source: issm/trunk-jpl/src/c/analyses/EnthalpyAnalysis.cpp@ 24666

Last change on this file since 24666 was 24666, checked in by rueckamp, 5 years ago

CHG: add a limit for effective pressure

File size: 70.0 KB
Line 
1#include "./EnthalpyAnalysis.h"
2#include "../toolkits/toolkits.h"
3#include "../classes/classes.h"
4#include "../shared/shared.h"
5#include "../modules/modules.h"
6#include "../solutionsequences/solutionsequences.h"
7#include "../cores/cores.h"
8
9/*Model processing*/
10void EnthalpyAnalysis::CreateConstraints(Constraints* constraints,IoModel* iomodel){/*{{{*/
11
12 /*Intermediary*/
13 int count;
14 int M,N;
15 bool spcpresent = false;
16 int finiteelement;
17 IssmDouble heatcapacity;
18 IssmDouble referencetemperature;
19
20 /*Output*/
21 IssmDouble *spcvector = NULL;
22 IssmDouble *spcvectorstatic = NULL;
23 IssmDouble* times=NULL;
24 IssmDouble* values=NULL;
25 IssmDouble* issurface = NULL;
26
27 /*Fetch parameters: */
28 iomodel->FindConstant(&heatcapacity,"md.materials.heatcapacity");
29 iomodel->FindConstant(&referencetemperature,"md.constants.referencetemperature");
30 iomodel->FindConstant(&finiteelement,"md.thermal.fe");
31
32 /*return if 2d mesh*/
33 if(iomodel->domaintype==Domain2DhorizontalEnum) return;
34
35 /*Fetch data: */
36 iomodel->FetchData(&issurface,&M,&N,"md.mesh.vertexonsurface"); _assert_(N>0); _assert_(M==iomodel->numberofvertices);
37 iomodel->FetchData(&spcvector,&M,&N,"md.thermal.spctemperature");
38 iomodel->FetchData(&spcvectorstatic,&M,&N,"md.thermal.spctemperature");
39
40 /*Specific case for PDD, we want the constaints to be updated by the PDD scheme itself*/
41 bool isdynamic = false;
42 if (iomodel->solution_enum==TransientSolutionEnum){
43 int smb_model;
44 iomodel->FindConstant(&smb_model,"md.smb.model");
45 if(smb_model==SMBpddEnum) isdynamic=true;
46 if(smb_model==SMBd18opddEnum) isdynamic=true;
47 if(smb_model==SMBpddSicopolisEnum) isdynamic=true;
48 }
49
50 /*Convert spcs from temperatures to enthalpy*/
51 _assert_(N>0); _assert_(M>=iomodel->numberofvertices);
52 for(int i=0;i<iomodel->numberofvertices;i++){
53 for(int j=0;j<N;j++){
54 if (isdynamic){
55 if (issurface[i]==1){
56 spcvector[i*N+j] = heatcapacity*(spcvector[i*N+j]-referencetemperature);
57 spcvectorstatic[i*N+j] = NAN;
58 }
59 else{
60 spcvector[i*N+j] = NAN;
61 spcvectorstatic[i*N+j] = heatcapacity*(spcvectorstatic[i*N+j]-referencetemperature);
62 }
63 }
64 else{
65 spcvector[i*N+j] = heatcapacity*(spcvector[i*N+j]-referencetemperature);
66 }
67 }
68 }
69
70 if(isdynamic){
71 IoModelToDynamicConstraintsx(constraints,iomodel,spcvector,iomodel->numberofvertices,1,EnthalpyAnalysisEnum,finiteelement);
72 IoModelToConstraintsx(constraints,iomodel,spcvectorstatic,M,N,EnthalpyAnalysisEnum,finiteelement);
73 }
74 else{
75 IoModelToConstraintsx(constraints,iomodel,spcvector,M,N,EnthalpyAnalysisEnum,finiteelement);
76 }
77
78 /*Free ressources:*/
79 iomodel->DeleteData(spcvector,"md.thermal.spctemperature");
80 iomodel->DeleteData(spcvectorstatic,"md.thermal.spctemperature");
81 iomodel->DeleteData(issurface,"md.mesh.vertexonsurface");
82 xDelete<IssmDouble>(times);
83 xDelete<IssmDouble>(values);
84}/*}}}*/
85void EnthalpyAnalysis::CreateLoads(Loads* loads, IoModel* iomodel){/*{{{*/
86
87 /*No loads */
88}/*}}}*/
89void EnthalpyAnalysis::CreateNodes(Nodes* nodes,IoModel* iomodel,bool isamr){/*{{{*/
90
91 int finiteelement;
92 iomodel->FindConstant(&finiteelement,"md.thermal.fe");
93
94 if(iomodel->domaintype==Domain3DEnum) iomodel->FetchData(2,"md.mesh.vertexonbase","md.mesh.vertexonsurface");
95 ::CreateNodes(nodes,iomodel,EnthalpyAnalysisEnum,finiteelement);
96 iomodel->DeleteData(2,"md.mesh.vertexonbase","md.mesh.vertexonsurface");
97}/*}}}*/
98int EnthalpyAnalysis::DofsPerNode(int** doflist,int domaintype,int approximation){/*{{{*/
99 return 1;
100}/*}}}*/
101void EnthalpyAnalysis::UpdateElements(Elements* elements,Inputs2* inputs2,IoModel* iomodel,int analysis_counter,int analysis_type){/*{{{*/
102
103 bool dakota_analysis,ismovingfront,isenthalpy;
104 int frictionlaw,basalforcing_model,materialstype;
105 int FrictionCoupling;
106
107 /*Now, is the model 3d? otherwise, do nothing: */
108 if(iomodel->domaintype==Domain2DhorizontalEnum)return;
109
110 /*Is enthalpy requested?*/
111 iomodel->FindConstant(&isenthalpy,"md.thermal.isenthalpy");
112 if(!isenthalpy) return;
113
114 /*Fetch data needed: */
115 iomodel->FetchData(3,"md.initialization.temperature","md.initialization.waterfraction","md.initialization.pressure");
116
117 /*Finite element type*/
118 int finiteelement;
119 iomodel->FindConstant(&finiteelement,"md.thermal.fe");
120
121 /*Update elements: */
122 int counter=0;
123 for(int i=0;i<iomodel->numberofelements;i++){
124 if(iomodel->my_elements[i]){
125 Element* element=(Element*)elements->GetObjectByOffset(counter);
126 element->Update(inputs2,i,iomodel,analysis_counter,analysis_type,finiteelement);
127 counter++;
128 }
129 }
130
131 iomodel->FindConstant(&dakota_analysis,"md.qmu.isdakota");
132 iomodel->FindConstant(&ismovingfront,"md.transient.ismovingfront");
133 iomodel->FindConstant(&frictionlaw,"md.friction.law");
134 iomodel->FindConstant(&materialstype,"md.materials.type");
135
136 iomodel->FetchDataToInput(inputs2,elements,"md.geometry.thickness",ThicknessEnum);
137 iomodel->FetchDataToInput(inputs2,elements,"md.geometry.surface",SurfaceEnum);
138 iomodel->FetchDataToInput(inputs2,elements,"md.slr.sealevel",SealevelEnum,0);
139 iomodel->FetchDataToInput(inputs2,elements,"md.geometry.base",BaseEnum);
140 iomodel->FetchDataToInput(inputs2,elements,"md.mask.ice_levelset",MaskIceLevelsetEnum);
141 iomodel->FetchDataToInput(inputs2,elements,"md.mask.groundedice_levelset",MaskGroundediceLevelsetEnum);
142 if(iomodel->domaintype!=Domain2DhorizontalEnum){
143 iomodel->FetchDataToInput(inputs2,elements,"md.mesh.vertexonbase",MeshVertexonbaseEnum);
144 iomodel->FetchDataToInput(inputs2,elements,"md.mesh.vertexonsurface",MeshVertexonsurfaceEnum);
145 }
146 iomodel->FetchDataToInput(inputs2,elements,"md.initialization.pressure",PressureEnum);
147 iomodel->FetchDataToInput(inputs2,elements,"md.initialization.temperature",TemperatureEnum);
148 iomodel->FetchDataToInput(inputs2,elements,"md.initialization.waterfraction",WaterfractionEnum);
149 iomodel->FetchDataToInput(inputs2,elements,"md.initialization.enthalpy",EnthalpyEnum);
150 iomodel->FetchDataToInput(inputs2,elements,"md.initialization.watercolumn",WatercolumnEnum);
151 iomodel->FetchDataToInput(inputs2,elements,"md.basalforcings.groundedice_melting_rate",BasalforcingsGroundediceMeltingRateEnum);
152 iomodel->FetchDataToInput(inputs2,elements,"md.initialization.vx",VxEnum);
153 iomodel->FetchDataToInput(inputs2,elements,"md.initialization.vy",VyEnum);
154 iomodel->FetchDataToInput(inputs2,elements,"md.initialization.vz",VzEnum);
155 InputUpdateFromConstantx(inputs2,elements,0.,VxMeshEnum);
156 InputUpdateFromConstantx(inputs2,elements,0.,VyMeshEnum);
157 InputUpdateFromConstantx(inputs2,elements,0.,VzMeshEnum);
158 if(ismovingfront){
159 iomodel->FetchDataToInput(inputs2,elements,"md.mesh.vertexonbase",MeshVertexonbaseEnum); // required for updating active nodes
160 }
161
162 /*Basal forcings variables*/
163 iomodel->FindConstant(&basalforcing_model,"md.basalforcings.model");
164 switch(basalforcing_model){
165 case MantlePlumeGeothermalFluxEnum:
166 break;
167 default:
168 iomodel->FetchDataToInput(inputs2,elements,"md.basalforcings.geothermalflux",BasalforcingsGeothermalfluxEnum);
169 break;
170 }
171
172 /*Rheology type*/
173 iomodel->FetchDataToInput(inputs2,elements,"md.materials.rheology_B",MaterialsRheologyBEnum);
174 switch(materialstype){
175 case MatenhancediceEnum:
176 iomodel->FetchDataToInput(inputs2,elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
177 iomodel->FetchDataToInput(inputs2,elements,"md.materials.rheology_E",MaterialsRheologyEEnum);
178 break;
179 case MatdamageiceEnum:
180 iomodel->FetchDataToInput(inputs2,elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
181 break;
182 case MatestarEnum:
183 iomodel->FetchDataToInput(inputs2,elements,"md.materials.rheology_Ec",MaterialsRheologyEcEnum);
184 iomodel->FetchDataToInput(inputs2,elements,"md.materials.rheology_Es",MaterialsRheologyEsEnum);
185 break;
186 case MaticeEnum:
187 iomodel->FetchDataToInput(inputs2,elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
188 break;
189 default:
190 _error_("not supported");
191 }
192
193 /*Friction law variables*/
194 switch(frictionlaw){
195 case 1:
196 iomodel->FindConstant(&FrictionCoupling,"md.friction.coupling");
197 iomodel->FetchDataToInput(inputs2,elements,"md.friction.coefficient",FrictionCoefficientEnum);
198 iomodel->FetchDataToInput(inputs2,elements,"md.friction.p",FrictionPEnum);
199 iomodel->FetchDataToInput(inputs2,elements,"md.friction.q",FrictionQEnum);
200 if (FrictionCoupling==3){
201 iomodel->FetchDataToInput(inputs2,elements,"md.friction.effective_pressure",FrictionEffectivePressureEnum);}
202 else if(FrictionCoupling==4){
203 iomodel->FetchDataToInput(inputs2,elements,"md.friction.effective_pressure",EffectivePressureEnum);
204 }
205 break;
206 case 2:
207 iomodel->FetchDataToInput(inputs2,elements,"md.friction.C",FrictionCEnum);
208 iomodel->FetchDataToInput(inputs2,elements,"md.friction.m",FrictionMEnum);
209 break;
210 case 3:
211 iomodel->FindConstant(&FrictionCoupling,"md.friction.coupling");
212 iomodel->FetchDataToInput(inputs2,elements,"md.friction.C",FrictionCEnum);
213 iomodel->FetchDataToInput(inputs2,elements,"md.friction.As",FrictionAsEnum);
214 iomodel->FetchDataToInput(inputs2,elements,"md.friction.q",FrictionQEnum);
215 if (FrictionCoupling==3){
216 iomodel->FetchDataToInput(inputs2,elements,"md.friction.effective_pressure",FrictionEffectivePressureEnum);}
217 else if(FrictionCoupling==4){
218 iomodel->FetchDataToInput(inputs2,elements,"md.friction.effective_pressure",EffectivePressureEnum);
219 }
220 break;
221 case 4:
222 iomodel->FetchDataToInput(inputs2,elements,"md.friction.coefficient",FrictionCoefficientEnum);
223 iomodel->FetchDataToInput(inputs2,elements,"md.friction.p",FrictionPEnum);
224 iomodel->FetchDataToInput(inputs2,elements,"md.friction.q",FrictionQEnum);
225 iomodel->FetchDataToInput(inputs2,elements,"md.initialization.pressure",PressureEnum);
226 iomodel->FetchDataToInput(inputs2,elements,"md.initialization.temperature",TemperatureEnum);
227 iomodel->FindConstant(&FrictionCoupling,"md.friction.coupling");
228 break;
229 case 5:
230 iomodel->FetchDataToInput(inputs2,elements,"md.friction.coefficient",FrictionCoefficientEnum);
231 iomodel->FetchDataToInput(inputs2,elements,"md.friction.p",FrictionPEnum);
232 iomodel->FetchDataToInput(inputs2,elements,"md.friction.q",FrictionQEnum);
233 iomodel->FetchDataToInput(inputs2,elements,"md.friction.water_layer",FrictionWaterLayerEnum);
234 break;
235 case 6:
236 iomodel->FetchDataToInput(inputs2,elements,"md.friction.C",FrictionCEnum);
237 iomodel->FetchDataToInput(inputs2,elements,"md.friction.m",FrictionMEnum);
238 iomodel->FetchDataToInput(inputs2,elements,"md.initialization.pressure",PressureEnum);
239 iomodel->FetchDataToInput(inputs2,elements,"md.initialization.temperature",TemperatureEnum);
240 break;
241 case 7:
242 iomodel->FindConstant(&FrictionCoupling,"md.friction.coupling");
243 iomodel->FetchDataToInput(inputs2,elements,"md.friction.coefficient",FrictionCoefficientEnum);
244 iomodel->FetchDataToInput(inputs2,elements,"md.friction.coefficientcoulomb",FrictionCoefficientcoulombEnum);
245 iomodel->FetchDataToInput(inputs2,elements,"md.friction.p",FrictionPEnum);
246 iomodel->FetchDataToInput(inputs2,elements,"md.friction.q",FrictionQEnum);
247 if (FrictionCoupling==3){
248 iomodel->FetchDataToInput(inputs2,elements,"md.friction.effective_pressure",FrictionEffectivePressureEnum);}
249 else if(FrictionCoupling==4){
250 iomodel->FetchDataToInput(inputs2,elements,"md.friction.effective_pressure",EffectivePressureEnum);
251 }
252 break;
253 case 9:
254 iomodel->FetchDataToInput(inputs2,elements,"md.friction.coefficient",FrictionCoefficientEnum);
255 iomodel->FetchDataToInput(inputs2,elements,"md.friction.pressure_adjusted_temperature",FrictionPressureAdjustedTemperatureEnum);
256 InputUpdateFromConstantx(inputs2,elements,1.,FrictionPEnum);
257 InputUpdateFromConstantx(inputs2,elements,1.,FrictionQEnum);
258 break;
259 default:
260 _error_("friction law not supported");
261 }
262
263 /*Free data: */
264 iomodel->DeleteData(3,"md.initialization.temperature","md.initialization.waterfraction","md.initialization.pressure");
265
266}/*}}}*/
267void EnthalpyAnalysis::UpdateParameters(Parameters* parameters,IoModel* iomodel,int solution_enum,int analysis_enum){/*{{{*/
268
269 int numoutputs;
270 char** requestedoutputs = NULL;
271
272 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.stabilization",ThermalStabilizationEnum));
273 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.maxiter",ThermalMaxiterEnum));
274 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.reltol",ThermalReltolEnum));
275 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.isenthalpy",ThermalIsenthalpyEnum));
276 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.isdynamicbasalspc",ThermalIsdynamicbasalspcEnum));
277 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.isdrainicecolumn",ThermalIsdrainicecolumnEnum));
278 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.watercolumn_upperlimit",ThermalWatercolumnUpperlimitEnum));
279 parameters->AddObject(iomodel->CopyConstantObject("md.friction.law",FrictionLawEnum));
280
281 iomodel->FindConstant(&requestedoutputs,&numoutputs,"md.thermal.requested_outputs");
282 parameters->AddObject(new IntParam(ThermalNumRequestedOutputsEnum,numoutputs));
283 if(numoutputs)parameters->AddObject(new StringArrayParam(ThermalRequestedOutputsEnum,requestedoutputs,numoutputs));
284 iomodel->DeleteData(&requestedoutputs,numoutputs,"md.thermal.requested_outputs");
285
286 /*Deal with friction parameters*/
287 int frictionlaw;
288 iomodel->FindConstant(&frictionlaw,"md.friction.law");
289 if(frictionlaw==6){
290 parameters->AddObject(iomodel->CopyConstantObject("md.friction.gamma",FrictionGammaEnum));
291 }
292 if(frictionlaw==4){
293 parameters->AddObject(iomodel->CopyConstantObject("md.friction.gamma",FrictionGammaEnum));
294 parameters->AddObject(iomodel->CopyConstantObject("md.friction.coupling",FrictionCouplingEnum));
295 parameters->AddObject(iomodel->CopyConstantObject("md.friction.effective_pressure_limit",FrictionEffectivePressureLimitEnum));
296 }
297 if(frictionlaw==1 || frictionlaw==3 || frictionlaw==7){
298 parameters->AddObject(iomodel->CopyConstantObject("md.friction.coupling",FrictionCouplingEnum));
299 parameters->AddObject(iomodel->CopyConstantObject("md.friction.effective_pressure_limit",FrictionEffectivePressureLimitEnum));
300 }
301 if(frictionlaw==9){
302 parameters->AddObject(iomodel->CopyConstantObject("md.friction.gamma",FrictionGammaEnum));
303 parameters->AddObject(iomodel->CopyConstantObject("md.friction.effective_pressure_limit",FrictionEffectivePressureLimitEnum));
304 parameters->AddObject(new IntParam(FrictionCouplingEnum,0));
305 }
306}/*}}}*/
307
308/*Finite Element Analysis*/
309void EnthalpyAnalysis::ApplyBasalConstraints(IssmDouble* serial_spc,Element* element){/*{{{*/
310
311 /* Do not check if ice in element, this may lead to inconsistencies between cpu partitions */
312 /* Only update constraints at the base. */
313 if(!(element->IsOnBase())) return;
314
315 /*Intermediary*/
316 bool isdynamicbasalspc;
317 int numindices;
318 int *indices = NULL;
319 Node* node = NULL;
320 IssmDouble pressure;
321
322 /*Check wether dynamic basal boundary conditions are activated */
323 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
324 if(!isdynamicbasalspc) return;
325
326 /*Get parameters and inputs: */
327 Input2* pressure_input = element->GetInput2(PressureEnum); _assert_(pressure_input);
328
329 /*Fetch indices of basal & surface nodes for this finite element*/
330 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
331 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
332
333 GaussPenta* gauss=new GaussPenta();
334 for(int i=0;i<numindices;i++){
335 gauss->GaussNode(element->GetElementType(),indices[i]);
336
337 pressure_input->GetInputValue(&pressure,gauss);
338
339 /*apply or release spc*/
340 node=element->GetNode(indices[i]);
341 if(!node->IsActive()) continue;
342 if(serial_spc[node->Sid()]==1.){
343 pressure_input->GetInputValue(&pressure, gauss);
344 node->ApplyConstraint(0,PureIceEnthalpy(element,pressure));
345 }
346 else {
347 node->DofInFSet(0);
348 }
349 }
350
351 /*Free ressources:*/
352 xDelete<int>(indices);
353 delete gauss;
354}/*}}}*/
355void EnthalpyAnalysis::ComputeBasalMeltingrate(FemModel* femmodel){/*{{{*/
356 /*Compute basal melting rates: */
357 for(int i=0;i<femmodel->elements->Size();i++){
358 Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
359 ComputeBasalMeltingrate(element);
360 }
361
362 /*extrude inputs*/
363 femmodel->parameters->SetParam(BasalforcingsGroundediceMeltingRateEnum,InputToExtrudeEnum);
364 extrudefrombase_core(femmodel);
365}/*}}}*/
366void EnthalpyAnalysis::ComputeBasalMeltingrate(Element* element){/*{{{*/
367 /*Calculate the basal melt rates of the enthalpy model after Aschwanden 2012*/
368 /* melting rate is positive when melting, negative when refreezing*/
369
370 /* Check if ice in element */
371 if(!element->IsIceInElement()) return;
372
373 /* Only compute melt rates at the base of grounded ice*/
374 if(!element->IsOnBase() || element->IsFloating()) return;
375
376 /* Intermediaries */
377 bool converged;
378 const int dim=3;
379 int i,is,state;
380 int nodedown,nodeup,numnodes,numsegments;
381 int enthalpy_enum;
382 IssmDouble vec_heatflux[dim],normal_base[dim],d1enthalpy[dim],d1pressure[dim];
383 IssmDouble basalfriction,alpha2,geothermalflux,heatflux;
384 IssmDouble dt,yts;
385 IssmDouble melting_overshoot,lambda;
386 IssmDouble vx,vy,vz;
387 IssmDouble *xyz_list = NULL;
388 IssmDouble *xyz_list_base = NULL;
389 int *pairindices = NULL;
390
391 /*Fetch parameters*/
392 element->GetVerticesCoordinates(&xyz_list);
393 element->GetVerticesCoordinatesBase(&xyz_list_base);
394 element->GetInputValue(&converged,ConvergedEnum);
395 element->FindParam(&dt,TimesteppingTimeStepEnum);
396 element->FindParam(&yts, ConstantsYtsEnum);
397
398 if(dt==0. && !converged) enthalpy_enum=EnthalpyPicardEnum;
399 else enthalpy_enum=EnthalpyEnum;
400
401 IssmDouble latentheat = element->FindParam(MaterialsLatentheatEnum);
402 IssmDouble rho_ice = element->FindParam(MaterialsRhoIceEnum);
403 IssmDouble rho_water = element->FindParam(MaterialsRhoFreshwaterEnum);
404 IssmDouble beta = element->FindParam(MaterialsBetaEnum);
405 IssmDouble kappa = EnthalpyDiffusionParameterVolume(element,enthalpy_enum); _assert_(kappa>=0.);
406 IssmDouble kappa_mix;
407
408 /*retrieve inputs*/
409 Input2* enthalpy_input = element->GetInput2(enthalpy_enum); _assert_(enthalpy_input);
410 Input2* pressure_input = element->GetInput2(PressureEnum); _assert_(pressure_input);
411 Input2* geothermalflux_input = element->GetInput2(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input);
412 Input2* vx_input = element->GetInput2(VxEnum); _assert_(vx_input);
413 Input2* vy_input = element->GetInput2(VyEnum); _assert_(vy_input);
414 Input2* vz_input = element->GetInput2(VzEnum); _assert_(vz_input);
415
416 /*Build friction element, needed later: */
417 Friction* friction=new Friction(element,dim);
418
419 /******** MELTING RATES ************************************//*{{{*/
420 element->NormalBase(&normal_base[0],xyz_list_base);
421 element->VerticalSegmentIndicesBase(&pairindices,&numsegments);
422 IssmDouble* meltingrate_enthalpy = xNew<IssmDouble>(numsegments);
423 IssmDouble* heating = xNew<IssmDouble>(numsegments);
424
425 numnodes=element->GetNumberOfNodes();
426 IssmDouble* enthalpies = xNew<IssmDouble>(numnodes);
427 IssmDouble* pressures = xNew<IssmDouble>(numnodes);
428 IssmDouble* watercolumns = xNew<IssmDouble>(numnodes);
429 IssmDouble* basalmeltingrates = xNew<IssmDouble>(numnodes);
430 element->GetInputListOnNodes(enthalpies,enthalpy_enum);
431 element->GetInputListOnNodes(pressures,PressureEnum);
432 element->GetInputListOnNodes(watercolumns,WatercolumnEnum);
433 element->GetInputListOnNodes(basalmeltingrates,BasalforcingsGroundediceMeltingRateEnum);
434
435 IssmDouble watercolumnupperlimit = element->FindParam(ThermalWatercolumnUpperlimitEnum);
436
437 Gauss* gauss=element->NewGauss();
438 for(is=0;is<numsegments;is++){
439 nodedown = pairindices[is*2+0];
440 nodeup = pairindices[is*2+1];
441 gauss->GaussNode(element->GetElementType(),nodedown);
442
443 state=GetThermalBasalCondition(element, enthalpies[nodedown], enthalpies[nodeup], pressures[nodedown], pressures[nodeup], watercolumns[nodedown], basalmeltingrates[nodedown]);
444 switch (state) {
445 case 0:
446 // cold, dry base: apply basal surface forcing
447 for(i=0;i<3;i++) vec_heatflux[i]=0.;
448 break;
449 case 1: case 2: case 3:
450 // case 1 : cold, wet base: keep at pressure melting point
451 // case 2: temperate, thin refreezing base: release spc
452 // case 3: temperate, thin melting base: set spc
453 enthalpy_input->GetInputDerivativeValue(&d1enthalpy[0],xyz_list,gauss);
454 for(i=0;i<3;i++) vec_heatflux[i]=-kappa*d1enthalpy[i];
455 break;
456 case 4:
457 // temperate, thick melting base: set grad H*n=0
458 kappa_mix=GetWetIceConductivity(element, enthalpies[nodedown], pressures[nodedown]);
459 pressure_input->GetInputDerivativeValue(&d1pressure[0],xyz_list,gauss);
460 for(i=0;i<3;i++) vec_heatflux[i]=kappa_mix*beta*d1pressure[i];
461 break;
462 default:
463 _printf0_(" unknown thermal basal state found!");
464 }
465 if(state==0) meltingrate_enthalpy[is]=0.;
466 else{
467 /*heat flux along normal*/
468 heatflux=0.;
469 for(i=0;i<3;i++) heatflux+=(vec_heatflux[i])*normal_base[i];
470
471 /*basal friction*/
472 friction->GetAlpha2(&alpha2,gauss);
473 vx_input->GetInputValue(&vx,gauss); vy_input->GetInputValue(&vy,gauss); vz_input->GetInputValue(&vz,gauss);
474 basalfriction=alpha2*(vx*vx + vy*vy + vz*vz);
475 geothermalflux_input->GetInputValue(&geothermalflux,gauss);
476 /* -Mb= Fb-(q-q_geo)/((1-w)*L*rho), and (1-w)*rho=rho_ice, cf Aschwanden 2012, eqs.1, 2, 66*/
477 heating[is]=(heatflux+basalfriction+geothermalflux);
478 meltingrate_enthalpy[is]=heating[is]/(latentheat*rho_ice); // m/s water equivalent
479 }
480 }/*}}}*/
481
482 /******** UPDATE MELTINGRATES AND WATERCOLUMN **************//*{{{*/
483 for(is=0;is<numsegments;is++){
484 nodedown = pairindices[is*2+0];
485 nodeup = pairindices[is*2+1];
486 if(dt!=0.){
487 if(watercolumns[nodedown]+meltingrate_enthalpy[is]*dt<0.){ // prevent too much freeze on
488 lambda = -watercolumns[nodedown]/(dt*meltingrate_enthalpy[is]); _assert_(lambda>=0.); _assert_(lambda<1.);
489 watercolumns[nodedown]=0.;
490 basalmeltingrates[nodedown]=lambda*meltingrate_enthalpy[is]; // restrict freeze on only to size of watercolumn
491 enthalpies[nodedown]+=(1.-lambda)*dt/yts*meltingrate_enthalpy[is]*latentheat*rho_ice; // use rest of energy to cool down base: dE=L*m, m=(1-lambda)*meltingrate*rho_ice
492 }
493 else{
494 basalmeltingrates[nodedown]=meltingrate_enthalpy[is];
495 watercolumns[nodedown]+=dt*meltingrate_enthalpy[is];
496 }
497 if(watercolumns[nodedown]>watercolumnupperlimit) watercolumns[nodedown]=watercolumnupperlimit;
498 }
499 else{
500 basalmeltingrates[nodedown]=meltingrate_enthalpy[is];
501 if(watercolumns[nodedown]+meltingrate_enthalpy[is]<0.)
502 watercolumns[nodedown]=0.;
503 else
504 watercolumns[nodedown]+=meltingrate_enthalpy[is];
505 }
506 basalmeltingrates[nodedown]*=rho_water/rho_ice; // convert meltingrate from water to ice equivalent
507 _assert_(watercolumns[nodedown]>=0.);
508 }/*}}}*/
509
510 /*feed updated variables back into model*/
511 int finite_element = element->GetElementType(); if(finite_element==P1Enum) finite_element = P1DGEnum;
512 if(dt!=0.){
513 element->AddInput2(enthalpy_enum,enthalpies,finite_element);
514 element->AddInput2(WatercolumnEnum,watercolumns,finite_element);
515 }
516 element->AddInput2(BasalforcingsGroundediceMeltingRateEnum,basalmeltingrates,P1DGEnum);
517
518 /*Clean up and return*/
519 delete gauss;
520 delete friction;
521 xDelete<int>(pairindices);
522 xDelete<IssmDouble>(enthalpies);
523 xDelete<IssmDouble>(pressures);
524 xDelete<IssmDouble>(watercolumns);
525 xDelete<IssmDouble>(basalmeltingrates);
526 xDelete<IssmDouble>(meltingrate_enthalpy);
527 xDelete<IssmDouble>(heating);
528 xDelete<IssmDouble>(xyz_list);
529 xDelete<IssmDouble>(xyz_list_base);
530}/*}}}*/
531void EnthalpyAnalysis::Core(FemModel* femmodel){/*{{{*/
532
533 IssmDouble dt;
534 bool isdynamicbasalspc;
535
536 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
537 femmodel->parameters->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
538
539 if(VerboseSolution()) _printf0_(" computing enthalpy\n");
540 femmodel->SetCurrentConfiguration(EnthalpyAnalysisEnum);
541 if((dt>0.) && isdynamicbasalspc) UpdateBasalConstraints(femmodel);
542 solutionsequence_thermal_nonlinear(femmodel);
543
544 /*transfer enthalpy to enthalpy picard for the next step: */
545 InputDuplicatex(femmodel,EnthalpyEnum,EnthalpyPicardEnum);
546
547 PostProcessing(femmodel);
548
549}/*}}}*/
550ElementVector* EnthalpyAnalysis::CreateDVector(Element* element){/*{{{*/
551 /*Default, return NULL*/
552 return NULL;
553}/*}}}*/
554ElementMatrix* EnthalpyAnalysis::CreateJacobianMatrix(Element* element){/*{{{*/
555_error_("Not implemented");
556}/*}}}*/
557ElementMatrix* EnthalpyAnalysis::CreateKMatrix(Element* element){/*{{{*/
558
559 /* Check if ice in element */
560 if(!element->IsIceInElement()) return NULL;
561
562 /*compute all stiffness matrices for this element*/
563 ElementMatrix* Ke1=CreateKMatrixVolume(element);
564 ElementMatrix* Ke2=CreateKMatrixShelf(element);
565 ElementMatrix* Ke =new ElementMatrix(Ke1,Ke2);
566
567 /*clean-up and return*/
568 delete Ke1;
569 delete Ke2;
570 return Ke;
571}/*}}}*/
572ElementMatrix* EnthalpyAnalysis::CreateKMatrixVolume(Element* element){/*{{{*/
573
574 /* Check if ice in element */
575 if(!element->IsIceInElement()) return NULL;
576
577 /*Intermediaries */
578 int stabilization;
579 IssmDouble Jdet,dt,u,v,w,um,vm,wm,vel;
580 IssmDouble h,hx,hy,hz,vx,vy,vz;
581 IssmDouble tau_parameter,diameter;
582 IssmDouble tau_parameter_anisotropic[2],tau_parameter_hor,tau_parameter_ver;
583 IssmDouble D_scalar;
584 IssmDouble* xyz_list = NULL;
585
586 /*Fetch number of nodes and dof for this finite element*/
587 int numnodes = element->GetNumberOfNodes();
588
589 /*Initialize Element vector and other vectors*/
590 ElementMatrix* Ke = element->NewElementMatrix();
591 IssmDouble* basis = xNew<IssmDouble>(numnodes);
592 IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
593 IssmDouble* Bprime = xNew<IssmDouble>(3*numnodes);
594 IssmDouble K[3][3];
595
596 /*Retrieve all inputs and parameters*/
597 element->GetVerticesCoordinates(&xyz_list);
598 element->FindParam(&dt,TimesteppingTimeStepEnum);
599 element->FindParam(&stabilization,ThermalStabilizationEnum);
600 IssmDouble rho_water = element->FindParam(MaterialsRhoSeawaterEnum);
601 IssmDouble rho_ice = element->FindParam(MaterialsRhoIceEnum);
602 IssmDouble gravity = element->FindParam(ConstantsGEnum);
603 IssmDouble heatcapacity = element->FindParam(MaterialsHeatcapacityEnum);
604 IssmDouble thermalconductivity = element->FindParam(MaterialsThermalconductivityEnum);
605 Input2* vx_input = element->GetInput2(VxEnum); _assert_(vx_input);
606 Input2* vy_input = element->GetInput2(VyEnum); _assert_(vy_input);
607 Input2* vz_input = element->GetInput2(VzEnum); _assert_(vz_input);
608 Input2* vxm_input = element->GetInput2(VxMeshEnum); _assert_(vxm_input);
609 Input2* vym_input = element->GetInput2(VyMeshEnum); _assert_(vym_input);
610 Input2* vzm_input = element->GetInput2(VzMeshEnum); _assert_(vzm_input);
611
612 /*Enthalpy diffusion parameter*/
613 IssmDouble kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
614
615 /* Start looping on the number of gaussian points: */
616 Gauss* gauss=element->NewGauss(4);
617 for(int ig=gauss->begin();ig<gauss->end();ig++){
618 gauss->GaussPoint(ig);
619
620 element->JacobianDeterminant(&Jdet,xyz_list,gauss);
621 element->NodalFunctions(basis,gauss);
622 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
623
624 D_scalar=gauss->weight*Jdet;
625 if(dt!=0.) D_scalar=D_scalar*dt;
626
627 /*Conduction: */
628 for(int i=0;i<numnodes;i++){
629 for(int j=0;j<numnodes;j++){
630 Ke->values[i*numnodes+j] += D_scalar*kappa/rho_ice*(
631 dbasis[0*numnodes+j]*dbasis[0*numnodes+i] + dbasis[1*numnodes+j]*dbasis[1*numnodes+i] + dbasis[2*numnodes+j]*dbasis[2*numnodes+i]
632 );
633 }
634 }
635
636 /*Advection: */
637 vx_input->GetInputValue(&u,gauss); vxm_input->GetInputValue(&um,gauss); vx=u-um;
638 vy_input->GetInputValue(&v,gauss); vym_input->GetInputValue(&vm,gauss); vy=v-vm;
639 vz_input->GetInputValue(&w,gauss); vzm_input->GetInputValue(&wm,gauss); vz=w-wm;
640 for(int i=0;i<numnodes;i++){
641 for(int j=0;j<numnodes;j++){
642 Ke->values[i*numnodes+j] += D_scalar*(
643 vx*dbasis[0*numnodes+j]*basis[i] + vy*dbasis[1*numnodes+j]*basis[i] +vz*dbasis[2*numnodes+j]*basis[i]
644 );
645 }
646 }
647
648 /*Transient: */
649 if(dt!=0.){
650 D_scalar=gauss->weight*Jdet;
651 for(int i=0;i<numnodes;i++){
652 for(int j=0;j<numnodes;j++){
653 Ke->values[i*numnodes+j] += D_scalar*basis[j]*basis[i];
654 }
655 }
656 D_scalar=D_scalar*dt;
657 }
658
659 /*Artificial diffusivity*/
660 if(stabilization==1){
661 element->ElementSizes(&hx,&hy,&hz);
662 vel=sqrt(vx*vx + vy*vy + vz*vz)+1.e-14;
663 h=sqrt( pow(hx*vx/vel,2) + pow(hy*vy/vel,2) + pow(hz*vz/vel,2));
664 K[0][0]=h/(2.*vel)*fabs(vx*vx); K[0][1]=h/(2.*vel)*fabs(vx*vy); K[0][2]=h/(2.*vel)*fabs(vx*vz);
665 K[1][0]=h/(2.*vel)*fabs(vy*vx); K[1][1]=h/(2.*vel)*fabs(vy*vy); K[1][2]=h/(2.*vel)*fabs(vy*vz);
666 K[2][0]=h/(2.*vel)*fabs(vz*vx); K[2][1]=h/(2.*vel)*fabs(vz*vy); K[2][2]=h/(2.*vel)*fabs(vz*vz);
667 for(int i=0;i<3;i++) for(int j=0;j<3;j++) K[i][j] = D_scalar*K[i][j];
668
669 GetBAdvecprime(Bprime,element,xyz_list,gauss);
670 TripleMultiply(Bprime,3,numnodes,1,
671 &K[0][0],3,3,0,
672 Bprime,3,numnodes,0,
673 &Ke->values[0],1);
674 }
675 /*SUPG*/
676 else if(stabilization==2){
677 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
678 diameter=element->MinEdgeLength(xyz_list);
679 tau_parameter=element->StabilizationParameter(u-um,v-vm,w-wm,diameter,kappa/rho_ice);
680 for(int i=0;i<numnodes;i++){
681 for(int j=0;j<numnodes;j++){
682 Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*
683 ((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i])*
684 ((u-um)*dbasis[0*numnodes+j]+(v-vm)*dbasis[1*numnodes+j]+(w-wm)*dbasis[2*numnodes+j]);
685 }
686 }
687 if(dt!=0.){
688 D_scalar=gauss->weight*Jdet;
689 for(int i=0;i<numnodes;i++){
690 for(int j=0;j<numnodes;j++){
691 Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*basis[j]*((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i]);
692 }
693 }
694 }
695 }
696 /*anisotropic SUPG*/
697 else if(stabilization==3){
698 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
699 element->ElementSizes(&hx,&hy,&hz);
700 element->StabilizationParameterAnisotropic(&tau_parameter_anisotropic[0],u-um,v-vm,w-wm,hx,hy,hz,kappa/rho_ice);
701 tau_parameter_hor=tau_parameter_anisotropic[0];
702 tau_parameter_ver=tau_parameter_anisotropic[1];
703 for(int i=0;i<numnodes;i++){
704 for(int j=0;j<numnodes;j++){
705 Ke->values[i*numnodes+j]+=D_scalar*
706 (sqrt(tau_parameter_hor)*(u-um)*dbasis[0*numnodes+i]+sqrt(tau_parameter_hor)*(v-vm)*dbasis[1*numnodes+i]+sqrt(tau_parameter_ver)*(w-wm)*dbasis[2*numnodes+i])*
707 (sqrt(tau_parameter_hor)*(u-um)*dbasis[0*numnodes+j]+sqrt(tau_parameter_hor)*(v-vm)*dbasis[1*numnodes+j]+sqrt(tau_parameter_ver)*(w-wm)*dbasis[2*numnodes+j]);
708 }
709 }
710 }
711 }
712
713 /*Clean up and return*/
714 xDelete<IssmDouble>(xyz_list);
715 xDelete<IssmDouble>(basis);
716 xDelete<IssmDouble>(dbasis);
717 xDelete<IssmDouble>(Bprime);
718 delete gauss;
719 return Ke;
720}/*}}}*/
721ElementMatrix* EnthalpyAnalysis::CreateKMatrixShelf(Element* element){/*{{{*/
722
723 /* Check if ice in element */
724 if(!element->IsIceInElement()) return NULL;
725
726 /*Initialize Element matrix and return if necessary*/
727 if(!element->IsOnBase() || !element->IsFloating()) return NULL;
728
729 /*Intermediaries*/
730 IssmDouble dt,Jdet,D;
731 IssmDouble *xyz_list_base = NULL;
732
733 /*Fetch number of nodes for this finite element*/
734 int numnodes = element->GetNumberOfNodes();
735
736 /*Initialize vectors*/
737 ElementMatrix* Ke = element->NewElementMatrix();
738 IssmDouble* basis = xNew<IssmDouble>(numnodes);
739
740 /*Retrieve all inputs and parameters*/
741 element->GetVerticesCoordinatesBase(&xyz_list_base);
742 element->FindParam(&dt,TimesteppingTimeStepEnum);
743 IssmDouble gravity = element->FindParam(ConstantsGEnum);
744 IssmDouble rho_water = element->FindParam(MaterialsRhoSeawaterEnum);
745 IssmDouble rho_ice = element->FindParam(MaterialsRhoIceEnum);
746 IssmDouble heatcapacity = element->FindParam(MaterialsHeatcapacityEnum);
747 IssmDouble mixed_layer_capacity= element->FindParam(MaterialsMixedLayerCapacityEnum);
748 IssmDouble thermal_exchange_vel= element->FindParam(MaterialsThermalExchangeVelocityEnum);
749
750 /* Start looping on the number of gaussian points: */
751 Gauss* gauss=element->NewGaussBase(4);
752 for(int ig=gauss->begin();ig<gauss->end();ig++){
753 gauss->GaussPoint(ig);
754
755 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
756 element->NodalFunctions(basis,gauss);
757
758 D=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel/(heatcapacity*rho_ice);
759 if(reCast<bool,IssmDouble>(dt)) D=dt*D;
760 TripleMultiply(basis,numnodes,1,0,
761 &D,1,1,0,
762 basis,1,numnodes,0,
763 &Ke->values[0],1);
764
765 }
766
767 /*Clean up and return*/
768 delete gauss;
769 xDelete<IssmDouble>(basis);
770 xDelete<IssmDouble>(xyz_list_base);
771 return Ke;
772}/*}}}*/
773ElementVector* EnthalpyAnalysis::CreatePVector(Element* element){/*{{{*/
774
775 /* Check if ice in element */
776 if(!element->IsIceInElement()) return NULL;
777
778 /*compute all load vectors for this element*/
779 ElementVector* pe1=CreatePVectorVolume(element);
780 ElementVector* pe2=CreatePVectorSheet(element);
781 ElementVector* pe3=CreatePVectorShelf(element);
782 ElementVector* pe =new ElementVector(pe1,pe2,pe3);
783
784 /*clean-up and return*/
785 delete pe1;
786 delete pe2;
787 delete pe3;
788 return pe;
789}/*}}}*/
790ElementVector* EnthalpyAnalysis::CreatePVectorVolume(Element* element){/*{{{*/
791
792 /* Check if ice in element */
793 if(!element->IsIceInElement()) return NULL;
794
795 /*Intermediaries*/
796 int i, stabilization;
797 IssmDouble Jdet,phi,dt;
798 IssmDouble enthalpy, Hpmp;
799 IssmDouble enthalpypicard, d1enthalpypicard[3];
800 IssmDouble pressure, d1pressure[3], d2pressure;
801 IssmDouble waterfractionpicard;
802 IssmDouble kappa,tau_parameter,diameter,hx,hy,hz,kappa_w;
803 IssmDouble tau_parameter_anisotropic[2],tau_parameter_hor,tau_parameter_ver;
804 IssmDouble u,v,w;
805 IssmDouble scalar_def, scalar_sens ,scalar_transient;
806 IssmDouble* xyz_list = NULL;
807 IssmDouble d1H_d1P, d1P2;
808
809 /*Fetch number of nodes and dof for this finite element*/
810 int numnodes = element->GetNumberOfNodes();
811 int numvertices = element->GetNumberOfVertices();
812
813 /*Initialize Element vector*/
814 ElementVector* pe = element->NewElementVector();
815 IssmDouble* basis = xNew<IssmDouble>(numnodes);
816 IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
817
818 /*Retrieve all inputs and parameters*/
819 element->GetVerticesCoordinates(&xyz_list);
820 IssmDouble rho_ice = element->FindParam(MaterialsRhoIceEnum);
821 IssmDouble heatcapacity = element->FindParam(MaterialsHeatcapacityEnum);
822 IssmDouble thermalconductivity = element->FindParam(MaterialsThermalconductivityEnum);
823 IssmDouble temperateiceconductivity = element->FindParam(MaterialsTemperateiceconductivityEnum);
824 IssmDouble beta = element->FindParam(MaterialsBetaEnum);
825 IssmDouble latentheat = element->FindParam(MaterialsLatentheatEnum);
826 element->FindParam(&dt,TimesteppingTimeStepEnum);
827 element->FindParam(&stabilization,ThermalStabilizationEnum);
828 Input2* vx_input=element->GetInput2(VxEnum); _assert_(vx_input);
829 Input2* vy_input=element->GetInput2(VyEnum); _assert_(vy_input);
830 Input2* vz_input=element->GetInput2(VzEnum); _assert_(vz_input);
831 Input2* enthalpypicard_input=element->GetInput2(EnthalpyPicardEnum); _assert_(enthalpypicard_input);
832 Input2* pressure_input=element->GetInput2(PressureEnum); _assert_(pressure_input);
833 Input2* enthalpy_input=NULL;
834 if(dt>0.){
835 enthalpy_input = element->GetInput2(EnthalpyEnum); _assert_(enthalpy_input);
836 }
837
838 /* Start looping on the number of gaussian points: */
839 Gauss* gauss=element->NewGauss(4);
840 for(int ig=gauss->begin();ig<gauss->end();ig++){
841 gauss->GaussPoint(ig);
842
843 element->JacobianDeterminant(&Jdet,xyz_list,gauss);
844 element->NodalFunctions(basis,gauss);
845
846 /*viscous dissipation*/
847 element->ViscousHeating(&phi,xyz_list,gauss,vx_input,vy_input,vz_input);
848
849 scalar_def=phi/rho_ice*Jdet*gauss->weight;
850 if(dt!=0.) scalar_def=scalar_def*dt;
851
852 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_def*basis[i];
853
854 /*sensible heat flux in temperate ice*/
855 enthalpypicard_input->GetInputValue(&enthalpypicard,gauss);
856 pressure_input->GetInputValue(&pressure,gauss);
857 Hpmp=this->PureIceEnthalpy(element, pressure);
858
859 if(enthalpypicard>=Hpmp){
860 enthalpypicard_input->GetInputDerivativeValue(&d1enthalpypicard[0],xyz_list,gauss);
861 pressure_input->GetInputDerivativeValue(&d1pressure[0],xyz_list,gauss);
862 d2pressure=0.; // for linear elements, 2nd derivative is zero
863
864 d1H_d1P=0.;
865 for(i=0;i<3;i++) d1H_d1P+=d1enthalpypicard[i]*d1pressure[i];
866 d1P2=0.;
867 for(i=0;i<3;i++) d1P2+=pow(d1pressure[i],2.);
868
869 scalar_sens=-beta*((temperateiceconductivity - thermalconductivity)/latentheat*(d1H_d1P + beta*heatcapacity*d1P2))/rho_ice;
870 if(dt!=0.) scalar_sens=scalar_sens*dt;
871 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_sens*basis[i];
872 }
873
874 /* Build transient now */
875 if(dt>0.){
876 enthalpy_input->GetInputValue(&enthalpy, gauss);
877 scalar_transient=enthalpy*Jdet*gauss->weight;
878 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_transient*basis[i];
879 }
880
881 /* SUPG */
882 if(stabilization==2){
883 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
884 diameter=element->MinEdgeLength(xyz_list);
885 kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
886 vx_input->GetInputValue(&u,gauss);
887 vy_input->GetInputValue(&v,gauss);
888 vz_input->GetInputValue(&w,gauss);
889 tau_parameter=element->StabilizationParameter(u,v,w,diameter,kappa/rho_ice);
890
891 for(i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_def*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]);
892
893 if(dt!=0.){
894 for(i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_transient*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]);
895 }
896 }
897 /* anisotropic SUPG */
898 else if(stabilization==3){
899 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
900 element->ElementSizes(&hx,&hy,&hz);
901 kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
902 vx_input->GetInputValue(&u,gauss);
903 vy_input->GetInputValue(&v,gauss);
904 vz_input->GetInputValue(&w,gauss);
905 element->StabilizationParameterAnisotropic(&tau_parameter_anisotropic[0],u,v,w,hx,hy,hz,kappa/rho_ice);
906 tau_parameter_hor=tau_parameter_anisotropic[0];
907 tau_parameter_ver=tau_parameter_anisotropic[1];
908
909 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_def*(tau_parameter_hor*u*dbasis[0*numnodes+i]+tau_parameter_hor*v*dbasis[1*numnodes+i]+tau_parameter_ver*w*dbasis[2*numnodes+i]);
910 }
911 }
912
913 /*Clean up and return*/
914 xDelete<IssmDouble>(basis);
915 xDelete<IssmDouble>(dbasis);
916 xDelete<IssmDouble>(xyz_list);
917 delete gauss;
918 return pe;
919
920}/*}}}*/
921ElementVector* EnthalpyAnalysis::CreatePVectorSheet(Element* element){/*{{{*/
922
923 /* Check if ice in element */
924 if(!element->IsIceInElement()) return NULL;
925
926 /* implementation of the basal condition decision chart of Aschwanden 2012, Fig.5 */
927 if(!element->IsOnBase() || element->IsFloating()) return NULL;
928
929 bool converged, isdynamicbasalspc;
930 int i, state;
931 int enthalpy_enum;
932 IssmDouble dt,Jdet,scalar;
933 IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
934 IssmDouble vx,vy,vz;
935 IssmDouble alpha2,basalfriction,geothermalflux,heatflux;
936 IssmDouble *xyz_list_base = NULL;
937
938 /*Fetch number of nodes for this finite element*/
939 int numnodes = element->GetNumberOfNodes();
940
941 /*Initialize vectors*/
942 ElementVector* pe = element->NewElementVector();
943 IssmDouble* basis = xNew<IssmDouble>(numnodes);
944
945 /*Retrieve all inputs and parameters*/
946 element->GetVerticesCoordinatesBase(&xyz_list_base);
947 element->FindParam(&dt,TimesteppingTimeStepEnum);
948 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
949 element->GetInputValue(&converged,ConvergedEnum);
950 if(dt==0. && !converged) enthalpy_enum=EnthalpyPicardEnum; // use enthalpy from last iteration
951 else enthalpy_enum=EnthalpyEnum; // use enthalpy from last time step
952 Input2* vx_input = element->GetInput2(VxEnum); _assert_(vx_input);
953 Input2* vy_input = element->GetInput2(VyEnum); _assert_(vy_input);
954 Input2* vz_input = element->GetInput2(VzEnum); _assert_(vz_input);
955 Input2* enthalpy_input = element->GetInput2(enthalpy_enum); _assert_(enthalpy_input);
956 Input2* pressure_input = element->GetInput2(PressureEnum); _assert_(pressure_input);
957 Input2* watercolumn_input = element->GetInput2(WatercolumnEnum); _assert_(watercolumn_input);
958 Input2* meltingrate_input = element->GetInput2(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
959 Input2* geothermalflux_input = element->GetInput2(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input);
960 IssmDouble rho_ice = element->FindParam(MaterialsRhoIceEnum);
961
962 /*Build friction element, needed later: */
963 Friction* friction=new Friction(element,3);
964
965 /* Start looping on the number of gaussian points: */
966 Gauss* gauss=element->NewGaussBase(4);
967 Gauss* gaussup=element->NewGaussTop(4);
968 for(int ig=gauss->begin();ig<gauss->end();ig++){
969 gauss->GaussPoint(ig);
970 gaussup->GaussPoint(ig);
971
972 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
973 element->NodalFunctions(basis,gauss);
974
975 if(isdynamicbasalspc){
976 enthalpy_input->GetInputValue(&enthalpy,gauss);
977 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
978 pressure_input->GetInputValue(&pressure,gauss);
979 pressure_input->GetInputValue(&pressureup,gaussup);
980 watercolumn_input->GetInputValue(&watercolumn,gauss);
981 meltingrate_input->GetInputValue(&meltingrate,gauss);
982 state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
983 }
984 else
985 state=0;
986
987 switch (state) {
988 case 0: case 1: case 2: case 3:
989 // cold, dry base; cold, wet base; refreezing temperate base; thin temperate base:
990 // Apply basal surface forcing.
991 // Interpolated values of enthalpy on gauss nodes may indicate cold base,
992 // although one node might have become temperate. So keep heat flux switched on.
993 geothermalflux_input->GetInputValue(&geothermalflux,gauss);
994 friction->GetAlpha2(&alpha2,gauss);
995 vx_input->GetInputValue(&vx,gauss);
996 vy_input->GetInputValue(&vy,gauss);
997 vz_input->GetInputValue(&vz,gauss);
998 basalfriction=alpha2*(vx*vx+vy*vy+vz*vz);
999 heatflux=(basalfriction+geothermalflux)/(rho_ice);
1000 scalar=gauss->weight*Jdet*heatflux;
1001 if(dt!=0.) scalar=dt*scalar;
1002 for(i=0;i<numnodes;i++)
1003 pe->values[i]+=scalar*basis[i];
1004 break;
1005 case 4:
1006 // temperate, thick melting base: set grad H*n=0
1007 for(i=0;i<numnodes;i++)
1008 pe->values[i]+=0.;
1009 break;
1010 default:
1011 _printf0_(" unknown thermal basal state found!");
1012 }
1013 }
1014
1015 /*Clean up and return*/
1016 delete gauss;
1017 delete gaussup;
1018 delete friction;
1019 xDelete<IssmDouble>(basis);
1020 xDelete<IssmDouble>(xyz_list_base);
1021 return pe;
1022
1023}/*}}}*/
1024ElementVector* EnthalpyAnalysis::CreatePVectorShelf(Element* element){/*{{{*/
1025
1026 /* Check if ice in element */
1027 if(!element->IsIceInElement()) return NULL;
1028
1029 /*Get basal element*/
1030 if(!element->IsOnBase() || !element->IsFloating()) return NULL;
1031
1032 IssmDouble Hpmp,dt,Jdet,scalar_ocean,pressure;
1033 IssmDouble *xyz_list_base = NULL;
1034
1035 /*Fetch number of nodes for this finite element*/
1036 int numnodes = element->GetNumberOfNodes();
1037
1038 /*Initialize vectors*/
1039 ElementVector* pe = element->NewElementVector();
1040 IssmDouble* basis = xNew<IssmDouble>(numnodes);
1041
1042 /*Retrieve all inputs and parameters*/
1043 element->GetVerticesCoordinatesBase(&xyz_list_base);
1044 element->FindParam(&dt,TimesteppingTimeStepEnum);
1045 Input2* pressure_input=element->GetInput2(PressureEnum); _assert_(pressure_input);
1046 IssmDouble gravity = element->FindParam(ConstantsGEnum);
1047 IssmDouble rho_water = element->FindParam(MaterialsRhoSeawaterEnum);
1048 IssmDouble rho_ice = element->FindParam(MaterialsRhoIceEnum);
1049 IssmDouble heatcapacity = element->FindParam(MaterialsHeatcapacityEnum);
1050 IssmDouble mixed_layer_capacity= element->FindParam(MaterialsMixedLayerCapacityEnum);
1051 IssmDouble thermal_exchange_vel= element->FindParam(MaterialsThermalExchangeVelocityEnum);
1052
1053 /* Start looping on the number of gaussian points: */
1054 Gauss* gauss=element->NewGaussBase(4);
1055 for(int ig=gauss->begin();ig<gauss->end();ig++){
1056 gauss->GaussPoint(ig);
1057
1058 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
1059 element->NodalFunctions(basis,gauss);
1060
1061 pressure_input->GetInputValue(&pressure,gauss);
1062 Hpmp=element->PureIceEnthalpy(pressure);
1063
1064 scalar_ocean=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel*Hpmp/(heatcapacity*rho_ice);
1065 if(reCast<bool,IssmDouble>(dt)) scalar_ocean=dt*scalar_ocean;
1066
1067 for(int i=0;i<numnodes;i++) pe->values[i]+=scalar_ocean*basis[i];
1068 }
1069
1070 /*Clean up and return*/
1071 delete gauss;
1072 xDelete<IssmDouble>(basis);
1073 xDelete<IssmDouble>(xyz_list_base);
1074 return pe;
1075}/*}}}*/
1076void EnthalpyAnalysis::DrainWaterfraction(FemModel* femmodel){/*{{{*/
1077 /*Drain excess water fraction in ice column: */
1078 ComputeWaterfractionDrainage(femmodel);
1079 DrainageUpdateWatercolumn(femmodel);
1080 DrainageUpdateEnthalpy(femmodel);
1081}/*}}}*/
1082void EnthalpyAnalysis::ComputeWaterfractionDrainage(FemModel* femmodel){/*{{{*/
1083
1084 int i,k,numnodes;
1085 IssmDouble dt;
1086 Element* element= NULL;
1087
1088 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
1089
1090 for(i=0;i<femmodel->elements->Size();i++){
1091 element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1092 numnodes=element->GetNumberOfNodes();
1093 IssmDouble* waterfractions= xNew<IssmDouble>(numnodes);
1094 IssmDouble* drainage= xNew<IssmDouble>(numnodes);
1095
1096 element->GetInputListOnNodes(waterfractions,WaterfractionEnum);
1097 for(k=0; k<numnodes;k++){
1098 drainage[k]=DrainageFunctionWaterfraction(waterfractions[k], dt);
1099 }
1100 int finite_element = element->GetElementType(); if(finite_element==P1Enum) finite_element = P1DGEnum;
1101 element->AddInput2(WaterfractionDrainageEnum,drainage,finite_element);
1102
1103 xDelete<IssmDouble>(waterfractions);
1104 xDelete<IssmDouble>(drainage);
1105 }
1106}/*}}}*/
1107void EnthalpyAnalysis::DrainageUpdateWatercolumn(FemModel* femmodel){/*{{{*/
1108
1109 int i,k,numnodes, numbasalnodes;
1110 IssmDouble dt;
1111 int* basalnodeindices=NULL;
1112 Element* element= NULL;
1113
1114 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
1115
1116 /*depth-integrate the drained water fraction */
1117 femmodel->parameters->SetParam(WaterfractionDrainageEnum,InputToDepthaverageInEnum);
1118 femmodel->parameters->SetParam(WaterfractionDrainageIntegratedEnum,InputToDepthaverageOutEnum);
1119 depthaverage_core(femmodel);
1120 femmodel->parameters->SetParam(WaterfractionDrainageIntegratedEnum,InputToExtrudeEnum);
1121 extrudefrombase_core(femmodel);
1122 /*multiply depth-average by ice thickness*/
1123 for(i=0;i<femmodel->elements->Size();i++){
1124 element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1125 numnodes=element->GetNumberOfNodes();
1126 IssmDouble* drainage_int= xNew<IssmDouble>(numnodes);
1127 IssmDouble* thicknesses= xNew<IssmDouble>(numnodes);
1128
1129 element->GetInputListOnNodes(drainage_int,WaterfractionDrainageIntegratedEnum);
1130 element->GetInputListOnNodes(thicknesses,ThicknessEnum);
1131 for(k=0;k<numnodes;k++){
1132 drainage_int[k]*=thicknesses[k];
1133 }
1134 int finite_element = element->GetElementType(); if(finite_element==P1Enum) finite_element = P1DGEnum;
1135 element->AddInput2(WaterfractionDrainageIntegratedEnum, drainage_int,finite_element);
1136
1137 xDelete<IssmDouble>(drainage_int);
1138 xDelete<IssmDouble>(thicknesses);
1139 }
1140
1141 /*update water column*/
1142 for(i=0;i<femmodel->elements->Size();i++){
1143 element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1144 /* Check if ice in element */
1145 if(!element->IsIceInElement()) continue;
1146 if(!element->IsOnBase()) continue;
1147
1148 numnodes=element->GetNumberOfNodes();
1149 IssmDouble* watercolumn= xNew<IssmDouble>(numnodes);
1150 IssmDouble* drainage_int= xNew<IssmDouble>(numnodes);
1151 element->GetInputListOnNodes(watercolumn,WatercolumnEnum);
1152 element->GetInputListOnNodes(drainage_int,WaterfractionDrainageIntegratedEnum);
1153
1154 element->BasalNodeIndices(&numbasalnodes,&basalnodeindices,element->GetElementType());
1155 for(k=0;k<numbasalnodes;k++){
1156 watercolumn[basalnodeindices[k]]+=dt*drainage_int[basalnodeindices[k]];
1157 }
1158 int finite_element = element->GetElementType(); if(finite_element==P1Enum) finite_element = P1DGEnum;
1159 element->AddInput2(WatercolumnEnum, watercolumn,finite_element);
1160
1161 xDelete<IssmDouble>(watercolumn);
1162 xDelete<IssmDouble>(drainage_int);
1163 xDelete<int>(basalnodeindices);
1164 }
1165}/*}}}*/
1166void EnthalpyAnalysis::DrainageUpdateEnthalpy(FemModel* femmodel){/*{{{*/
1167
1168 int i,k,numnodes;
1169 IssmDouble dt;
1170 Element* element= NULL;
1171 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
1172
1173 for(i=0;i<femmodel->elements->Size();i++){
1174 element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1175 numnodes=element->GetNumberOfNodes();
1176 IssmDouble* enthalpies= xNew<IssmDouble>(numnodes);
1177 IssmDouble* pressures= xNew<IssmDouble>(numnodes);
1178 IssmDouble* temperatures= xNew<IssmDouble>(numnodes);
1179 IssmDouble* waterfractions= xNew<IssmDouble>(numnodes);
1180 IssmDouble* drainage= xNew<IssmDouble>(numnodes);
1181
1182 element->GetInputListOnNodes(pressures,PressureEnum);
1183 element->GetInputListOnNodes(temperatures,TemperatureEnum);
1184 element->GetInputListOnNodes(waterfractions,WaterfractionEnum);
1185 element->GetInputListOnNodes(drainage,WaterfractionDrainageEnum);
1186
1187 for(k=0;k<numnodes;k++){
1188 if(dt==0.)
1189 waterfractions[k]-=drainage[k];
1190 else
1191 waterfractions[k]-=dt*drainage[k];
1192
1193 element->ThermalToEnthalpy(&enthalpies[k], temperatures[k], waterfractions[k], pressures[k]);
1194 }
1195 int finite_element = element->GetElementType(); if(finite_element==P1Enum) finite_element = P1DGEnum;
1196 element->AddInput2(WaterfractionEnum,waterfractions,finite_element);
1197 element->AddInput2(EnthalpyEnum,enthalpies,finite_element);
1198
1199 xDelete<IssmDouble>(enthalpies);
1200 xDelete<IssmDouble>(pressures);
1201 xDelete<IssmDouble>(temperatures);
1202 xDelete<IssmDouble>(waterfractions);
1203 xDelete<IssmDouble>(drainage);
1204 }
1205}/*}}}*/
1206IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameter(Element* element,IssmDouble enthalpy,IssmDouble pressure){/*{{{*/
1207
1208 IssmDouble heatcapacity = element->FindParam(MaterialsHeatcapacityEnum);
1209 IssmDouble temperateiceconductivity = element->FindParam(MaterialsTemperateiceconductivityEnum);
1210 IssmDouble thermalconductivity = element->FindParam(MaterialsThermalconductivityEnum);
1211
1212 if(enthalpy < PureIceEnthalpy(element,pressure))
1213 return thermalconductivity/heatcapacity;
1214 else
1215 return temperateiceconductivity/heatcapacity;
1216}/*}}}*/
1217IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameterVolume(Element* element,int enthalpy_enum){/*{{{*/
1218
1219 int iv;
1220 IssmDouble lambda; /* fraction of cold ice */
1221 IssmDouble kappa,kappa_c,kappa_t; /* enthalpy conductivities */
1222 IssmDouble Hc,Ht;
1223
1224 /*Get pressures and enthalpies on vertices*/
1225 int numvertices = element->GetNumberOfVertices();
1226 int effectiveconductivity_averaging;
1227 IssmDouble* pressures = xNew<IssmDouble>(numvertices);
1228 IssmDouble* enthalpies = xNew<IssmDouble>(numvertices);
1229 IssmDouble* PIE = xNew<IssmDouble>(numvertices);
1230 IssmDouble* dHpmp = xNew<IssmDouble>(numvertices);
1231 element->GetInputListOnVertices(pressures,PressureEnum);
1232 element->GetInputListOnVertices(enthalpies,enthalpy_enum);
1233 element->FindParam(&effectiveconductivity_averaging,MaterialsEffectiveconductivityAveragingEnum);
1234
1235 for(iv=0;iv<numvertices;iv++){
1236 PIE[iv] = PureIceEnthalpy(element,pressures[iv]);
1237 dHpmp[iv] = enthalpies[iv]-PIE[iv];
1238 }
1239
1240 bool allequalsign = true;
1241 if(dHpmp[0]<0.){
1242 for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]<0.));
1243 }
1244 else{
1245 for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]>=0.));
1246 }
1247
1248 if(allequalsign){
1249 kappa = EnthalpyDiffusionParameter(element,enthalpies[0],pressures[0]);
1250 }
1251 else{
1252 kappa_c = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)-1.,0.);
1253 kappa_t = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)+1.,0.);
1254
1255 Hc=0.; Ht=0.;
1256 for(iv=0; iv<numvertices;iv++){
1257 if(enthalpies[iv]<PIE[iv])
1258 Hc+=(PIE[iv]-enthalpies[iv]);
1259 else
1260 Ht+=(enthalpies[iv]-PIE[iv]);
1261 }
1262 _assert_((Hc+Ht)>0.);
1263 lambda = Hc/(Hc+Ht);
1264 _assert_(lambda>=0.);
1265 _assert_(lambda<=1.);
1266
1267 if(effectiveconductivity_averaging==0){
1268 /* return arithmetic mean (volume average) of thermal conductivities, weighted by fraction of cold/temperate ice */
1269 kappa=kappa_c*lambda+(1.-lambda)*kappa_t;
1270 }
1271 else if(effectiveconductivity_averaging==1){
1272 /* return harmonic mean (reciprocal avarage) of thermal conductivities, weighted by fraction of cold/temperate ice, cf Patankar 1980, pp44 */
1273 kappa=kappa_c*kappa_t/(lambda*kappa_t+(1.-lambda)*kappa_c);
1274 }
1275 else if(effectiveconductivity_averaging==2){
1276 /* return geometric mean (power law) of thermal conductivities, weighted by fraction of cold/temperate ice */
1277 kappa=pow(kappa_c,lambda)*pow(kappa_t,1.-lambda);
1278 }
1279 else{
1280 _error_("effectiveconductivity_averaging not supported yet");
1281 }
1282 }
1283
1284 /*Clean up and return*/
1285 xDelete<IssmDouble>(PIE);
1286 xDelete<IssmDouble>(dHpmp);
1287 xDelete<IssmDouble>(pressures);
1288 xDelete<IssmDouble>(enthalpies);
1289 return kappa;
1290}/*}}}*/
1291void EnthalpyAnalysis::GetBAdvec(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
1292 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
1293 * For node i, Bi' can be expressed in the actual coordinate system
1294 * by:
1295 * Bi_advec =[ h ]
1296 * [ h ]
1297 * [ h ]
1298 * where h is the interpolation function for node i.
1299 *
1300 * We assume B has been allocated already, of size: 3x(NDOF1*NUMNODESP1)
1301 */
1302
1303 /*Fetch number of nodes for this finite element*/
1304 int numnodes = element->GetNumberOfNodes();
1305
1306 /*Get nodal functions*/
1307 IssmDouble* basis=xNew<IssmDouble>(numnodes);
1308 element->NodalFunctions(basis,gauss);
1309
1310 /*Build B: */
1311 for(int i=0;i<numnodes;i++){
1312 B[numnodes*0+i] = basis[i];
1313 B[numnodes*1+i] = basis[i];
1314 B[numnodes*2+i] = basis[i];
1315 }
1316
1317 /*Clean-up*/
1318 xDelete<IssmDouble>(basis);
1319}/*}}}*/
1320void EnthalpyAnalysis::GetBAdvecprime(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
1321 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
1322 * For node i, Bi' can be expressed in the actual coordinate system
1323 * by:
1324 * Biprime_advec=[ dh/dx ]
1325 * [ dh/dy ]
1326 * [ dh/dz ]
1327 * where h is the interpolation function for node i.
1328 *
1329 * We assume B has been allocated already, of size: 3x(NDOF1*numnodes)
1330 */
1331
1332 /*Fetch number of nodes for this finite element*/
1333 int numnodes = element->GetNumberOfNodes();
1334
1335 /*Get nodal functions derivatives*/
1336 IssmDouble* dbasis=xNew<IssmDouble>(3*numnodes);
1337 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
1338
1339 /*Build B: */
1340 for(int i=0;i<numnodes;i++){
1341 B[numnodes*0+i] = dbasis[0*numnodes+i];
1342 B[numnodes*1+i] = dbasis[1*numnodes+i];
1343 B[numnodes*2+i] = dbasis[2*numnodes+i];
1344 }
1345
1346 /*Clean-up*/
1347 xDelete<IssmDouble>(dbasis);
1348}/*}}}*/
1349void EnthalpyAnalysis::GetBasalConstraints(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
1350
1351 /*Intermediary*/
1352 bool isdynamicbasalspc;
1353 IssmDouble dt;
1354
1355 /*Check wether dynamic basal boundary conditions are activated */
1356 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
1357 if(!isdynamicbasalspc) return;
1358
1359 element->FindParam(&dt,TimesteppingTimeStepEnum);
1360 if(dt==0.){
1361 GetBasalConstraintsSteadystate(vec_spc,element);
1362 }
1363 else{
1364 GetBasalConstraintsTransient(vec_spc,element);
1365 }
1366}/*}}}*/
1367void EnthalpyAnalysis::GetBasalConstraintsSteadystate(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
1368
1369 /* Check if ice in element */
1370 if(!element->IsIceInElement()) return;
1371
1372 /* Only update constraints at the base.
1373 * Floating ice is not affected by basal BC decision chart. */
1374 if(!(element->IsOnBase()) || element->IsFloating()) return;
1375
1376 /*Intermediary*/
1377 int numindices, numindicesup, state;
1378 int *indices = NULL, *indicesup = NULL;
1379 IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
1380
1381 /*Get parameters and inputs: */
1382 Input2* enthalpy_input = element->GetInput2(EnthalpyPicardEnum); _assert_(enthalpy_input);
1383 Input2* pressure_input = element->GetInput2(PressureEnum); _assert_(pressure_input);
1384 Input2* watercolumn_input = element->GetInput2(WatercolumnEnum); _assert_(watercolumn_input);
1385 Input2* meltingrate_input = element->GetInput2(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
1386
1387 /*Fetch indices of basal & surface nodes for this finite element*/
1388 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
1389 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
1390 penta->SurfaceNodeIndices(&numindicesup,&indicesup,element->GetElementType()); _assert_(numindices==numindicesup);
1391
1392 GaussPenta* gauss=new GaussPenta();
1393 GaussPenta* gaussup=new GaussPenta();
1394 for(int i=0;i<numindices;i++){
1395 gauss->GaussNode(element->GetElementType(),indices[i]);
1396 gaussup->GaussNode(element->GetElementType(),indicesup[i]);
1397
1398 enthalpy_input->GetInputValue(&enthalpy,gauss);
1399 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
1400 pressure_input->GetInputValue(&pressure,gauss);
1401 pressure_input->GetInputValue(&pressureup,gaussup);
1402 watercolumn_input->GetInputValue(&watercolumn,gauss);
1403 meltingrate_input->GetInputValue(&meltingrate,gauss);
1404
1405 state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
1406 switch (state) {
1407 case 0:
1408 // cold, dry base: apply basal surface forcing
1409 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
1410 break;
1411 case 1:
1412 // cold, wet base: keep at pressure melting point
1413 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1414 break;
1415 case 2:
1416 // temperate, thin refreezing base:
1417 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1418 break;
1419 case 3:
1420 // temperate, thin melting base: set spc
1421 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1422 break;
1423 case 4:
1424 // temperate, thick melting base:
1425 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1426 break;
1427 default:
1428 _printf0_(" unknown thermal basal state found!");
1429 }
1430 }
1431
1432 /*Free ressources:*/
1433 xDelete<int>(indices);
1434 xDelete<int>(indicesup);
1435 delete gauss;
1436 delete gaussup;
1437}/*}}}*/
1438void EnthalpyAnalysis::GetBasalConstraintsTransient(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
1439
1440 /* Check if ice in element */
1441 if(!element->IsIceInElement()) return;
1442
1443 /* Only update constraints at the base.
1444 * Floating ice is not affected by basal BC decision chart.*/
1445 if(!(element->IsOnBase()) || element->IsFloating()) return;
1446
1447 /*Intermediary*/
1448 int numindices, numindicesup, state;
1449 int *indices = NULL, *indicesup = NULL;
1450 IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
1451
1452 /*Get parameters and inputs: */
1453 Input2* enthalpy_input = element->GetInput2(EnthalpyEnum); _assert_(enthalpy_input); //TODO: check EnthalpyPicard?
1454 Input2* pressure_input = element->GetInput2(PressureEnum); _assert_(pressure_input);
1455 Input2* watercolumn_input = element->GetInput2(WatercolumnEnum); _assert_(watercolumn_input);
1456 Input2* meltingrate_input = element->GetInput2(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
1457
1458 /*Fetch indices of basal & surface nodes for this finite element*/
1459 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
1460 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
1461 penta->SurfaceNodeIndices(&numindicesup,&indicesup,element->GetElementType()); _assert_(numindices==numindicesup);
1462
1463 GaussPenta* gauss=new GaussPenta();
1464 GaussPenta* gaussup=new GaussPenta();
1465
1466 for(int i=0;i<numindices;i++){
1467 gauss->GaussNode(element->GetElementType(),indices[i]);
1468 gaussup->GaussNode(element->GetElementType(),indicesup[i]);
1469
1470 enthalpy_input->GetInputValue(&enthalpy,gauss);
1471 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
1472 pressure_input->GetInputValue(&pressure,gauss);
1473 pressure_input->GetInputValue(&pressureup,gaussup);
1474 watercolumn_input->GetInputValue(&watercolumn,gauss);
1475 meltingrate_input->GetInputValue(&meltingrate,gauss);
1476
1477 state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
1478
1479 switch (state) {
1480 case 0:
1481 // cold, dry base: apply basal surface forcing
1482 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
1483 break;
1484 case 1:
1485 // cold, wet base: keep at pressure melting point
1486 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1487 break;
1488 case 2:
1489 // temperate, thin refreezing base: release spc
1490 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
1491 break;
1492 case 3:
1493 // temperate, thin melting base: set spc
1494 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1495 break;
1496 case 4:
1497 // temperate, thick melting base: set grad H*n=0
1498 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
1499 break;
1500 default:
1501 _printf0_(" unknown thermal basal state found!");
1502 }
1503
1504 }
1505
1506 /*Free ressources:*/
1507 xDelete<int>(indices);
1508 xDelete<int>(indicesup);
1509 delete gauss;
1510 delete gaussup;
1511}/*}}}*/
1512void EnthalpyAnalysis::GetBConduct(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
1513 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
1514 * For node i, Bi' can be expressed in the actual coordinate system
1515 * by:
1516 * Bi_conduct=[ dh/dx ]
1517 * [ dh/dy ]
1518 * [ dh/dz ]
1519 * where h is the interpolation function for node i.
1520 *
1521 * We assume B has been allocated already, of size: 3x(NDOF1*numnodes)
1522 */
1523
1524 /*Fetch number of nodes for this finite element*/
1525 int numnodes = element->GetNumberOfNodes();
1526
1527 /*Get nodal functions derivatives*/
1528 IssmDouble* dbasis=xNew<IssmDouble>(3*numnodes);
1529 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
1530
1531 /*Build B: */
1532 for(int i=0;i<numnodes;i++){
1533 B[numnodes*0+i] = dbasis[0*numnodes+i];
1534 B[numnodes*1+i] = dbasis[1*numnodes+i];
1535 B[numnodes*2+i] = dbasis[2*numnodes+i];
1536 }
1537
1538 /*Clean-up*/
1539 xDelete<IssmDouble>(dbasis);
1540}/*}}}*/
1541void EnthalpyAnalysis::GetSolutionFromInputs(Vector<IssmDouble>* solution,Element* element){/*{{{*/
1542 element->GetSolutionFromInputsOneDof(solution,EnthalpyEnum);
1543}/*}}}*/
1544int EnthalpyAnalysis::GetThermalBasalCondition(Element* element, IssmDouble enthalpy, IssmDouble enthalpyup, IssmDouble pressure, IssmDouble pressureup, IssmDouble watercolumn, IssmDouble meltingrate){/*{{{*/
1545
1546 /* Check if ice in element */
1547 if(!element->IsIceInElement()) return -1;
1548
1549 /* Only update Constraints at the base of grounded ice*/
1550 if(!(element->IsOnBase())) return -1;
1551
1552 /*Intermediary*/
1553 int state=-1;
1554 IssmDouble dt;
1555
1556 /*Get parameters and inputs: */
1557 element->FindParam(&dt,TimesteppingTimeStepEnum);
1558
1559 if(enthalpy<PureIceEnthalpy(element,pressure)){
1560 if(watercolumn<=0.) state=0; // cold, dry base
1561 else state=1; // cold, wet base (refreezing)
1562 }
1563 else{
1564 if(enthalpyup<PureIceEnthalpy(element,pressureup)){
1565 if((dt==0.) && (meltingrate<0.)) state=2; // refreezing temperate base (non-physical, only for steadystate solver)
1566 else state=3; // temperate base, but no temperate layer
1567 }
1568 else state=4; // temperate layer with positive thickness
1569 }
1570
1571 _assert_(state>=0);
1572 return state;
1573}/*}}}*/
1574IssmDouble EnthalpyAnalysis::GetWetIceConductivity(Element* element, IssmDouble enthalpy, IssmDouble pressure){/*{{{*/
1575
1576 IssmDouble temperature, waterfraction;
1577 IssmDouble kappa_w = 0.6; // thermal conductivity of water (in W/m/K)
1578 IssmDouble kappa_i = element->FindParam(MaterialsThermalconductivityEnum);
1579 element->EnthalpyToThermal(&temperature, &waterfraction, enthalpy, pressure);
1580
1581 return (1.-waterfraction)*kappa_i + waterfraction*kappa_w;
1582}/*}}}*/
1583void EnthalpyAnalysis::GradientJ(Vector<IssmDouble>* gradient,Element* element,int control_type,int control_index){/*{{{*/
1584 _error_("Not implemented yet");
1585}/*}}}*/
1586void EnthalpyAnalysis::InputUpdateFromSolution(IssmDouble* solution,Element* element){/*{{{*/
1587
1588 bool converged;
1589 int i,rheology_law;
1590 IssmDouble B_average,s_average,T_average=0.,P_average=0.;
1591 int *doflist = NULL;
1592 IssmDouble *xyz_list = NULL;
1593
1594 /*Fetch number of nodes and dof for this finite element*/
1595 int numnodes = element->GetNumberOfNodes();
1596
1597 /*Fetch dof list and allocate solution vector*/
1598 element->GetDofListLocal(&doflist,NoneApproximationEnum,GsetEnum);
1599 IssmDouble* values = xNew<IssmDouble>(numnodes);
1600 IssmDouble* pressure = xNew<IssmDouble>(numnodes);
1601 IssmDouble* surface = xNew<IssmDouble>(numnodes);
1602 IssmDouble* B = xNew<IssmDouble>(numnodes);
1603 IssmDouble* temperature = xNew<IssmDouble>(numnodes);
1604 IssmDouble* waterfraction = xNew<IssmDouble>(numnodes);
1605
1606 /*Use the dof list to index into the solution vector: */
1607 for(i=0;i<numnodes;i++){
1608 values[i]=solution[doflist[i]];
1609
1610 /*Check solution*/
1611 if(xIsNan<IssmDouble>(values[i])) _error_("NaN found in solution vector");
1612 if(xIsInf<IssmDouble>(values[i])) _error_("Inf found in solution vector");
1613 }
1614
1615 /*Get all inputs and parameters*/
1616 element->GetInputValue(&converged,ConvergedEnum);
1617 element->GetInputListOnNodes(&pressure[0],PressureEnum);
1618 int finite_element = element->GetElementType(); if(finite_element==P1Enum) finite_element = P1DGEnum;
1619 if(converged){
1620 for(i=0;i<numnodes;i++){
1621 element->EnthalpyToThermal(&temperature[i],&waterfraction[i],values[i],pressure[i]);
1622 if(waterfraction[i]<0.) _error_("Negative water fraction found in solution vector");
1623 //if(waterfraction[i]>1.) _error_("Water fraction >1 found in solution vector");
1624 }
1625 element->AddInput2(EnthalpyEnum,values,finite_element);
1626 element->AddInput2(WaterfractionEnum,waterfraction,finite_element);
1627 element->AddInput2(TemperatureEnum,temperature,finite_element);
1628
1629 IssmDouble* n = xNew<IssmDouble>(numnodes);
1630 if(element->material->ObjectEnum()==MatestarEnum){
1631 for(i=0;i<numnodes;i++) n[i]=3.;
1632 }
1633 else{
1634 element->GetInputListOnNodes(&n[0],MaterialsRheologyNEnum);
1635 }
1636
1637 /*Update Rheology only if converged (we must make sure that the temperature is below melting point
1638 * otherwise the rheology could be negative*/
1639 element->FindParam(&rheology_law,MaterialsRheologyLawEnum);
1640 element->GetInputListOnNodes(&surface[0],SurfaceEnum);
1641 switch(rheology_law){
1642 case NoneEnum:
1643 /*Do nothing: B is not temperature dependent*/
1644 break;
1645 case BuddJackaEnum:
1646 for(i=0;i<numnodes;i++) B[i]=BuddJacka(temperature[i]);
1647 element->AddInput2(MaterialsRheologyBEnum,&B[0],finite_element);
1648 break;
1649 case CuffeyEnum:
1650 for(i=0;i<numnodes;i++) B[i]=Cuffey(temperature[i]);
1651 element->AddInput2(MaterialsRheologyBEnum,&B[0],finite_element);
1652 break;
1653 case CuffeyTemperateEnum:
1654 for(i=0;i<numnodes;i++) B[i]=CuffeyTemperate(temperature[i], waterfraction[i],n[i]);
1655 element->AddInput2(MaterialsRheologyBEnum,&B[0],finite_element);
1656 break;
1657 case PatersonEnum:
1658 for(i=0;i<numnodes;i++) B[i]=Paterson(temperature[i]);
1659 element->AddInput2(MaterialsRheologyBEnum,&B[0],finite_element);
1660 break;
1661 case NyeH2OEnum:
1662 for(i=0;i<numnodes;i++) B[i]=NyeH2O(values[i]);
1663 element->AddInput2(MaterialsRheologyBEnum,&B[0],finite_element);
1664 break;
1665 case NyeCO2Enum:
1666 for(i=0;i<numnodes;i++) B[i]=NyeCO2(values[i]);
1667 element->AddInput2(MaterialsRheologyBEnum,&B[0],finite_element);
1668 break;
1669 case ArrheniusEnum:{
1670 element->GetVerticesCoordinates(&xyz_list);
1671 for(i=0;i<numnodes;i++) B[i]=Arrhenius(temperature[i],surface[i]-xyz_list[i*3+2],n[i]);
1672 element->AddInput2(MaterialsRheologyBEnum,&B[0],finite_element);
1673 break;
1674 }
1675 case LliboutryDuvalEnum:{
1676 for(i=0;i<numnodes;i++) B[i]=LliboutryDuval(values[i],pressure[i],n[i],element->FindParam(MaterialsBetaEnum),element->FindParam(ConstantsReferencetemperatureEnum),element->FindParam(MaterialsHeatcapacityEnum),element->FindParam(MaterialsLatentheatEnum));
1677 element->AddInput2(MaterialsRheologyBEnum,&B[0],finite_element);
1678 break;
1679 }
1680 default: _error_("Rheology law " << EnumToStringx(rheology_law) << " not supported yet");
1681 }
1682 xDelete<IssmDouble>(n);
1683 }
1684 else{
1685 element->AddInput2(EnthalpyPicardEnum,values,finite_element);
1686 }
1687
1688 /*Free ressources:*/
1689 xDelete<IssmDouble>(values);
1690 xDelete<IssmDouble>(pressure);
1691 xDelete<IssmDouble>(surface);
1692 xDelete<IssmDouble>(B);
1693 xDelete<IssmDouble>(temperature);
1694 xDelete<IssmDouble>(waterfraction);
1695 xDelete<IssmDouble>(xyz_list);
1696 xDelete<int>(doflist);
1697}/*}}}*/
1698void EnthalpyAnalysis::PostProcessing(FemModel* femmodel){/*{{{*/
1699
1700 /*Intermediaries*/
1701 bool computebasalmeltingrates=true;
1702 bool isdrainicecolumn;
1703 IssmDouble dt;
1704
1705 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
1706 femmodel->parameters->FindParam(&isdrainicecolumn,ThermalIsdrainicecolumnEnum);
1707
1708 if(isdrainicecolumn){
1709 DrainWaterfraction(femmodel);
1710 }
1711 if(computebasalmeltingrates){
1712 ComputeBasalMeltingrate(femmodel);
1713 }
1714
1715}/*}}}*/
1716IssmDouble EnthalpyAnalysis::PureIceEnthalpy(Element* element,IssmDouble pressure){/*{{{*/
1717
1718 IssmDouble heatcapacity = element->FindParam(MaterialsHeatcapacityEnum);
1719 IssmDouble referencetemperature = element->FindParam(ConstantsReferencetemperatureEnum);
1720
1721 return heatcapacity*(TMeltingPoint(element,pressure)-referencetemperature);
1722}/*}}}*/
1723IssmDouble EnthalpyAnalysis::TMeltingPoint(Element* element,IssmDouble pressure){/*{{{*/
1724
1725 IssmDouble meltingpoint = element->FindParam(MaterialsMeltingpointEnum);
1726 IssmDouble beta = element->FindParam(MaterialsBetaEnum);
1727
1728 return meltingpoint-beta*pressure;
1729}/*}}}*/
1730void EnthalpyAnalysis::UpdateBasalConstraints(FemModel* femmodel){/*{{{*/
1731
1732 /*Update basal dirichlet BCs for enthalpy: */
1733 Vector<IssmDouble>* spc = NULL;
1734 IssmDouble* serial_spc = NULL;
1735
1736 spc=new Vector<IssmDouble>(femmodel->nodes->NumberOfNodes());
1737 /*First create a vector to figure out what elements should be constrained*/
1738 for(int i=0;i<femmodel->elements->Size();i++){
1739 Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1740 GetBasalConstraints(spc,element);
1741 }
1742
1743 /*Assemble and serialize*/
1744 spc->Assemble();
1745 serial_spc=spc->ToMPISerial();
1746 delete spc;
1747
1748 /*Then update basal constraints nodes accordingly*/
1749 for(int i=0;i<femmodel->elements->Size();i++){
1750 Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1751 ApplyBasalConstraints(serial_spc,element);
1752 }
1753
1754 femmodel->UpdateConstraintsx();
1755
1756 /*Delete*/
1757 xDelete<IssmDouble>(serial_spc);
1758}/*}}}*/
1759void EnthalpyAnalysis::UpdateConstraints(FemModel* femmodel){/*{{{*/
1760 SetActiveNodesLSMx(femmodel);
1761}/*}}}*/
Note: See TracBrowser for help on using the repository browser.