* pressure_input = element->GetInput2(PressureEnum); _assert_(pressure_input);
1453 Input2* watercolumn_input = element->GetInput2(WatercolumnEnum); _assert_(watercolumn_input);
1454 Input2* meltingrate_input = element->GetInput2(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
1455
1456 /*Fetch indices of basal & surface nodes for this finite element*/
1457 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
1458 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
1459 penta->SurfaceNodeIndices(&numindicesup,&indicesup,element->GetElementType()); _assert_(numindices==numindicesup);
1460
1461 GaussPenta* gauss=new GaussPenta();
1462 GaussPenta* gaussup=new GaussPenta();
1463
1464 for(int i=0;i<numindices;i++){
1465 gauss->GaussNode(element->GetElementType(),indices[i]);
1466 gaussup->GaussNode(element->GetElementType(),indicesup[i]);
1467
1468 enthalpy_input->GetInputValue(&enthalpy,gauss);
1469 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
1470 pressure_input->GetInputValue(&pressure,gauss);
1471 pressure_input->GetInputValue(&pressureup,gaussup);
1472 watercolumn_input->GetInputValue(&watercolumn,gauss);
1473 meltingrate_input->GetInputValue(&meltingrate,gauss);
1474
1475 state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
1476
1477 switch (state) {
1478 case 0:
1479 // cold, dry base: apply basal surface forcing
1480 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
1481 break;
1482 case 1:
1483 // cold, wet base: keep at pressure melting point
1484 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1485 break;
1486 case 2:
1487 // temperate, thin refreezing base: release spc
1488 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
1489 break;
1490 case 3:
1491 // temperate, thin melting base: set spc
1492 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1493 break;
1494 case 4:
1495 // temperate, thick melting base: set grad H*n=0
1496 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
1497 break;
1498 default:
1499 _printf0_(" unknown thermal basal state found!");
1500 }
1501
1502 }
1503
1504 /*Free ressources:*/
1505 xDelete<int>(indices);
1506 xDelete<int>(indicesup);
1507 delete gauss;
1508 delete gaussup;
1509}/*}}}*/
1510void EnthalpyAnalysis::GetBConduct(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
1511 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*1.
1512 * For node i, Bi' can be expressed in the actual coordinate system
1513 * by:
1514 * Bi_conduct=[ dh/dx ]
1515 * [ dh/dy ]
1516 * [ dh/dz ]
1517 * where h is the interpolation function for node i.
1518 *
1519 * We assume B has been allocated already, of size: 3x(1*numnodes)
1520 */
1521
1522 /*Fetch number of nodes for this finite element*/
1523 int numnodes = element->GetNumberOfNodes();
1524
1525 /*Get nodal functions derivatives*/
1526 IssmDouble* dbasis=xNew<IssmDouble>(3*numnodes);
1527 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
1528
1529 /*Build B: */
1530 for(int i=0;i<numnodes;i++){
1531 B[numnodes*0+i] = dbasis[0*numnodes+i];
1532 B[numnodes*1+i] = dbasis[1*numnodes+i];
1533 B[numnodes*2+i] = dbasis[2*numnodes+i];
1534 }
1535
1536 /*Clean-up*/
1537 xDelete<IssmDouble>(dbasis);
1538}/*}}}*/
1539void EnthalpyAnalysis::GetSolutionFromInputs(Vector<IssmDouble>* solution,Element* element){/*{{{*/
1540 element->GetSolutionFromInputsOneDof(solution,EnthalpyEnum);
1541}/*}}}*/
1542int EnthalpyAnalysis::GetThermalBasalCondition(Element* element, IssmDouble enthalpy, IssmDouble enthalpyup, IssmDouble pressure, IssmDouble pressureup, IssmDouble watercolumn, IssmDouble meltingrate){/*{{{*/
1543
1544 /* Check if ice in element */
1545 if(!element->IsIceInElement()) return -1;
1546
1547 /* Only update Constraints at the base of grounded ice*/
1548 if(!(element->IsOnBase())) return -1;
1549
1550 /*Intermediary*/
1551 int state=-1;
1552 IssmDouble dt;
1553
1554 /*Get parameters and inputs: */
1555 element->FindParam(&dt,TimesteppingTimeStepEnum);
1556
1557 if(enthalpy<PureIceEnthalpy(element,pressure)){
1558 if(watercolumn<=0.) state=0; // cold, dry base
1559 else state=1; // cold, wet base (refreezing)
1560 }
1561 else{
1562 if(enthalpyup<PureIceEnthalpy(element,pressureup)){
1563 if((dt==0.) && (meltingrate<0.)) state=2; // refreezing temperate base (non-physical, only for steadystate solver)
1564 else state=3; // temperate base, but no temperate layer
1565 }
1566 else state=4; // temperate layer with positive thickness
1567 }
1568
1569 _assert_(state>=0);
1570 return state;
1571}/*}}}*/
1572IssmDouble EnthalpyAnalysis::GetWetIceConductivity(Element* element, IssmDouble enthalpy, IssmDouble pressure){/*{{{*/
1573
1574 IssmDouble temperature, waterfraction;
1575 IssmDouble kappa_w = 0.6; // thermal conductivity of water (in W/m/K)
1576 IssmDouble kappa_i = element->FindParam(MaterialsThermalconductivityEnum);
1577 element->EnthalpyToThermal(&temperature, &waterfraction, enthalpy, pressure);
1578
1579 return (1.-waterfraction)*kappa_i + waterfraction*kappa_w;
1580}/*}}}*/
1581void EnthalpyAnalysis::GradientJ(Vector<IssmDouble>* gradient,Element* element,int control_type,int control_index){/*{{{*/
1582 _error_("Not implemented yet");
1583}/*}}}*/
1584void EnthalpyAnalysis::InputUpdateFromSolution(IssmDouble* solution,Element* element){/*{{{*/
1585
1586 bool converged;
1587 int i,rheology_law;
1588 IssmDouble B_average,s_average,T_average=0.,P_average=0.;
1589 int *doflist = NULL;
1590 IssmDouble *xyz_list = NULL;
1591
1592 /*Fetch number of nodes and dof for this finite element*/
1593 int numnodes = element->GetNumberOfNodes();
1594
1595 /*Fetch dof list and allocate solution vector*/
1596 element->GetDofListLocal(&doflist,NoneApproximationEnum,GsetEnum);
1597 IssmDouble* values = xNew<IssmDouble>(numnodes);
1598 IssmDouble* pressure = xNew<IssmDouble>(numnodes);
1599 IssmDouble* surface = xNew<IssmDouble>(numnodes);
1600 IssmDouble* B = xNew<IssmDouble>(numnodes);
1601 IssmDouble* temperature = xNew<IssmDouble>(numnodes);
1602 IssmDouble* waterfraction = xNew<IssmDouble>(numnodes);
1603
1604 /*Use the dof list to index into the solution vector: */
1605 for(i=0;i<numnodes;i++){
1606 values[i]=solution[doflist[i]];
1607
1608 /*Check solution*/
1609 if(xIsNan<IssmDouble>(values[i])) _error_("NaN found in solution vector");
1610 if(xIsInf<IssmDouble>(values[i])) _error_("Inf found in solution vector");
1611 }
1612
1613 /*Get all inputs and parameters*/
1614 element->GetInputValue(&converged,ConvergedEnum);
1615 element->GetInputListOnNodes(&pressure[0],PressureEnum);
1616 int finite_element = element->GetElementType(); if(finite_element==P1Enum) finite_element = P1DGEnum;
1617 if(converged){
1618 for(i=0;i<numnodes;i++){
1619 element->EnthalpyToThermal(&temperature[i],&waterfraction[i],values[i],pressure[i]);
1620 if(waterfraction[i]<0.) _error_("Negative water fraction found in solution vector");
1621 //if(waterfraction[i]>1.) _error_("Water fraction >1 found in solution vector");
1622 }
1623 element->AddInput2(EnthalpyEnum,values,finite_element);
1624 element->AddInput2(WaterfractionEnum,waterfraction,finite_element);
1625 element->AddInput2(TemperatureEnum,temperature,finite_element);
1626
1627 IssmDouble* n = xNew<IssmDouble>(numnodes);
1628 if(element->material->ObjectEnum()==MatestarEnum){
1629 for(i=0;i<numnodes;i++) n[i]=3.;
1630 }
1631 else{
1632 element->GetInputListOnNodes(&n[0],MaterialsRheologyNEnum);
1633 }
1634
1635 /*Update Rheology only if converged (we must make sure that the temperature is below melting point
1636 * otherwise the rheology could be negative*/
1637 element->FindParam(&rheology_law,MaterialsRheologyLawEnum);
1638 element->GetInputListOnNodes(&surface[0],SurfaceEnum);
1639 switch(rheology_law){
1640 case NoneEnum:
1641 /*Do nothing: B is not temperature dependent*/
1642 break;
1643 case BuddJackaEnum:
1644 for(i=0;i<numnodes;i++) B[i]=BuddJacka(temperature[i]);
1645 element->AddInput2(MaterialsRheologyBEnum,&B[0],finite_element);
1646 break;
1647 case CuffeyEnum:
1648 for(i=0;i<numnodes;i++) B[i]=Cuffey(temperature[i]);
1649 element->AddInput2(MaterialsRheologyBEnum,&B[0],finite_element);
1650 break;
1651 case CuffeyTemperateEnum:
1652 for(i=0;i<numnodes;i++) B[i]=CuffeyTemperate(temperature[i], waterfraction[i],n[i]);
1653 element->AddInput2(MaterialsRheologyBEnum,&B[0],finite_element);
1654 break;
1655 case PatersonEnum:
1656 for(i=0;i<numnodes;i++) B[i]=Paterson(temperature[i]);
1657 element->AddInput2(MaterialsRheologyBEnum,&B[0],finite_element);
1658 break;
1659 case NyeH2OEnum:
1660 for(i=0;i<numnodes;i++) B[i]=NyeH2O(values[i]);
1661 element->AddInput2(MaterialsRheologyBEnum,&B[0],finite_element);
1662 break;
1663 case NyeCO2Enum:
1664 for(i=0;i<numnodes;i++) B[i]=NyeCO2(values[i]);
1665 element->AddInput2(MaterialsRheologyBEnum,&B[0],finite_element);
1666 break;
1667 case ArrheniusEnum:{
1668 element->GetVerticesCoordinates(&xyz_list);
1669 for(i=0;i<numnodes;i++) B[i]=Arrhenius(temperature[i],surface[i]-xyz_list[i*3+2],n[i]);
1670 element->AddInput2(MaterialsRheologyBEnum,&B[0],finite_element);
1671 break;
1672 }
1673 case LliboutryDuvalEnum:{
1674 for(i=0;i<numnodes;i++) B[i]=LliboutryDuval(values[i],pressure[i],n[i],element->FindParam(MaterialsBetaEnum),element->FindParam(ConstantsReferencetemperatureEnum),element->FindParam(MaterialsHeatcapacityEnum),element->FindParam(MaterialsLatentheatEnum));
1675 element->AddInput2(MaterialsRheologyBEnum,&B[0],finite_element);
1676 break;
1677 }
1678 default: _error_("Rheology law " << EnumToStringx(rheology_law) << " not supported yet");
1679 }
1680 xDelete<IssmDouble>(n);
1681 }
1682 else{
1683 element->AddInput2(EnthalpyPicardEnum,values,finite_element);
1684 }
1685
1686 /*Free ressources:*/
1687 xDelete<IssmDouble>(values);
1688 xDelete<IssmDouble>(pressure);
1689 xDelete<IssmDouble>(surface);
1690 xDelete<IssmDouble>(B);
1691 xDelete<IssmDouble>(temperature);
1692 xDelete<IssmDouble>(waterfraction);
1693 xDelete<IssmDouble>(xyz_list);
1694 xDelete<int>(doflist);
1695}/*}}}*/
1696void EnthalpyAnalysis::PostProcessing(FemModel* femmodel){/*{{{*/
1697
1698 /*Intermediaries*/
1699 bool computebasalmeltingrates=true;
1700 bool isdrainicecolumn;
1701 IssmDouble dt;
1702
1703 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
1704 femmodel->parameters->FindParam(&isdrainicecolumn,ThermalIsdrainicecolumnEnum);
1705
1706 if(isdrainicecolumn){
1707 DrainWaterfraction(femmodel);
1708 }
1709 if(computebasalmeltingrates){
1710 ComputeBasalMeltingrate(femmodel);
1711 }
1712
1713}/*}}}*/
1714IssmDouble EnthalpyAnalysis::PureIceEnthalpy(Element* element,IssmDouble pressure){/*{{{*/
1715
1716 IssmDouble heatcapacity = element->FindParam(MaterialsHeatcapacityEnum);
1717 IssmDouble referencetemperature = element->FindParam(ConstantsReferencetemperatureEnum);
1718
1719 return heatcapacity*(TMeltingPoint(element,pressure)-referencetemperature);
1720}/*}}}*/
1721IssmDouble EnthalpyAnalysis::TMeltingPoint(Element* element,IssmDouble pressure){/*{{{*/
1722
1723 IssmDouble meltingpoint = element->FindParam(MaterialsMeltingpointEnum);
1724 IssmDouble beta = element->FindParam(MaterialsBetaEnum);
1725
1726 return meltingpoint-beta*pressure;
1727}/*}}}*/
1728void EnthalpyAnalysis::UpdateBasalConstraints(FemModel* femmodel){/*{{{*/
1729
1730 /*Update basal dirichlet BCs for enthalpy: */
1731 Vector<IssmDouble>* spc = NULL;
1732 IssmDouble* serial_spc = NULL;
1733
1734 spc=new Vector<IssmDouble>(femmodel->nodes->NumberOfNodes());
1735 /*First create a vector to figure out what elements should be constrained*/
1736 for(int i=0;i<femmodel->elements->Size();i++){
1737 Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1738 GetBasalConstraints(spc,element);
1739 }
1740
1741 /*Assemble and serialize*/
1742 spc->Assemble();
1743 serial_spc=spc->ToMPISerial();
1744 delete spc;
1745
1746 /*Then update basal constraints nodes accordingly*/
1747 for(int i=0;i<femmodel->elements->Size();i++){
1748 Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1749 ApplyBasalConstraints(serial_spc,element);
1750 }
1751
1752 femmodel->UpdateConstraintsx();
1753
1754 /*Delete*/
1755 xDelete<IssmDouble>(serial_spc);
1756}/*}}}*/
1757void EnthalpyAnalysis::UpdateConstraints(FemModel* femmodel){/*{{{*/
1758 SetActiveNodesLSMx(femmodel);
1759}/*}}}*/
Note: See TracBrowser for help on using the repository browser.