source: issm/trunk-jpl/src/c/analyses/EnthalpyAnalysis.cpp@ 24140

Last change on this file since 24140 was 24140, checked in by rueckamp, 6 years ago

CHG: add drainiceolumn and watercolumn_upperlimit as user input; improve drainage for steadystate case

File size: 68.7 KB
Line 
1#include "./EnthalpyAnalysis.h"
2#include "../toolkits/toolkits.h"
3#include "../classes/classes.h"
4#include "../shared/shared.h"
5#include "../modules/modules.h"
6#include "../solutionsequences/solutionsequences.h"
7#include "../cores/cores.h"
8
9/*Model processing*/
10void EnthalpyAnalysis::CreateConstraints(Constraints* constraints,IoModel* iomodel){/*{{{*/
11
12 /*Intermediary*/
13 int count;
14 int M,N;
15 bool spcpresent = false;
16 int finiteelement;
17 IssmDouble heatcapacity;
18 IssmDouble referencetemperature;
19
20 /*Output*/
21 IssmDouble *spcvector = NULL;
22 IssmDouble *spcvectorstatic = NULL;
23 IssmDouble* times=NULL;
24 IssmDouble* values=NULL;
25 IssmDouble* issurface = NULL;
26
27 /*Fetch parameters: */
28 iomodel->FindConstant(&heatcapacity,"md.materials.heatcapacity");
29 iomodel->FindConstant(&referencetemperature,"md.constants.referencetemperature");
30 iomodel->FindConstant(&finiteelement,"md.thermal.fe");
31
32 /*return if 2d mesh*/
33 if(iomodel->domaintype==Domain2DhorizontalEnum) return;
34
35 /*Fetch data: */
36 iomodel->FetchData(&issurface,&M,&N,"md.mesh.vertexonsurface"); _assert_(N>0); _assert_(M==iomodel->numberofvertices);
37 iomodel->FetchData(&spcvector,&M,&N,"md.thermal.spctemperature");
38 iomodel->FetchData(&spcvectorstatic,&M,&N,"md.thermal.spctemperature");
39
40 /*Specific case for PDD, we want the constaints to be updated by the PDD scheme itself*/
41 bool isdynamic = false;
42 if (iomodel->solution_enum==TransientSolutionEnum){
43 int smb_model;
44 iomodel->FindConstant(&smb_model,"md.smb.model");
45 if(smb_model==SMBpddEnum) isdynamic=true;
46 if(smb_model==SMBd18opddEnum) isdynamic=true;
47 if(smb_model==SMBpddSicopolisEnum) isdynamic=true;
48 }
49
50 /*Convert spcs from temperatures to enthalpy*/
51 _assert_(N>0); _assert_(M>=iomodel->numberofvertices);
52 for(int i=0;i<iomodel->numberofvertices;i++){
53 for(int j=0;j<N;j++){
54 if (isdynamic){
55 if (issurface[i]==1){
56 spcvector[i*N+j] = heatcapacity*(spcvector[i*N+j]-referencetemperature);
57 spcvectorstatic[i*N+j] = NAN;
58 }
59 else{
60 spcvector[i*N+j] = NAN;
61 spcvectorstatic[i*N+j] = heatcapacity*(spcvectorstatic[i*N+j]-referencetemperature);
62 }
63 }
64 else{
65 spcvector[i*N+j] = heatcapacity*(spcvector[i*N+j]-referencetemperature);
66 }
67 }
68 }
69
70 if(isdynamic){
71 IoModelToDynamicConstraintsx(constraints,iomodel,spcvector,iomodel->numberofvertices,1,EnthalpyAnalysisEnum,finiteelement);
72 IoModelToConstraintsx(constraints,iomodel,spcvectorstatic,M,N,EnthalpyAnalysisEnum,finiteelement);
73 }
74 else{
75 IoModelToConstraintsx(constraints,iomodel,spcvector,M,N,EnthalpyAnalysisEnum,finiteelement);
76 }
77
78 /*Free ressources:*/
79 iomodel->DeleteData(spcvector,"md.thermal.spctemperature");
80 iomodel->DeleteData(spcvectorstatic,"md.thermal.spctemperature");
81 iomodel->DeleteData(issurface,"md.mesh.vertexonsurface");
82 xDelete<IssmDouble>(times);
83 xDelete<IssmDouble>(values);
84}/*}}}*/
85void EnthalpyAnalysis::CreateLoads(Loads* loads, IoModel* iomodel){/*{{{*/
86
87 /*No loads */
88}/*}}}*/
89void EnthalpyAnalysis::CreateNodes(Nodes* nodes,IoModel* iomodel,bool isamr){/*{{{*/
90
91 int finiteelement;
92 iomodel->FindConstant(&finiteelement,"md.thermal.fe");
93
94 if(iomodel->domaintype==Domain3DEnum) iomodel->FetchData(2,"md.mesh.vertexonbase","md.mesh.vertexonsurface");
95 ::CreateNodes(nodes,iomodel,EnthalpyAnalysisEnum,finiteelement);
96 iomodel->DeleteData(2,"md.mesh.vertexonbase","md.mesh.vertexonsurface");
97}/*}}}*/
98int EnthalpyAnalysis::DofsPerNode(int** doflist,int domaintype,int approximation){/*{{{*/
99 return 1;
100}/*}}}*/
101void EnthalpyAnalysis::UpdateElements(Elements* elements,IoModel* iomodel,int analysis_counter,int analysis_type){/*{{{*/
102
103 bool dakota_analysis,ismovingfront,isenthalpy;
104 int frictionlaw,basalforcing_model,materialstype;
105 int FrictionCoupling;
106
107 /*Now, is the model 3d? otherwise, do nothing: */
108 if(iomodel->domaintype==Domain2DhorizontalEnum)return;
109
110 /*Is enthalpy requested?*/
111 iomodel->FindConstant(&isenthalpy,"md.thermal.isenthalpy");
112 if(!isenthalpy) return;
113
114 /*Fetch data needed: */
115 iomodel->FetchData(3,"md.initialization.temperature","md.initialization.waterfraction","md.initialization.pressure");
116
117 /*Finite element type*/
118 int finiteelement;
119 iomodel->FindConstant(&finiteelement,"md.thermal.fe");
120
121 /*Update elements: */
122 int counter=0;
123 for(int i=0;i<iomodel->numberofelements;i++){
124 if(iomodel->my_elements[i]){
125 Element* element=(Element*)elements->GetObjectByOffset(counter);
126 element->Update(i,iomodel,analysis_counter,analysis_type,finiteelement);
127 counter++;
128 }
129 }
130
131 iomodel->FindConstant(&dakota_analysis,"md.qmu.isdakota");
132 iomodel->FindConstant(&ismovingfront,"md.transient.ismovingfront");
133 iomodel->FindConstant(&frictionlaw,"md.friction.law");
134 iomodel->FindConstant(&materialstype,"md.materials.type");
135
136 iomodel->FetchDataToInput(elements,"md.geometry.thickness",ThicknessEnum);
137 iomodel->FetchDataToInput(elements,"md.geometry.surface",SurfaceEnum);
138 iomodel->FetchDataToInput(elements,"md.slr.sealevel",SealevelEnum,0);
139 iomodel->FetchDataToInput(elements,"md.geometry.base",BaseEnum);
140 iomodel->FetchDataToInput(elements,"md.mask.ice_levelset",MaskIceLevelsetEnum);
141 iomodel->FetchDataToInput(elements,"md.mask.groundedice_levelset",MaskGroundediceLevelsetEnum);
142 if(iomodel->domaintype!=Domain2DhorizontalEnum){
143 iomodel->FetchDataToInput(elements,"md.mesh.vertexonbase",MeshVertexonbaseEnum);
144 iomodel->FetchDataToInput(elements,"md.mesh.vertexonsurface",MeshVertexonsurfaceEnum);
145 }
146 iomodel->FetchDataToInput(elements,"md.initialization.pressure",PressureEnum);
147 iomodel->FetchDataToInput(elements,"md.initialization.temperature",TemperatureEnum);
148 iomodel->FetchDataToInput(elements,"md.initialization.waterfraction",WaterfractionEnum);
149 iomodel->FetchDataToInput(elements,"md.initialization.enthalpy",EnthalpyEnum);
150 iomodel->FetchDataToInput(elements,"md.initialization.watercolumn",WatercolumnEnum);
151 iomodel->FetchDataToInput(elements,"md.basalforcings.groundedice_melting_rate",BasalforcingsGroundediceMeltingRateEnum);
152 iomodel->FetchDataToInput(elements,"md.initialization.vx",VxEnum);
153 iomodel->FetchDataToInput(elements,"md.initialization.vy",VyEnum);
154 iomodel->FetchDataToInput(elements,"md.initialization.vz",VzEnum);
155 InputUpdateFromConstantx(elements,0.,VxMeshEnum);
156 InputUpdateFromConstantx(elements,0.,VyMeshEnum);
157 InputUpdateFromConstantx(elements,0.,VzMeshEnum);
158 if(ismovingfront){
159 iomodel->FetchDataToInput(elements,"md.mesh.vertexonbase",MeshVertexonbaseEnum); // required for updating active nodes
160 }
161
162 /*Basal forcings variables*/
163 iomodel->FindConstant(&basalforcing_model,"md.basalforcings.model");
164 switch(basalforcing_model){
165 case MantlePlumeGeothermalFluxEnum:
166 break;
167 default:
168 iomodel->FetchDataToInput(elements,"md.basalforcings.geothermalflux",BasalforcingsGeothermalfluxEnum);
169 break;
170 }
171
172 /*Rheology type*/
173 iomodel->FetchDataToInput(elements,"md.materials.rheology_B",MaterialsRheologyBEnum);
174 switch(materialstype){
175 case MatenhancediceEnum:
176 iomodel->FetchDataToInput(elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
177 iomodel->FetchDataToInput(elements,"md.materials.rheology_E",MaterialsRheologyEEnum);
178 break;
179 case MatdamageiceEnum:
180 iomodel->FetchDataToInput(elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
181 break;
182 case MatestarEnum:
183 iomodel->FetchDataToInput(elements,"md.materials.rheology_Ec",MaterialsRheologyEcEnum);
184 iomodel->FetchDataToInput(elements,"md.materials.rheology_Es",MaterialsRheologyEsEnum);
185 break;
186 case MaticeEnum:
187 iomodel->FetchDataToInput(elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
188 break;
189 default:
190 _error_("not supported");
191 }
192
193 /*Friction law variables*/
194 switch(frictionlaw){
195 case 1:
196 iomodel->FindConstant(&FrictionCoupling,"md.friction.coupling");
197 iomodel->FetchDataToInput(elements,"md.friction.coefficient",FrictionCoefficientEnum);
198 iomodel->FetchDataToInput(elements,"md.friction.p",FrictionPEnum);
199 iomodel->FetchDataToInput(elements,"md.friction.q",FrictionQEnum);
200 if (FrictionCoupling==3){
201 iomodel->FetchDataToInput(elements,"md.friction.effective_pressure",FrictionEffectivePressureEnum);}
202 else if(FrictionCoupling==4){
203 iomodel->FetchDataToInput(elements,"md.friction.effective_pressure",EffectivePressureEnum);
204 }
205 break;
206 case 2:
207 iomodel->FetchDataToInput(elements,"md.friction.C",FrictionCEnum);
208 iomodel->FetchDataToInput(elements,"md.friction.m",FrictionMEnum);
209 break;
210 case 3:
211 iomodel->FindConstant(&FrictionCoupling,"md.friction.coupling");
212 iomodel->FetchDataToInput(elements,"md.friction.C",FrictionCEnum);
213 iomodel->FetchDataToInput(elements,"md.friction.As",FrictionAsEnum);
214 iomodel->FetchDataToInput(elements,"md.friction.q",FrictionQEnum);
215 if (FrictionCoupling==3){
216 iomodel->FetchDataToInput(elements,"md.friction.effective_pressure",FrictionEffectivePressureEnum);}
217 else if(FrictionCoupling==4){
218 iomodel->FetchDataToInput(elements,"md.friction.effective_pressure",EffectivePressureEnum);
219 }
220 break;
221 case 4:
222 iomodel->FetchDataToInput(elements,"md.friction.coefficient",FrictionCoefficientEnum);
223 iomodel->FetchDataToInput(elements,"md.friction.p",FrictionPEnum);
224 iomodel->FetchDataToInput(elements,"md.friction.q",FrictionQEnum);
225 iomodel->FetchDataToInput(elements,"md.initialization.pressure",PressureEnum);
226 iomodel->FetchDataToInput(elements,"md.initialization.temperature",TemperatureEnum);
227 iomodel->FindConstant(&FrictionCoupling,"md.friction.coupling");
228 break;
229 case 5:
230 iomodel->FetchDataToInput(elements,"md.friction.coefficient",FrictionCoefficientEnum);
231 iomodel->FetchDataToInput(elements,"md.friction.p",FrictionPEnum);
232 iomodel->FetchDataToInput(elements,"md.friction.q",FrictionQEnum);
233 iomodel->FetchDataToInput(elements,"md.friction.water_layer",FrictionWaterLayerEnum);
234 break;
235 case 6:
236 iomodel->FetchDataToInput(elements,"md.friction.C",FrictionCEnum);
237 iomodel->FetchDataToInput(elements,"md.friction.m",FrictionMEnum);
238 iomodel->FetchDataToInput(elements,"md.initialization.pressure",PressureEnum);
239 iomodel->FetchDataToInput(elements,"md.initialization.temperature",TemperatureEnum);
240 break;
241 case 7:
242 iomodel->FindConstant(&FrictionCoupling,"md.friction.coupling");
243 iomodel->FetchDataToInput(elements,"md.friction.coefficient",FrictionCoefficientEnum);
244 iomodel->FetchDataToInput(elements,"md.friction.coefficientcoulomb",FrictionCoefficientcoulombEnum);
245 iomodel->FetchDataToInput(elements,"md.friction.p",FrictionPEnum);
246 iomodel->FetchDataToInput(elements,"md.friction.q",FrictionQEnum);
247 if (FrictionCoupling==3){
248 iomodel->FetchDataToInput(elements,"md.friction.effective_pressure",FrictionEffectivePressureEnum);}
249 else if(FrictionCoupling==4){
250 iomodel->FetchDataToInput(elements,"md.friction.effective_pressure",EffectivePressureEnum);
251 }
252 break;
253 case 9:
254 iomodel->FetchDataToInput(elements,"md.friction.coefficient",FrictionCoefficientEnum);
255 iomodel->FetchDataToInput(elements,"md.friction.pressure_adjusted_temperature",FrictionPressureAdjustedTemperatureEnum);
256 InputUpdateFromConstantx(elements,1.,FrictionPEnum);
257 InputUpdateFromConstantx(elements,1.,FrictionQEnum);
258 break;
259 default:
260 _error_("friction law not supported");
261 }
262
263 /*Free data: */
264 iomodel->DeleteData(3,"md.initialization.temperature","md.initialization.waterfraction","md.initialization.pressure");
265
266}/*}}}*/
267void EnthalpyAnalysis::UpdateParameters(Parameters* parameters,IoModel* iomodel,int solution_enum,int analysis_enum){/*{{{*/
268
269 int numoutputs;
270 char** requestedoutputs = NULL;
271
272 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.stabilization",ThermalStabilizationEnum));
273 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.maxiter",ThermalMaxiterEnum));
274 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.reltol",ThermalReltolEnum));
275 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.isenthalpy",ThermalIsenthalpyEnum));
276 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.isdynamicbasalspc",ThermalIsdynamicbasalspcEnum));
277 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.isdrainicecolumn",ThermalIsdrainicecolumnEnum));
278 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.watercolumn_upperlimit",ThermalWatercolumnUpperlimitEnum));
279 parameters->AddObject(iomodel->CopyConstantObject("md.friction.law",FrictionLawEnum));
280
281 iomodel->FindConstant(&requestedoutputs,&numoutputs,"md.thermal.requested_outputs");
282 parameters->AddObject(new IntParam(ThermalNumRequestedOutputsEnum,numoutputs));
283 if(numoutputs)parameters->AddObject(new StringArrayParam(ThermalRequestedOutputsEnum,requestedoutputs,numoutputs));
284 iomodel->DeleteData(&requestedoutputs,numoutputs,"md.thermal.requested_outputs");
285
286 /*Deal with friction parameters*/
287 int frictionlaw;
288 iomodel->FindConstant(&frictionlaw,"md.friction.law");
289 if(frictionlaw==4 || frictionlaw==6){
290 parameters->AddObject(iomodel->CopyConstantObject("md.friction.gamma",FrictionGammaEnum));
291 }
292 if(frictionlaw==3 || frictionlaw==1 || frictionlaw==7){
293 parameters->AddObject(iomodel->CopyConstantObject("md.friction.coupling",FrictionCouplingEnum));
294 }
295 if(frictionlaw==9){
296 parameters->AddObject(iomodel->CopyConstantObject("md.friction.gamma",FrictionGammaEnum));
297 parameters->AddObject(new IntParam(FrictionCouplingEnum,0));
298 }
299}/*}}}*/
300
301/*Finite Element Analysis*/
302void EnthalpyAnalysis::ApplyBasalConstraints(IssmDouble* serial_spc,Element* element){/*{{{*/
303
304 /* Do not check if ice in element, this may lead to inconsistencies between cpu partitions */
305 /* Only update constraints at the base. */
306 if(!(element->IsOnBase())) return;
307
308 /*Intermediary*/
309 bool isdynamicbasalspc;
310 int numindices;
311 int *indices = NULL;
312 Node* node = NULL;
313 IssmDouble pressure;
314
315 /*Check wether dynamic basal boundary conditions are activated */
316 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
317 if(!isdynamicbasalspc) return;
318
319 /*Get parameters and inputs: */
320 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
321
322 /*Fetch indices of basal & surface nodes for this finite element*/
323 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
324 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
325
326 GaussPenta* gauss=new GaussPenta();
327 for(int i=0;i<numindices;i++){
328 gauss->GaussNode(element->GetElementType(),indices[i]);
329
330 pressure_input->GetInputValue(&pressure,gauss);
331
332 /*apply or release spc*/
333 node=element->GetNode(indices[i]);
334 if(!node->IsActive()) continue;
335 if(serial_spc[node->Sid()]==1.){
336 pressure_input->GetInputValue(&pressure, gauss);
337 node->ApplyConstraint(0,PureIceEnthalpy(element,pressure));
338 }
339 else {
340 node->DofInFSet(0);
341 }
342 }
343
344 /*Free ressources:*/
345 xDelete<int>(indices);
346 delete gauss;
347}/*}}}*/
348void EnthalpyAnalysis::ComputeBasalMeltingrate(FemModel* femmodel){/*{{{*/
349 /*Compute basal melting rates: */
350 for(int i=0;i<femmodel->elements->Size();i++){
351 Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
352 ComputeBasalMeltingrate(element);
353 }
354
355 /*extrude inputs*/
356 femmodel->parameters->SetParam(BasalforcingsGroundediceMeltingRateEnum,InputToExtrudeEnum);
357 extrudefrombase_core(femmodel);
358}/*}}}*/
359void EnthalpyAnalysis::ComputeBasalMeltingrate(Element* element){/*{{{*/
360 /*Calculate the basal melt rates of the enthalpy model after Aschwanden 2012*/
361 /* melting rate is positive when melting, negative when refreezing*/
362
363 /* Check if ice in element */
364 if(!element->IsIceInElement()) return;
365
366 /* Only compute melt rates at the base of grounded ice*/
367 if(!element->IsOnBase() || element->IsFloating()) return;
368
369 /* Intermediaries */
370 bool converged;
371 const int dim=3;
372 int i,is,state;
373 int nodedown,nodeup,numnodes,numsegments;
374 int enthalpy_enum;
375 IssmDouble vec_heatflux[dim],normal_base[dim],d1enthalpy[dim],d1pressure[dim];
376 IssmDouble basalfriction,alpha2,geothermalflux,heatflux;
377 IssmDouble dt,yts;
378 IssmDouble melting_overshoot,lambda;
379 IssmDouble vx,vy,vz;
380 IssmDouble *xyz_list = NULL;
381 IssmDouble *xyz_list_base = NULL;
382 int *pairindices = NULL;
383
384 /*Fetch parameters*/
385 element->GetVerticesCoordinates(&xyz_list);
386 element->GetVerticesCoordinatesBase(&xyz_list_base);
387 element->GetInputValue(&converged,ConvergedEnum);
388 element->FindParam(&dt,TimesteppingTimeStepEnum);
389 element->FindParam(&yts, ConstantsYtsEnum);
390
391 if(dt==0. && !converged) enthalpy_enum=EnthalpyPicardEnum;
392 else enthalpy_enum=EnthalpyEnum;
393
394 IssmDouble latentheat = element->FindParam(MaterialsLatentheatEnum);
395 IssmDouble rho_ice = element->FindParam(MaterialsRhoIceEnum);
396 IssmDouble rho_water = element->FindParam(MaterialsRhoFreshwaterEnum);
397 IssmDouble beta = element->FindParam(MaterialsBetaEnum);
398 IssmDouble kappa = EnthalpyDiffusionParameterVolume(element,enthalpy_enum); _assert_(kappa>=0.);
399 IssmDouble kappa_mix;
400
401 /*retrieve inputs*/
402 Input* enthalpy_input = element->GetInput(enthalpy_enum); _assert_(enthalpy_input);
403 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
404 Input* geothermalflux_input = element->GetInput(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input);
405 Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
406 Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
407 Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
408
409 /*Build friction element, needed later: */
410 Friction* friction=new Friction(element,dim);
411
412 /******** MELTING RATES ************************************//*{{{*/
413 element->NormalBase(&normal_base[0],xyz_list_base);
414 element->VerticalSegmentIndicesBase(&pairindices,&numsegments);
415 IssmDouble* meltingrate_enthalpy = xNew<IssmDouble>(numsegments);
416 IssmDouble* heating = xNew<IssmDouble>(numsegments);
417
418 numnodes=element->GetNumberOfNodes();
419 IssmDouble* enthalpies = xNew<IssmDouble>(numnodes);
420 IssmDouble* pressures = xNew<IssmDouble>(numnodes);
421 IssmDouble* watercolumns = xNew<IssmDouble>(numnodes);
422 IssmDouble* basalmeltingrates = xNew<IssmDouble>(numnodes);
423 element->GetInputListOnNodes(enthalpies,enthalpy_enum);
424 element->GetInputListOnNodes(pressures,PressureEnum);
425 element->GetInputListOnNodes(watercolumns,WatercolumnEnum);
426 element->GetInputListOnNodes(basalmeltingrates,BasalforcingsGroundediceMeltingRateEnum);
427
428 IssmDouble watercolumnupperlimit = element->FindParam(ThermalWatercolumnUpperlimitEnum);
429
430 Gauss* gauss=element->NewGauss();
431 for(is=0;is<numsegments;is++){
432 nodedown = pairindices[is*2+0];
433 nodeup = pairindices[is*2+1];
434 gauss->GaussNode(element->GetElementType(),nodedown);
435
436 state=GetThermalBasalCondition(element, enthalpies[nodedown], enthalpies[nodeup], pressures[nodedown], pressures[nodeup], watercolumns[nodedown], basalmeltingrates[nodedown]);
437 switch (state) {
438 case 0:
439 // cold, dry base: apply basal surface forcing
440 for(i=0;i<3;i++) vec_heatflux[i]=0.;
441 break;
442 case 1: case 2: case 3:
443 // case 1 : cold, wet base: keep at pressure melting point
444 // case 2: temperate, thin refreezing base: release spc
445 // case 3: temperate, thin melting base: set spc
446 enthalpy_input->GetInputDerivativeValue(&d1enthalpy[0],xyz_list,gauss);
447 for(i=0;i<3;i++) vec_heatflux[i]=-kappa*d1enthalpy[i];
448 break;
449 case 4:
450 // temperate, thick melting base: set grad H*n=0
451 kappa_mix=GetWetIceConductivity(element, enthalpies[nodedown], pressures[nodedown]);
452 pressure_input->GetInputDerivativeValue(&d1pressure[0],xyz_list,gauss);
453 for(i=0;i<3;i++) vec_heatflux[i]=kappa_mix*beta*d1pressure[i];
454 break;
455 default:
456 _printf0_(" unknown thermal basal state found!");
457 }
458 if(state==0) meltingrate_enthalpy[is]=0.;
459 else{
460 /*heat flux along normal*/
461 heatflux=0.;
462 for(i=0;i<3;i++) heatflux+=(vec_heatflux[i])*normal_base[i];
463
464 /*basal friction*/
465 friction->GetAlpha2(&alpha2,gauss);
466 vx_input->GetInputValue(&vx,gauss); vy_input->GetInputValue(&vy,gauss); vz_input->GetInputValue(&vz,gauss);
467 basalfriction=alpha2*(vx*vx + vy*vy + vz*vz);
468 geothermalflux_input->GetInputValue(&geothermalflux,gauss);
469 /* -Mb= Fb-(q-q_geo)/((1-w)*L*rho), and (1-w)*rho=rho_ice, cf Aschwanden 2012, eqs.1, 2, 66*/
470 heating[is]=(heatflux+basalfriction+geothermalflux);
471 meltingrate_enthalpy[is]=heating[is]/(latentheat*rho_ice); // m/s water equivalent
472 }
473 }/*}}}*/
474
475 /******** UPDATE MELTINGRATES AND WATERCOLUMN **************//*{{{*/
476 for(is=0;is<numsegments;is++){
477 nodedown = pairindices[is*2+0];
478 nodeup = pairindices[is*2+1];
479 if(dt!=0.){
480 if(watercolumns[nodedown]+meltingrate_enthalpy[is]*dt<0.){ // prevent too much freeze on
481 lambda = -watercolumns[nodedown]/(dt*meltingrate_enthalpy[is]); _assert_(lambda>=0.); _assert_(lambda<1.);
482 watercolumns[nodedown]=0.;
483 basalmeltingrates[nodedown]=lambda*meltingrate_enthalpy[is]; // restrict freeze on only to size of watercolumn
484 enthalpies[nodedown]+=(1.-lambda)*dt/yts*meltingrate_enthalpy[is]*latentheat*rho_ice; // use rest of energy to cool down base: dE=L*m, m=(1-lambda)*meltingrate*rho_ice
485 }
486 else{
487 basalmeltingrates[nodedown]=meltingrate_enthalpy[is];
488 watercolumns[nodedown]+=dt*meltingrate_enthalpy[is];
489 }
490 if(watercolumns[nodedown]>watercolumnupperlimit) watercolumns[nodedown]=watercolumnupperlimit;
491 }
492 else{
493 basalmeltingrates[nodedown]=meltingrate_enthalpy[is];
494 if(watercolumns[nodedown]+meltingrate_enthalpy[is]<0.)
495 watercolumns[nodedown]=0.;
496 else
497 watercolumns[nodedown]+=meltingrate_enthalpy[is];
498 }
499 basalmeltingrates[nodedown]*=rho_water/rho_ice; // convert meltingrate from water to ice equivalent
500 _assert_(watercolumns[nodedown]>=0.);
501 }/*}}}*/
502
503 /*feed updated variables back into model*/
504 if(dt!=0.){
505 element->AddInput(enthalpy_enum,enthalpies,element->GetElementType());
506 element->AddInput(WatercolumnEnum,watercolumns,element->GetElementType());
507 }
508 element->AddInput(BasalforcingsGroundediceMeltingRateEnum,basalmeltingrates,element->GetElementType());
509
510 /*Clean up and return*/
511 delete gauss;
512 delete friction;
513 xDelete<int>(pairindices);
514 xDelete<IssmDouble>(enthalpies);
515 xDelete<IssmDouble>(pressures);
516 xDelete<IssmDouble>(watercolumns);
517 xDelete<IssmDouble>(basalmeltingrates);
518 xDelete<IssmDouble>(meltingrate_enthalpy);
519 xDelete<IssmDouble>(heating);
520 xDelete<IssmDouble>(xyz_list);
521 xDelete<IssmDouble>(xyz_list_base);
522}/*}}}*/
523void EnthalpyAnalysis::Core(FemModel* femmodel){/*{{{*/
524
525 IssmDouble dt;
526 bool isdynamicbasalspc;
527
528 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
529 femmodel->parameters->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
530
531 if(VerboseSolution()) _printf0_(" computing enthalpy\n");
532 femmodel->SetCurrentConfiguration(EnthalpyAnalysisEnum);
533 if((dt>0.) && isdynamicbasalspc) UpdateBasalConstraints(femmodel);
534 solutionsequence_thermal_nonlinear(femmodel);
535
536 /*transfer enthalpy to enthalpy picard for the next step: */
537 InputDuplicatex(femmodel,EnthalpyEnum,EnthalpyPicardEnum);
538
539 PostProcessing(femmodel);
540
541}/*}}}*/
542ElementVector* EnthalpyAnalysis::CreateDVector(Element* element){/*{{{*/
543 /*Default, return NULL*/
544 return NULL;
545}/*}}}*/
546ElementMatrix* EnthalpyAnalysis::CreateJacobianMatrix(Element* element){/*{{{*/
547_error_("Not implemented");
548}/*}}}*/
549ElementMatrix* EnthalpyAnalysis::CreateKMatrix(Element* element){/*{{{*/
550
551 /* Check if ice in element */
552 if(!element->IsIceInElement()) return NULL;
553
554 /*compute all stiffness matrices for this element*/
555 ElementMatrix* Ke1=CreateKMatrixVolume(element);
556 ElementMatrix* Ke2=CreateKMatrixShelf(element);
557 ElementMatrix* Ke =new ElementMatrix(Ke1,Ke2);
558
559 /*clean-up and return*/
560 delete Ke1;
561 delete Ke2;
562 return Ke;
563}/*}}}*/
564ElementMatrix* EnthalpyAnalysis::CreateKMatrixVolume(Element* element){/*{{{*/
565
566 /* Check if ice in element */
567 if(!element->IsIceInElement()) return NULL;
568
569 /*Intermediaries */
570 int stabilization;
571 IssmDouble Jdet,dt,u,v,w,um,vm,wm,vel;
572 IssmDouble h,hx,hy,hz,vx,vy,vz;
573 IssmDouble tau_parameter,diameter;
574 IssmDouble tau_parameter_anisotropic[2],tau_parameter_hor,tau_parameter_ver;
575 IssmDouble D_scalar;
576 IssmDouble* xyz_list = NULL;
577
578 /*Fetch number of nodes and dof for this finite element*/
579 int numnodes = element->GetNumberOfNodes();
580
581 /*Initialize Element vector and other vectors*/
582 ElementMatrix* Ke = element->NewElementMatrix();
583 IssmDouble* basis = xNew<IssmDouble>(numnodes);
584 IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
585 IssmDouble* Bprime = xNew<IssmDouble>(3*numnodes);
586 IssmDouble K[3][3];
587
588 /*Retrieve all inputs and parameters*/
589 element->GetVerticesCoordinates(&xyz_list);
590 element->FindParam(&dt,TimesteppingTimeStepEnum);
591 element->FindParam(&stabilization,ThermalStabilizationEnum);
592 IssmDouble rho_water = element->FindParam(MaterialsRhoSeawaterEnum);
593 IssmDouble rho_ice = element->FindParam(MaterialsRhoIceEnum);
594 IssmDouble gravity = element->FindParam(ConstantsGEnum);
595 IssmDouble heatcapacity = element->FindParam(MaterialsHeatcapacityEnum);
596 IssmDouble thermalconductivity = element->FindParam(MaterialsThermalconductivityEnum);
597 Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
598 Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
599 Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
600 Input* vxm_input = element->GetInput(VxMeshEnum); _assert_(vxm_input);
601 Input* vym_input = element->GetInput(VyMeshEnum); _assert_(vym_input);
602 Input* vzm_input = element->GetInput(VzMeshEnum); _assert_(vzm_input);
603
604 /*Enthalpy diffusion parameter*/
605 IssmDouble kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
606
607 /* Start looping on the number of gaussian points: */
608 Gauss* gauss=element->NewGauss(4);
609 for(int ig=gauss->begin();ig<gauss->end();ig++){
610 gauss->GaussPoint(ig);
611
612 element->JacobianDeterminant(&Jdet,xyz_list,gauss);
613 element->NodalFunctions(basis,gauss);
614 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
615
616 D_scalar=gauss->weight*Jdet;
617 if(dt!=0.) D_scalar=D_scalar*dt;
618
619 /*Conduction: */
620 for(int i=0;i<numnodes;i++){
621 for(int j=0;j<numnodes;j++){
622 Ke->values[i*numnodes+j] += D_scalar*kappa/rho_ice*(
623 dbasis[0*numnodes+j]*dbasis[0*numnodes+i] + dbasis[1*numnodes+j]*dbasis[1*numnodes+i] + dbasis[2*numnodes+j]*dbasis[2*numnodes+i]
624 );
625 }
626 }
627
628 /*Advection: */
629 vx_input->GetInputValue(&u,gauss); vxm_input->GetInputValue(&um,gauss); vx=u-um;
630 vy_input->GetInputValue(&v,gauss); vym_input->GetInputValue(&vm,gauss); vy=v-vm;
631 vz_input->GetInputValue(&w,gauss); vzm_input->GetInputValue(&wm,gauss); vz=w-wm;
632 for(int i=0;i<numnodes;i++){
633 for(int j=0;j<numnodes;j++){
634 Ke->values[i*numnodes+j] += D_scalar*(
635 vx*dbasis[0*numnodes+j]*basis[i] + vy*dbasis[1*numnodes+j]*basis[i] +vz*dbasis[2*numnodes+j]*basis[i]
636 );
637 }
638 }
639
640 /*Transient: */
641 if(dt!=0.){
642 D_scalar=gauss->weight*Jdet;
643 for(int i=0;i<numnodes;i++){
644 for(int j=0;j<numnodes;j++){
645 Ke->values[i*numnodes+j] += D_scalar*basis[j]*basis[i];
646 }
647 }
648 D_scalar=D_scalar*dt;
649 }
650
651 /*Artificial diffusivity*/
652 if(stabilization==1){
653 element->ElementSizes(&hx,&hy,&hz);
654 vel=sqrt(vx*vx + vy*vy + vz*vz)+1.e-14;
655 h=sqrt( pow(hx*vx/vel,2) + pow(hy*vy/vel,2) + pow(hz*vz/vel,2));
656 K[0][0]=h/(2.*vel)*fabs(vx*vx); K[0][1]=h/(2.*vel)*fabs(vx*vy); K[0][2]=h/(2.*vel)*fabs(vx*vz);
657 K[1][0]=h/(2.*vel)*fabs(vy*vx); K[1][1]=h/(2.*vel)*fabs(vy*vy); K[1][2]=h/(2.*vel)*fabs(vy*vz);
658 K[2][0]=h/(2.*vel)*fabs(vz*vx); K[2][1]=h/(2.*vel)*fabs(vz*vy); K[2][2]=h/(2.*vel)*fabs(vz*vz);
659 for(int i=0;i<3;i++) for(int j=0;j<3;j++) K[i][j] = D_scalar*K[i][j];
660
661 GetBAdvecprime(Bprime,element,xyz_list,gauss);
662 TripleMultiply(Bprime,3,numnodes,1,
663 &K[0][0],3,3,0,
664 Bprime,3,numnodes,0,
665 &Ke->values[0],1);
666 }
667 /*SUPG*/
668 else if(stabilization==2){
669 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
670 diameter=element->MinEdgeLength(xyz_list);
671 tau_parameter=element->StabilizationParameter(u-um,v-vm,w-wm,diameter,kappa/rho_ice);
672 for(int i=0;i<numnodes;i++){
673 for(int j=0;j<numnodes;j++){
674 Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*
675 ((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i])*
676 ((u-um)*dbasis[0*numnodes+j]+(v-vm)*dbasis[1*numnodes+j]+(w-wm)*dbasis[2*numnodes+j]);
677 }
678 }
679 if(dt!=0.){
680 D_scalar=gauss->weight*Jdet;
681 for(int i=0;i<numnodes;i++){
682 for(int j=0;j<numnodes;j++){
683 Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*basis[j]*((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i]);
684 }
685 }
686 }
687 }
688 /*anisotropic SUPG*/
689 else if(stabilization==3){
690 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
691 element->ElementSizes(&hx,&hy,&hz);
692 element->StabilizationParameterAnisotropic(&tau_parameter_anisotropic[0],u-um,v-vm,w-wm,hx,hy,hz,kappa/rho_ice);
693 tau_parameter_hor=tau_parameter_anisotropic[0];
694 tau_parameter_ver=tau_parameter_anisotropic[1];
695 for(int i=0;i<numnodes;i++){
696 for(int j=0;j<numnodes;j++){
697 Ke->values[i*numnodes+j]+=D_scalar*
698 (sqrt(tau_parameter_hor)*(u-um)*dbasis[0*numnodes+i]+sqrt(tau_parameter_hor)*(v-vm)*dbasis[1*numnodes+i]+sqrt(tau_parameter_ver)*(w-wm)*dbasis[2*numnodes+i])*
699 (sqrt(tau_parameter_hor)*(u-um)*dbasis[0*numnodes+j]+sqrt(tau_parameter_hor)*(v-vm)*dbasis[1*numnodes+j]+sqrt(tau_parameter_ver)*(w-wm)*dbasis[2*numnodes+j]);
700 }
701 }
702 }
703 }
704
705 /*Clean up and return*/
706 xDelete<IssmDouble>(xyz_list);
707 xDelete<IssmDouble>(basis);
708 xDelete<IssmDouble>(dbasis);
709 xDelete<IssmDouble>(Bprime);
710 delete gauss;
711 return Ke;
712}/*}}}*/
713ElementMatrix* EnthalpyAnalysis::CreateKMatrixShelf(Element* element){/*{{{*/
714
715 /* Check if ice in element */
716 if(!element->IsIceInElement()) return NULL;
717
718 /*Initialize Element matrix and return if necessary*/
719 if(!element->IsOnBase() || !element->IsFloating()) return NULL;
720
721 /*Intermediaries*/
722 IssmDouble dt,Jdet,D;
723 IssmDouble *xyz_list_base = NULL;
724
725 /*Fetch number of nodes for this finite element*/
726 int numnodes = element->GetNumberOfNodes();
727
728 /*Initialize vectors*/
729 ElementMatrix* Ke = element->NewElementMatrix();
730 IssmDouble* basis = xNew<IssmDouble>(numnodes);
731
732 /*Retrieve all inputs and parameters*/
733 element->GetVerticesCoordinatesBase(&xyz_list_base);
734 element->FindParam(&dt,TimesteppingTimeStepEnum);
735 IssmDouble gravity = element->FindParam(ConstantsGEnum);
736 IssmDouble rho_water = element->FindParam(MaterialsRhoSeawaterEnum);
737 IssmDouble rho_ice = element->FindParam(MaterialsRhoIceEnum);
738 IssmDouble heatcapacity = element->FindParam(MaterialsHeatcapacityEnum);
739 IssmDouble mixed_layer_capacity= element->FindParam(MaterialsMixedLayerCapacityEnum);
740 IssmDouble thermal_exchange_vel= element->FindParam(MaterialsThermalExchangeVelocityEnum);
741
742 /* Start looping on the number of gaussian points: */
743 Gauss* gauss=element->NewGaussBase(4);
744 for(int ig=gauss->begin();ig<gauss->end();ig++){
745 gauss->GaussPoint(ig);
746
747 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
748 element->NodalFunctions(basis,gauss);
749
750 D=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel/(heatcapacity*rho_ice);
751 if(reCast<bool,IssmDouble>(dt)) D=dt*D;
752 TripleMultiply(basis,numnodes,1,0,
753 &D,1,1,0,
754 basis,1,numnodes,0,
755 &Ke->values[0],1);
756
757 }
758
759 /*Clean up and return*/
760 delete gauss;
761 xDelete<IssmDouble>(basis);
762 xDelete<IssmDouble>(xyz_list_base);
763 return Ke;
764}/*}}}*/
765ElementVector* EnthalpyAnalysis::CreatePVector(Element* element){/*{{{*/
766
767 /* Check if ice in element */
768 if(!element->IsIceInElement()) return NULL;
769
770 /*compute all load vectors for this element*/
771 ElementVector* pe1=CreatePVectorVolume(element);
772 ElementVector* pe2=CreatePVectorSheet(element);
773 ElementVector* pe3=CreatePVectorShelf(element);
774 ElementVector* pe =new ElementVector(pe1,pe2,pe3);
775
776 /*clean-up and return*/
777 delete pe1;
778 delete pe2;
779 delete pe3;
780 return pe;
781}/*}}}*/
782ElementVector* EnthalpyAnalysis::CreatePVectorVolume(Element* element){/*{{{*/
783
784 /* Check if ice in element */
785 if(!element->IsIceInElement()) return NULL;
786
787 /*Intermediaries*/
788 int i, stabilization;
789 IssmDouble Jdet,phi,dt;
790 IssmDouble enthalpy, Hpmp;
791 IssmDouble enthalpypicard, d1enthalpypicard[3];
792 IssmDouble pressure, d1pressure[3], d2pressure;
793 IssmDouble waterfractionpicard;
794 IssmDouble kappa,tau_parameter,diameter,hx,hy,hz,kappa_w;
795 IssmDouble tau_parameter_anisotropic[2],tau_parameter_hor,tau_parameter_ver;
796 IssmDouble u,v,w;
797 IssmDouble scalar_def, scalar_sens ,scalar_transient;
798 IssmDouble* xyz_list = NULL;
799 IssmDouble d1H_d1P, d1P2;
800
801 /*Fetch number of nodes and dof for this finite element*/
802 int numnodes = element->GetNumberOfNodes();
803 int numvertices = element->GetNumberOfVertices();
804
805 /*Initialize Element vector*/
806 ElementVector* pe = element->NewElementVector();
807 IssmDouble* basis = xNew<IssmDouble>(numnodes);
808 IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
809
810 /*Retrieve all inputs and parameters*/
811 element->GetVerticesCoordinates(&xyz_list);
812 IssmDouble rho_ice = element->FindParam(MaterialsRhoIceEnum);
813 IssmDouble heatcapacity = element->FindParam(MaterialsHeatcapacityEnum);
814 IssmDouble thermalconductivity = element->FindParam(MaterialsThermalconductivityEnum);
815 IssmDouble temperateiceconductivity = element->FindParam(MaterialsTemperateiceconductivityEnum);
816 IssmDouble beta = element->FindParam(MaterialsBetaEnum);
817 IssmDouble latentheat = element->FindParam(MaterialsLatentheatEnum);
818 element->FindParam(&dt,TimesteppingTimeStepEnum);
819 element->FindParam(&stabilization,ThermalStabilizationEnum);
820 Input* vx_input=element->GetInput(VxEnum); _assert_(vx_input);
821 Input* vy_input=element->GetInput(VyEnum); _assert_(vy_input);
822 Input* vz_input=element->GetInput(VzEnum); _assert_(vz_input);
823 Input* enthalpypicard_input=element->GetInput(EnthalpyPicardEnum); _assert_(enthalpypicard_input);
824 Input* pressure_input=element->GetInput(PressureEnum); _assert_(pressure_input);
825 Input* enthalpy_input=NULL;
826 if(reCast<bool,IssmDouble>(dt)){enthalpy_input = element->GetInput(EnthalpyEnum); _assert_(enthalpy_input);}
827
828 /* Start looping on the number of gaussian points: */
829 Gauss* gauss=element->NewGauss(4);
830 for(int ig=gauss->begin();ig<gauss->end();ig++){
831 gauss->GaussPoint(ig);
832
833 element->JacobianDeterminant(&Jdet,xyz_list,gauss);
834 element->NodalFunctions(basis,gauss);
835
836 /*viscous dissipation*/
837 element->ViscousHeating(&phi,xyz_list,gauss,vx_input,vy_input,vz_input);
838
839 scalar_def=phi/rho_ice*Jdet*gauss->weight;
840 if(dt!=0.) scalar_def=scalar_def*dt;
841
842 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_def*basis[i];
843
844 /*sensible heat flux in temperate ice*/
845 enthalpypicard_input->GetInputValue(&enthalpypicard,gauss);
846 pressure_input->GetInputValue(&pressure,gauss);
847 Hpmp=this->PureIceEnthalpy(element, pressure);
848
849 if(enthalpypicard>=Hpmp){
850 enthalpypicard_input->GetInputDerivativeValue(&d1enthalpypicard[0],xyz_list,gauss);
851 pressure_input->GetInputDerivativeValue(&d1pressure[0],xyz_list,gauss);
852 d2pressure=0.; // for linear elements, 2nd derivative is zero
853
854 d1H_d1P=0.;
855 for(i=0;i<3;i++) d1H_d1P+=d1enthalpypicard[i]*d1pressure[i];
856 d1P2=0.;
857 for(i=0;i<3;i++) d1P2+=pow(d1pressure[i],2.);
858
859 scalar_sens=-beta*((temperateiceconductivity - thermalconductivity)/latentheat*(d1H_d1P + beta*heatcapacity*d1P2))/rho_ice;
860 if(dt!=0.) scalar_sens=scalar_sens*dt;
861 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_sens*basis[i];
862 }
863
864 /* Build transient now */
865 if(reCast<bool,IssmDouble>(dt)){
866 enthalpy_input->GetInputValue(&enthalpy, gauss);
867 scalar_transient=enthalpy*Jdet*gauss->weight;
868 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_transient*basis[i];
869 }
870
871 /* SUPG */
872 if(stabilization==2){
873 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
874 diameter=element->MinEdgeLength(xyz_list);
875 kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
876 vx_input->GetInputValue(&u,gauss);
877 vy_input->GetInputValue(&v,gauss);
878 vz_input->GetInputValue(&w,gauss);
879 tau_parameter=element->StabilizationParameter(u,v,w,diameter,kappa/rho_ice);
880
881 for(i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_def*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]);
882
883 if(dt!=0.){
884 for(i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_transient*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]);
885 }
886 }
887 /* anisotropic SUPG */
888 else if(stabilization==3){
889 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
890 element->ElementSizes(&hx,&hy,&hz);
891 kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
892 vx_input->GetInputValue(&u,gauss);
893 vy_input->GetInputValue(&v,gauss);
894 vz_input->GetInputValue(&w,gauss);
895 element->StabilizationParameterAnisotropic(&tau_parameter_anisotropic[0],u,v,w,hx,hy,hz,kappa/rho_ice);
896 tau_parameter_hor=tau_parameter_anisotropic[0];
897 tau_parameter_ver=tau_parameter_anisotropic[1];
898
899 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_def*(tau_parameter_hor*u*dbasis[0*numnodes+i]+tau_parameter_hor*v*dbasis[1*numnodes+i]+tau_parameter_ver*w*dbasis[2*numnodes+i]);
900 }
901 }
902
903 /*Clean up and return*/
904 xDelete<IssmDouble>(basis);
905 xDelete<IssmDouble>(dbasis);
906 xDelete<IssmDouble>(xyz_list);
907 delete gauss;
908 return pe;
909
910}/*}}}*/
911ElementVector* EnthalpyAnalysis::CreatePVectorSheet(Element* element){/*{{{*/
912
913 /* Check if ice in element */
914 if(!element->IsIceInElement()) return NULL;
915
916 /* implementation of the basal condition decision chart of Aschwanden 2012, Fig.5 */
917 if(!element->IsOnBase() || element->IsFloating()) return NULL;
918
919 bool converged, isdynamicbasalspc;
920 int i, state;
921 int enthalpy_enum;
922 IssmDouble dt,Jdet,scalar;
923 IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
924 IssmDouble vx,vy,vz;
925 IssmDouble alpha2,basalfriction,geothermalflux,heatflux;
926 IssmDouble *xyz_list_base = NULL;
927
928 /*Fetch number of nodes for this finite element*/
929 int numnodes = element->GetNumberOfNodes();
930
931 /*Initialize vectors*/
932 ElementVector* pe = element->NewElementVector();
933 IssmDouble* basis = xNew<IssmDouble>(numnodes);
934
935 /*Retrieve all inputs and parameters*/
936 element->GetVerticesCoordinatesBase(&xyz_list_base);
937 element->FindParam(&dt,TimesteppingTimeStepEnum);
938 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
939 element->GetInputValue(&converged,ConvergedEnum);
940 if(dt==0. && !converged) enthalpy_enum=EnthalpyPicardEnum; // use enthalpy from last iteration
941 else enthalpy_enum=EnthalpyEnum; // use enthalpy from last time step
942 Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
943 Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
944 Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
945 Input* enthalpy_input = element->GetInput(enthalpy_enum); _assert_(enthalpy_input);
946 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
947 Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
948 Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
949 Input* geothermalflux_input = element->GetInput(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input);
950 IssmDouble rho_ice = element->FindParam(MaterialsRhoIceEnum);
951
952 /*Build friction element, needed later: */
953 Friction* friction=new Friction(element,3);
954
955 /* Start looping on the number of gaussian points: */
956 Gauss* gauss=element->NewGaussBase(4);
957 Gauss* gaussup=element->NewGaussTop(4);
958 for(int ig=gauss->begin();ig<gauss->end();ig++){
959 gauss->GaussPoint(ig);
960 gaussup->GaussPoint(ig);
961
962 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
963 element->NodalFunctions(basis,gauss);
964
965 if(isdynamicbasalspc){
966 enthalpy_input->GetInputValue(&enthalpy,gauss);
967 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
968 pressure_input->GetInputValue(&pressure,gauss);
969 pressure_input->GetInputValue(&pressureup,gaussup);
970 watercolumn_input->GetInputValue(&watercolumn,gauss);
971 meltingrate_input->GetInputValue(&meltingrate,gauss);
972 state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
973 }
974 else
975 state=0;
976
977 switch (state) {
978 case 0: case 1: case 2: case 3:
979 // cold, dry base; cold, wet base; refreezing temperate base; thin temperate base:
980 // Apply basal surface forcing.
981 // Interpolated values of enthalpy on gauss nodes may indicate cold base,
982 // although one node might have become temperate. So keep heat flux switched on.
983 geothermalflux_input->GetInputValue(&geothermalflux,gauss);
984 friction->GetAlpha2(&alpha2,gauss);
985 vx_input->GetInputValue(&vx,gauss);
986 vy_input->GetInputValue(&vy,gauss);
987 vz_input->GetInputValue(&vz,gauss);
988 basalfriction=alpha2*(vx*vx+vy*vy+vz*vz);
989 heatflux=(basalfriction+geothermalflux)/(rho_ice);
990 scalar=gauss->weight*Jdet*heatflux;
991 if(dt!=0.) scalar=dt*scalar;
992 for(i=0;i<numnodes;i++)
993 pe->values[i]+=scalar*basis[i];
994 break;
995 case 4:
996 // temperate, thick melting base: set grad H*n=0
997 for(i=0;i<numnodes;i++)
998 pe->values[i]+=0.;
999 break;
1000 default:
1001 _printf0_(" unknown thermal basal state found!");
1002 }
1003 }
1004
1005 /*Clean up and return*/
1006 delete gauss;
1007 delete gaussup;
1008 delete friction;
1009 xDelete<IssmDouble>(basis);
1010 xDelete<IssmDouble>(xyz_list_base);
1011 return pe;
1012
1013}/*}}}*/
1014ElementVector* EnthalpyAnalysis::CreatePVectorShelf(Element* element){/*{{{*/
1015
1016 /* Check if ice in element */
1017 if(!element->IsIceInElement()) return NULL;
1018
1019 /*Get basal element*/
1020 if(!element->IsOnBase() || !element->IsFloating()) return NULL;
1021
1022 IssmDouble Hpmp,dt,Jdet,scalar_ocean,pressure;
1023 IssmDouble *xyz_list_base = NULL;
1024
1025 /*Fetch number of nodes for this finite element*/
1026 int numnodes = element->GetNumberOfNodes();
1027
1028 /*Initialize vectors*/
1029 ElementVector* pe = element->NewElementVector();
1030 IssmDouble* basis = xNew<IssmDouble>(numnodes);
1031
1032 /*Retrieve all inputs and parameters*/
1033 element->GetVerticesCoordinatesBase(&xyz_list_base);
1034 element->FindParam(&dt,TimesteppingTimeStepEnum);
1035 Input* pressure_input=element->GetInput(PressureEnum); _assert_(pressure_input);
1036 IssmDouble gravity = element->FindParam(ConstantsGEnum);
1037 IssmDouble rho_water = element->FindParam(MaterialsRhoSeawaterEnum);
1038 IssmDouble rho_ice = element->FindParam(MaterialsRhoIceEnum);
1039 IssmDouble heatcapacity = element->FindParam(MaterialsHeatcapacityEnum);
1040 IssmDouble mixed_layer_capacity= element->FindParam(MaterialsMixedLayerCapacityEnum);
1041 IssmDouble thermal_exchange_vel= element->FindParam(MaterialsThermalExchangeVelocityEnum);
1042
1043 /* Start looping on the number of gaussian points: */
1044 Gauss* gauss=element->NewGaussBase(4);
1045 for(int ig=gauss->begin();ig<gauss->end();ig++){
1046 gauss->GaussPoint(ig);
1047
1048 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
1049 element->NodalFunctions(basis,gauss);
1050
1051 pressure_input->GetInputValue(&pressure,gauss);
1052 Hpmp=element->PureIceEnthalpy(pressure);
1053
1054 scalar_ocean=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel*Hpmp/(heatcapacity*rho_ice);
1055 if(reCast<bool,IssmDouble>(dt)) scalar_ocean=dt*scalar_ocean;
1056
1057 for(int i=0;i<numnodes;i++) pe->values[i]+=scalar_ocean*basis[i];
1058 }
1059
1060 /*Clean up and return*/
1061 delete gauss;
1062 xDelete<IssmDouble>(basis);
1063 xDelete<IssmDouble>(xyz_list_base);
1064 return pe;
1065}/*}}}*/
1066void EnthalpyAnalysis::DrainWaterfraction(FemModel* femmodel){/*{{{*/
1067 /*Drain excess water fraction in ice column: */
1068 ComputeWaterfractionDrainage(femmodel);
1069 DrainageUpdateWatercolumn(femmodel);
1070 DrainageUpdateEnthalpy(femmodel);
1071}/*}}}*/
1072void EnthalpyAnalysis::ComputeWaterfractionDrainage(FemModel* femmodel){/*{{{*/
1073
1074 int i,k,numnodes;
1075 IssmDouble dt;
1076 Element* element= NULL;
1077
1078 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
1079
1080 for(i=0;i<femmodel->elements->Size();i++){
1081 element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1082 numnodes=element->GetNumberOfNodes();
1083 IssmDouble* waterfractions= xNew<IssmDouble>(numnodes);
1084 IssmDouble* drainage= xNew<IssmDouble>(numnodes);
1085
1086 element->GetInputListOnNodes(waterfractions,WaterfractionEnum);
1087 for(k=0; k<numnodes;k++){
1088 drainage[k]=DrainageFunctionWaterfraction(waterfractions[k], dt);
1089 }
1090 element->AddInput(WaterfractionDrainageEnum,drainage,element->GetElementType());
1091
1092 xDelete<IssmDouble>(waterfractions);
1093 xDelete<IssmDouble>(drainage);
1094 }
1095}/*}}}*/
1096void EnthalpyAnalysis::DrainageUpdateWatercolumn(FemModel* femmodel){/*{{{*/
1097
1098 int i,k,numnodes, numbasalnodes;
1099 IssmDouble dt;
1100 int* basalnodeindices=NULL;
1101 Element* element= NULL;
1102
1103 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
1104
1105 /*depth-integrate the drained water fraction */
1106 femmodel->parameters->SetParam(WaterfractionDrainageEnum,InputToDepthaverageInEnum);
1107 femmodel->parameters->SetParam(WaterfractionDrainageIntegratedEnum,InputToDepthaverageOutEnum);
1108 depthaverage_core(femmodel);
1109 femmodel->parameters->SetParam(WaterfractionDrainageIntegratedEnum,InputToExtrudeEnum);
1110 extrudefrombase_core(femmodel);
1111 /*multiply depth-average by ice thickness*/
1112 for(i=0;i<femmodel->elements->Size();i++){
1113 element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1114 numnodes=element->GetNumberOfNodes();
1115 IssmDouble* drainage_int= xNew<IssmDouble>(numnodes);
1116 IssmDouble* thicknesses= xNew<IssmDouble>(numnodes);
1117
1118 element->GetInputListOnNodes(drainage_int,WaterfractionDrainageIntegratedEnum);
1119 element->GetInputListOnNodes(thicknesses,ThicknessEnum);
1120 for(k=0;k<numnodes;k++){
1121 drainage_int[k]*=thicknesses[k];
1122 }
1123 element->AddInput(WaterfractionDrainageIntegratedEnum, drainage_int, element->GetElementType());
1124
1125 xDelete<IssmDouble>(drainage_int);
1126 xDelete<IssmDouble>(thicknesses);
1127 }
1128
1129 /*update water column*/
1130 for(i=0;i<femmodel->elements->Size();i++){
1131 element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1132 /* Check if ice in element */
1133 if(!element->IsIceInElement()) continue;
1134 if(!element->IsOnBase()) continue;
1135
1136 numnodes=element->GetNumberOfNodes();
1137 IssmDouble* watercolumn= xNew<IssmDouble>(numnodes);
1138 IssmDouble* drainage_int= xNew<IssmDouble>(numnodes);
1139 element->GetInputListOnNodes(watercolumn,WatercolumnEnum);
1140 element->GetInputListOnNodes(drainage_int,WaterfractionDrainageIntegratedEnum);
1141
1142 element->BasalNodeIndices(&numbasalnodes,&basalnodeindices,element->GetElementType());
1143 for(k=0;k<numbasalnodes;k++){
1144 watercolumn[basalnodeindices[k]]+=dt*drainage_int[basalnodeindices[k]];
1145 }
1146 element->AddInput(WatercolumnEnum, watercolumn, element->GetElementType());
1147
1148 xDelete<IssmDouble>(watercolumn);
1149 xDelete<IssmDouble>(drainage_int);
1150 xDelete<int>(basalnodeindices);
1151 }
1152}/*}}}*/
1153void EnthalpyAnalysis::DrainageUpdateEnthalpy(FemModel* femmodel){/*{{{*/
1154
1155 int i,k,numnodes;
1156 IssmDouble dt;
1157 Element* element= NULL;
1158 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
1159
1160 for(i=0;i<femmodel->elements->Size();i++){
1161 element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1162 numnodes=element->GetNumberOfNodes();
1163 IssmDouble* enthalpies= xNew<IssmDouble>(numnodes);
1164 IssmDouble* pressures= xNew<IssmDouble>(numnodes);
1165 IssmDouble* temperatures= xNew<IssmDouble>(numnodes);
1166 IssmDouble* waterfractions= xNew<IssmDouble>(numnodes);
1167 IssmDouble* drainage= xNew<IssmDouble>(numnodes);
1168
1169 element->GetInputListOnNodes(pressures,PressureEnum);
1170 element->GetInputListOnNodes(temperatures,TemperatureEnum);
1171 element->GetInputListOnNodes(waterfractions,WaterfractionEnum);
1172 element->GetInputListOnNodes(drainage,WaterfractionDrainageEnum);
1173
1174 for(k=0;k<numnodes;k++){
1175 if(dt==0.)
1176 waterfractions[k]-=drainage[k];
1177 else
1178 waterfractions[k]-=dt*drainage[k];
1179
1180 element->ThermalToEnthalpy(&enthalpies[k], temperatures[k], waterfractions[k], pressures[k]);
1181 }
1182 element->AddInput(WaterfractionEnum,waterfractions,element->GetElementType());
1183 element->AddInput(EnthalpyEnum,enthalpies,element->GetElementType());
1184
1185 xDelete<IssmDouble>(enthalpies);
1186 xDelete<IssmDouble>(pressures);
1187 xDelete<IssmDouble>(temperatures);
1188 xDelete<IssmDouble>(waterfractions);
1189 xDelete<IssmDouble>(drainage);
1190 }
1191}/*}}}*/
1192IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameter(Element* element,IssmDouble enthalpy,IssmDouble pressure){/*{{{*/
1193
1194 IssmDouble heatcapacity = element->FindParam(MaterialsHeatcapacityEnum);
1195 IssmDouble temperateiceconductivity = element->FindParam(MaterialsTemperateiceconductivityEnum);
1196 IssmDouble thermalconductivity = element->FindParam(MaterialsThermalconductivityEnum);
1197
1198 if(enthalpy < PureIceEnthalpy(element,pressure))
1199 return thermalconductivity/heatcapacity;
1200 else
1201 return temperateiceconductivity/heatcapacity;
1202}/*}}}*/
1203IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameterVolume(Element* element,int enthalpy_enum){/*{{{*/
1204
1205 int iv;
1206 IssmDouble lambda; /* fraction of cold ice */
1207 IssmDouble kappa,kappa_c,kappa_t; /* enthalpy conductivities */
1208 IssmDouble Hc,Ht;
1209
1210 /*Get pressures and enthalpies on vertices*/
1211 int numvertices = element->GetNumberOfVertices();
1212 int effectiveconductivity_averaging;
1213 IssmDouble* pressures = xNew<IssmDouble>(numvertices);
1214 IssmDouble* enthalpies = xNew<IssmDouble>(numvertices);
1215 IssmDouble* PIE = xNew<IssmDouble>(numvertices);
1216 IssmDouble* dHpmp = xNew<IssmDouble>(numvertices);
1217 element->GetInputListOnVertices(pressures,PressureEnum);
1218 element->GetInputListOnVertices(enthalpies,enthalpy_enum);
1219 element->FindParam(&effectiveconductivity_averaging,MaterialsEffectiveconductivityAveragingEnum);
1220
1221 for(iv=0;iv<numvertices;iv++){
1222 PIE[iv] = PureIceEnthalpy(element,pressures[iv]);
1223 dHpmp[iv] = enthalpies[iv]-PIE[iv];
1224 }
1225
1226 bool allequalsign = true;
1227 if(dHpmp[0]<0.){
1228 for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]<0.));
1229 }
1230 else{
1231 for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]>=0.));
1232 }
1233
1234 if(allequalsign){
1235 kappa = EnthalpyDiffusionParameter(element,enthalpies[0],pressures[0]);
1236 }
1237 else{
1238 kappa_c = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)-1.,0.);
1239 kappa_t = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)+1.,0.);
1240
1241 Hc=0.; Ht=0.;
1242 for(iv=0; iv<numvertices;iv++){
1243 if(enthalpies[iv]<PIE[iv])
1244 Hc+=(PIE[iv]-enthalpies[iv]);
1245 else
1246 Ht+=(enthalpies[iv]-PIE[iv]);
1247 }
1248 _assert_((Hc+Ht)>0.);
1249 lambda = Hc/(Hc+Ht);
1250 _assert_(lambda>=0.);
1251 _assert_(lambda<=1.);
1252
1253 if(effectiveconductivity_averaging==0){
1254 /* return arithmetic mean (volume average) of thermal conductivities, weighted by fraction of cold/temperate ice */
1255 kappa=kappa_c*lambda+(1.-lambda)*kappa_t;
1256 }
1257 else if(effectiveconductivity_averaging==1){
1258 /* return harmonic mean (reciprocal avarage) of thermal conductivities, weighted by fraction of cold/temperate ice, cf Patankar 1980, pp44 */
1259 kappa=kappa_c*kappa_t/(lambda*kappa_t+(1.-lambda)*kappa_c);
1260 }
1261 else if(effectiveconductivity_averaging==2){
1262 /* return geometric mean (power law) of thermal conductivities, weighted by fraction of cold/temperate ice */
1263 kappa=pow(kappa_c,lambda)*pow(kappa_t,1.-lambda);
1264 }
1265 else{
1266 _error_("effectiveconductivity_averaging not supported yet");
1267 }
1268 }
1269
1270 /*Clean up and return*/
1271 xDelete<IssmDouble>(PIE);
1272 xDelete<IssmDouble>(dHpmp);
1273 xDelete<IssmDouble>(pressures);
1274 xDelete<IssmDouble>(enthalpies);
1275 return kappa;
1276}/*}}}*/
1277void EnthalpyAnalysis::GetBAdvec(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
1278 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
1279 * For node i, Bi' can be expressed in the actual coordinate system
1280 * by:
1281 * Bi_advec =[ h ]
1282 * [ h ]
1283 * [ h ]
1284 * where h is the interpolation function for node i.
1285 *
1286 * We assume B has been allocated already, of size: 3x(NDOF1*NUMNODESP1)
1287 */
1288
1289 /*Fetch number of nodes for this finite element*/
1290 int numnodes = element->GetNumberOfNodes();
1291
1292 /*Get nodal functions*/
1293 IssmDouble* basis=xNew<IssmDouble>(numnodes);
1294 element->NodalFunctions(basis,gauss);
1295
1296 /*Build B: */
1297 for(int i=0;i<numnodes;i++){
1298 B[numnodes*0+i] = basis[i];
1299 B[numnodes*1+i] = basis[i];
1300 B[numnodes*2+i] = basis[i];
1301 }
1302
1303 /*Clean-up*/
1304 xDelete<IssmDouble>(basis);
1305}/*}}}*/
1306void EnthalpyAnalysis::GetBAdvecprime(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
1307 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
1308 * For node i, Bi' can be expressed in the actual coordinate system
1309 * by:
1310 * Biprime_advec=[ dh/dx ]
1311 * [ dh/dy ]
1312 * [ dh/dz ]
1313 * where h is the interpolation function for node i.
1314 *
1315 * We assume B has been allocated already, of size: 3x(NDOF1*numnodes)
1316 */
1317
1318 /*Fetch number of nodes for this finite element*/
1319 int numnodes = element->GetNumberOfNodes();
1320
1321 /*Get nodal functions derivatives*/
1322 IssmDouble* dbasis=xNew<IssmDouble>(3*numnodes);
1323 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
1324
1325 /*Build B: */
1326 for(int i=0;i<numnodes;i++){
1327 B[numnodes*0+i] = dbasis[0*numnodes+i];
1328 B[numnodes*1+i] = dbasis[1*numnodes+i];
1329 B[numnodes*2+i] = dbasis[2*numnodes+i];
1330 }
1331
1332 /*Clean-up*/
1333 xDelete<IssmDouble>(dbasis);
1334}/*}}}*/
1335void EnthalpyAnalysis::GetBasalConstraints(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
1336
1337 /*Intermediary*/
1338 bool isdynamicbasalspc;
1339 IssmDouble dt;
1340
1341 /*Check wether dynamic basal boundary conditions are activated */
1342 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
1343 if(!isdynamicbasalspc) return;
1344
1345 element->FindParam(&dt,TimesteppingTimeStepEnum);
1346 if(dt==0.){
1347 GetBasalConstraintsSteadystate(vec_spc,element);
1348 }
1349 else{
1350 GetBasalConstraintsTransient(vec_spc,element);
1351 }
1352}/*}}}*/
1353void EnthalpyAnalysis::GetBasalConstraintsSteadystate(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
1354
1355 /* Check if ice in element */
1356 if(!element->IsIceInElement()) return;
1357
1358 /* Only update constraints at the base.
1359 * Floating ice is not affected by basal BC decision chart. */
1360 if(!(element->IsOnBase()) || element->IsFloating()) return;
1361
1362 /*Intermediary*/
1363 int numindices, numindicesup, state;
1364 int *indices = NULL, *indicesup = NULL;
1365 IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
1366
1367 /*Get parameters and inputs: */
1368 Input* enthalpy_input = element->GetInput(EnthalpyPicardEnum); _assert_(enthalpy_input);
1369 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
1370 Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
1371 Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
1372
1373 /*Fetch indices of basal & surface nodes for this finite element*/
1374 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
1375 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
1376 penta->SurfaceNodeIndices(&numindicesup,&indicesup,element->GetElementType()); _assert_(numindices==numindicesup);
1377
1378 GaussPenta* gauss=new GaussPenta();
1379 GaussPenta* gaussup=new GaussPenta();
1380 for(int i=0;i<numindices;i++){
1381 gauss->GaussNode(element->GetElementType(),indices[i]);
1382 gaussup->GaussNode(element->GetElementType(),indicesup[i]);
1383
1384 enthalpy_input->GetInputValue(&enthalpy,gauss);
1385 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
1386 pressure_input->GetInputValue(&pressure,gauss);
1387 pressure_input->GetInputValue(&pressureup,gaussup);
1388 watercolumn_input->GetInputValue(&watercolumn,gauss);
1389 meltingrate_input->GetInputValue(&meltingrate,gauss);
1390
1391 state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
1392 switch (state) {
1393 case 0:
1394 // cold, dry base: apply basal surface forcing
1395 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
1396 break;
1397 case 1:
1398 // cold, wet base: keep at pressure melting point
1399 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1400 break;
1401 case 2:
1402 // temperate, thin refreezing base:
1403 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1404 break;
1405 case 3:
1406 // temperate, thin melting base: set spc
1407 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1408 break;
1409 case 4:
1410 // temperate, thick melting base:
1411 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1412 break;
1413 default:
1414 _printf0_(" unknown thermal basal state found!");
1415 }
1416 }
1417
1418 /*Free ressources:*/
1419 xDelete<int>(indices);
1420 xDelete<int>(indicesup);
1421 delete gauss;
1422 delete gaussup;
1423}/*}}}*/
1424void EnthalpyAnalysis::GetBasalConstraintsTransient(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
1425
1426 /* Check if ice in element */
1427 if(!element->IsIceInElement()) return;
1428
1429 /* Only update constraints at the base.
1430 * Floating ice is not affected by basal BC decision chart.*/
1431 if(!(element->IsOnBase()) || element->IsFloating()) return;
1432
1433 /*Intermediary*/
1434 int numindices, numindicesup, state;
1435 int *indices = NULL, *indicesup = NULL;
1436 IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
1437
1438 /*Get parameters and inputs: */
1439 Input* enthalpy_input = element->GetInput(EnthalpyEnum); _assert_(enthalpy_input); //TODO: check EnthalpyPicard?
1440 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
1441 Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
1442 Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
1443
1444 /*Fetch indices of basal & surface nodes for this finite element*/
1445 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
1446 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
1447 penta->SurfaceNodeIndices(&numindicesup,&indicesup,element->GetElementType()); _assert_(numindices==numindicesup);
1448
1449 GaussPenta* gauss=new GaussPenta();
1450 GaussPenta* gaussup=new GaussPenta();
1451
1452 for(int i=0;i<numindices;i++){
1453 gauss->GaussNode(element->GetElementType(),indices[i]);
1454 gaussup->GaussNode(element->GetElementType(),indicesup[i]);
1455
1456 enthalpy_input->GetInputValue(&enthalpy,gauss);
1457 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
1458 pressure_input->GetInputValue(&pressure,gauss);
1459 pressure_input->GetInputValue(&pressureup,gaussup);
1460 watercolumn_input->GetInputValue(&watercolumn,gauss);
1461 meltingrate_input->GetInputValue(&meltingrate,gauss);
1462
1463 state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
1464
1465 switch (state) {
1466 case 0:
1467 // cold, dry base: apply basal surface forcing
1468 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
1469 break;
1470 case 1:
1471 // cold, wet base: keep at pressure melting point
1472 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1473 break;
1474 case 2:
1475 // temperate, thin refreezing base: release spc
1476 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
1477 break;
1478 case 3:
1479 // temperate, thin melting base: set spc
1480 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1481 break;
1482 case 4:
1483 // temperate, thick melting base: set grad H*n=0
1484 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
1485 break;
1486 default:
1487 _printf0_(" unknown thermal basal state found!");
1488 }
1489
1490 }
1491
1492 /*Free ressources:*/
1493 xDelete<int>(indices);
1494 xDelete<int>(indicesup);
1495 delete gauss;
1496 delete gaussup;
1497}/*}}}*/
1498void EnthalpyAnalysis::GetBConduct(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
1499 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
1500 * For node i, Bi' can be expressed in the actual coordinate system
1501 * by:
1502 * Bi_conduct=[ dh/dx ]
1503 * [ dh/dy ]
1504 * [ dh/dz ]
1505 * where h is the interpolation function for node i.
1506 *
1507 * We assume B has been allocated already, of size: 3x(NDOF1*numnodes)
1508 */
1509
1510 /*Fetch number of nodes for this finite element*/
1511 int numnodes = element->GetNumberOfNodes();
1512
1513 /*Get nodal functions derivatives*/
1514 IssmDouble* dbasis=xNew<IssmDouble>(3*numnodes);
1515 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
1516
1517 /*Build B: */
1518 for(int i=0;i<numnodes;i++){
1519 B[numnodes*0+i] = dbasis[0*numnodes+i];
1520 B[numnodes*1+i] = dbasis[1*numnodes+i];
1521 B[numnodes*2+i] = dbasis[2*numnodes+i];
1522 }
1523
1524 /*Clean-up*/
1525 xDelete<IssmDouble>(dbasis);
1526}/*}}}*/
1527void EnthalpyAnalysis::GetSolutionFromInputs(Vector<IssmDouble>* solution,Element* element){/*{{{*/
1528 element->GetSolutionFromInputsOneDof(solution,EnthalpyEnum);
1529}/*}}}*/
1530int EnthalpyAnalysis::GetThermalBasalCondition(Element* element, IssmDouble enthalpy, IssmDouble enthalpyup, IssmDouble pressure, IssmDouble pressureup, IssmDouble watercolumn, IssmDouble meltingrate){/*{{{*/
1531
1532 /* Check if ice in element */
1533 if(!element->IsIceInElement()) return -1;
1534
1535 /* Only update Constraints at the base of grounded ice*/
1536 if(!(element->IsOnBase())) return -1;
1537
1538 /*Intermediary*/
1539 int state=-1;
1540 IssmDouble dt;
1541
1542 /*Get parameters and inputs: */
1543 element->FindParam(&dt,TimesteppingTimeStepEnum);
1544
1545 if(enthalpy<PureIceEnthalpy(element,pressure)){
1546 if(watercolumn<=0.) state=0; // cold, dry base
1547 else state=1; // cold, wet base (refreezing)
1548 }
1549 else{
1550 if(enthalpyup<PureIceEnthalpy(element,pressureup)){
1551 if((dt==0.) && (meltingrate<0.)) state=2; // refreezing temperate base (non-physical, only for steadystate solver)
1552 else state=3; // temperate base, but no temperate layer
1553 }
1554 else state=4; // temperate layer with positive thickness
1555 }
1556
1557 _assert_(state>=0);
1558 return state;
1559}/*}}}*/
1560IssmDouble EnthalpyAnalysis::GetWetIceConductivity(Element* element, IssmDouble enthalpy, IssmDouble pressure){/*{{{*/
1561
1562 IssmDouble temperature, waterfraction;
1563 IssmDouble kappa_w = 0.6; // thermal conductivity of water (in W/m/K)
1564 IssmDouble kappa_i = element->FindParam(MaterialsThermalconductivityEnum);
1565 element->EnthalpyToThermal(&temperature, &waterfraction, enthalpy, pressure);
1566
1567 return (1.-waterfraction)*kappa_i + waterfraction*kappa_w;
1568}/*}}}*/
1569void EnthalpyAnalysis::GradientJ(Vector<IssmDouble>* gradient,Element* element,int control_type,int control_index){/*{{{*/
1570 _error_("Not implemented yet");
1571}/*}}}*/
1572void EnthalpyAnalysis::InputUpdateFromSolution(IssmDouble* solution,Element* element){/*{{{*/
1573
1574 bool converged;
1575 int i,rheology_law;
1576 IssmDouble B_average,s_average,T_average=0.,P_average=0.;
1577 int *doflist = NULL;
1578 IssmDouble *xyz_list = NULL;
1579
1580 /*Fetch number of nodes and dof for this finite element*/
1581 int numnodes = element->GetNumberOfNodes();
1582
1583 /*Fetch dof list and allocate solution vector*/
1584 element->GetDofListLocal(&doflist,NoneApproximationEnum,GsetEnum);
1585 IssmDouble* values = xNew<IssmDouble>(numnodes);
1586 IssmDouble* pressure = xNew<IssmDouble>(numnodes);
1587 IssmDouble* surface = xNew<IssmDouble>(numnodes);
1588 IssmDouble* B = xNew<IssmDouble>(numnodes);
1589 IssmDouble* temperature = xNew<IssmDouble>(numnodes);
1590 IssmDouble* waterfraction = xNew<IssmDouble>(numnodes);
1591
1592 /*Use the dof list to index into the solution vector: */
1593 for(i=0;i<numnodes;i++){
1594 values[i]=solution[doflist[i]];
1595
1596 /*Check solution*/
1597 if(xIsNan<IssmDouble>(values[i])) _error_("NaN found in solution vector");
1598 if(xIsInf<IssmDouble>(values[i])) _error_("Inf found in solution vector");
1599 }
1600
1601 /*Get all inputs and parameters*/
1602 element->GetInputValue(&converged,ConvergedEnum);
1603 element->GetInputListOnNodes(&pressure[0],PressureEnum);
1604 if(converged){
1605 for(i=0;i<numnodes;i++){
1606 element->EnthalpyToThermal(&temperature[i],&waterfraction[i],values[i],pressure[i]);
1607 if(waterfraction[i]<0.) _error_("Negative water fraction found in solution vector");
1608 //if(waterfraction[i]>1.) _error_("Water fraction >1 found in solution vector");
1609 }
1610 element->AddInput(EnthalpyEnum,values,element->GetElementType());
1611 element->AddInput(WaterfractionEnum,waterfraction,element->GetElementType());
1612 element->AddInput(TemperatureEnum,temperature,element->GetElementType());
1613
1614 IssmDouble* n = xNew<IssmDouble>(numnodes);
1615 if(element->material->ObjectEnum()==MatestarEnum){
1616 for(i=0;i<numnodes;i++) n[i]=3.;
1617 }
1618 else{
1619 element->GetInputListOnNodes(&n[0],MaterialsRheologyNEnum);
1620 }
1621
1622 /*Update Rheology only if converged (we must make sure that the temperature is below melting point
1623 * otherwise the rheology could be negative*/
1624 element->FindParam(&rheology_law,MaterialsRheologyLawEnum);
1625 element->GetInputListOnNodes(&surface[0],SurfaceEnum);
1626 switch(rheology_law){
1627 case NoneEnum:
1628 /*Do nothing: B is not temperature dependent*/
1629 break;
1630 case BuddJackaEnum:
1631 for(i=0;i<numnodes;i++) B[i]=BuddJacka(temperature[i]);
1632 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1633 break;
1634 case CuffeyEnum:
1635 for(i=0;i<numnodes;i++) B[i]=Cuffey(temperature[i]);
1636 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1637 break;
1638 case CuffeyTemperateEnum:
1639 for(i=0;i<numnodes;i++) B[i]=CuffeyTemperate(temperature[i], waterfraction[i],n[i]);
1640 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1641 break;
1642 case PatersonEnum:
1643 for(i=0;i<numnodes;i++) B[i]=Paterson(temperature[i]);
1644 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1645 break;
1646 case NyeH2OEnum:
1647 for(i=0;i<numnodes;i++) B[i]=NyeH2O(values[i]);
1648 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1649 break;
1650 case NyeCO2Enum:
1651 for(i=0;i<numnodes;i++) B[i]=NyeCO2(values[i]);
1652 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1653 break;
1654 case ArrheniusEnum:{
1655 element->GetVerticesCoordinates(&xyz_list);
1656 for(i=0;i<numnodes;i++) B[i]=Arrhenius(temperature[i],surface[i]-xyz_list[i*3+2],n[i]);
1657 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1658 break;
1659 }
1660 case LliboutryDuvalEnum:{
1661 for(i=0;i<numnodes;i++) B[i]=LliboutryDuval(values[i],pressure[i],n[i],element->FindParam(MaterialsBetaEnum),element->FindParam(ConstantsReferencetemperatureEnum),element->FindParam(MaterialsHeatcapacityEnum),element->FindParam(MaterialsLatentheatEnum));
1662 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1663 break;
1664 }
1665 default: _error_("Rheology law " << EnumToStringx(rheology_law) << " not supported yet");
1666 }
1667 xDelete<IssmDouble>(n);
1668 }
1669 else{
1670 element->AddInput(EnthalpyPicardEnum,values,element->GetElementType());
1671 }
1672
1673 /*Free ressources:*/
1674 xDelete<IssmDouble>(values);
1675 xDelete<IssmDouble>(pressure);
1676 xDelete<IssmDouble>(surface);
1677 xDelete<IssmDouble>(B);
1678 xDelete<IssmDouble>(temperature);
1679 xDelete<IssmDouble>(waterfraction);
1680 xDelete<IssmDouble>(xyz_list);
1681 xDelete<int>(doflist);
1682}/*}}}*/
1683void EnthalpyAnalysis::PostProcessing(FemModel* femmodel){/*{{{*/
1684
1685 /*Intermediaries*/
1686 bool computebasalmeltingrates=true;
1687 bool isdrainicecolumn;
1688 IssmDouble dt;
1689
1690 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
1691 femmodel->parameters->FindParam(&isdrainicecolumn,ThermalIsdrainicecolumnEnum);
1692
1693 if(isdrainicecolumn) DrainWaterfraction(femmodel);
1694 if(computebasalmeltingrates) ComputeBasalMeltingrate(femmodel);
1695
1696}/*}}}*/
1697IssmDouble EnthalpyAnalysis::PureIceEnthalpy(Element* element,IssmDouble pressure){/*{{{*/
1698
1699 IssmDouble heatcapacity = element->FindParam(MaterialsHeatcapacityEnum);
1700 IssmDouble referencetemperature = element->FindParam(ConstantsReferencetemperatureEnum);
1701
1702 return heatcapacity*(TMeltingPoint(element,pressure)-referencetemperature);
1703}/*}}}*/
1704IssmDouble EnthalpyAnalysis::TMeltingPoint(Element* element,IssmDouble pressure){/*{{{*/
1705
1706 IssmDouble meltingpoint = element->FindParam(MaterialsMeltingpointEnum);
1707 IssmDouble beta = element->FindParam(MaterialsBetaEnum);
1708
1709 return meltingpoint-beta*pressure;
1710}/*}}}*/
1711void EnthalpyAnalysis::UpdateBasalConstraints(FemModel* femmodel){/*{{{*/
1712
1713 /*Update basal dirichlet BCs for enthalpy: */
1714 Vector<IssmDouble>* spc = NULL;
1715 IssmDouble* serial_spc = NULL;
1716
1717 spc=new Vector<IssmDouble>(femmodel->nodes->NumberOfNodes());
1718 /*First create a vector to figure out what elements should be constrained*/
1719 for(int i=0;i<femmodel->elements->Size();i++){
1720 Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1721 GetBasalConstraints(spc,element);
1722 }
1723
1724 /*Assemble and serialize*/
1725 spc->Assemble();
1726 serial_spc=spc->ToMPISerial();
1727 delete spc;
1728
1729 /*Then update basal constraints nodes accordingly*/
1730 for(int i=0;i<femmodel->elements->Size();i++){
1731 Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1732 ApplyBasalConstraints(serial_spc,element);
1733 }
1734
1735 femmodel->UpdateConstraintsx();
1736
1737 /*Delete*/
1738 xDelete<IssmDouble>(serial_spc);
1739}/*}}}*/
1740void EnthalpyAnalysis::UpdateConstraints(FemModel* femmodel){/*{{{*/
1741 SetActiveNodesLSMx(femmodel);
1742}/*}}}*/
Note: See TracBrowser for help on using the repository browser.