source: issm/trunk-jpl/src/c/analyses/EnthalpyAnalysis.cpp@ 22484

Last change on this file since 22484 was 22484, checked in by schlegel, 7 years ago

CHG: add option for static spc for the SMB Pdd schemes

File size: 65.1 KB
Line 
1#include "./EnthalpyAnalysis.h"
2#include "../toolkits/toolkits.h"
3#include "../classes/classes.h"
4#include "../shared/shared.h"
5#include "../modules/modules.h"
6#include "../solutionsequences/solutionsequences.h"
7#include "../cores/cores.h"
8
9/*Model processing*/
10void EnthalpyAnalysis::CreateConstraints(Constraints* constraints,IoModel* iomodel){/*{{{*/
11
12 /*Intermediary*/
13 int count;
14 int M,N;
15 bool spcpresent = false;
16 int finiteelement;
17 IssmDouble heatcapacity;
18 IssmDouble referencetemperature;
19
20 /*Output*/
21 IssmDouble *spcvector = NULL;
22 IssmDouble *spcvectorstatic = NULL;
23 IssmDouble* times=NULL;
24 IssmDouble* values=NULL;
25 IssmDouble* issurface = NULL;
26
27 /*Fetch parameters: */
28 iomodel->FindConstant(&heatcapacity,"md.materials.heatcapacity");
29 iomodel->FindConstant(&referencetemperature,"md.constants.referencetemperature");
30 iomodel->FindConstant(&finiteelement,"md.thermal.fe");
31
32 /*return if 2d mesh*/
33 if(iomodel->domaintype==Domain2DhorizontalEnum) return;
34
35 /*Fetch data: */
36 iomodel->FetchData(&issurface,&M,&N,"md.mesh.vertexonsurface"); _assert_(N>0); _assert_(M==iomodel->numberofvertices);
37 iomodel->FetchData(&spcvector,&M,&N,"md.thermal.spctemperature");
38 iomodel->FetchData(&spcvectorstatic,&M,&N,"md.thermal.spctemperature");
39
40 /*Specific case for PDD, we want the constaints to be updated by the PDD scheme itself*/
41 bool isdynamic = false;
42 if (iomodel->solution_enum==TransientSolutionEnum){
43 int smb_model;
44 iomodel->FindConstant(&smb_model,"md.smb.model");
45 if(smb_model==SMBpddEnum) isdynamic=true;
46 if(smb_model==SMBd18opddEnum) isdynamic=true;
47 }
48
49 /*Convert spcs from temperatures to enthalpy*/
50 _assert_(N>0); _assert_(M>=iomodel->numberofvertices);
51 for(int i=0;i<iomodel->numberofvertices;i++){
52 for(int j=0;j<N;j++){
53 if (isdynamic){
54 if (issurface[i]==1){
55 spcvector[i*N+j] = heatcapacity*(spcvector[i*N+j]-referencetemperature);
56 spcvectorstatic[i*N+j] = nan("");
57 }
58 else{
59 spcvector[i*N+j] = nan("");
60 spcvectorstatic[i*N+j] = heatcapacity*(spcvectorstatic[i*N+j]-referencetemperature);
61 }
62 }
63 else{
64 spcvector[i*N+j] = heatcapacity*(spcvector[i*N+j]-referencetemperature);
65 }
66 }
67 }
68
69 if(isdynamic){
70 IoModelToDynamicConstraintsx(constraints,iomodel,spcvector,iomodel->numberofvertices,1,EnthalpyAnalysisEnum,finiteelement);
71 IoModelToConstraintsx(constraints,iomodel,spcvectorstatic,M,N,EnthalpyAnalysisEnum,finiteelement);
72 }
73 else{
74 IoModelToConstraintsx(constraints,iomodel,spcvector,M,N,EnthalpyAnalysisEnum,finiteelement);
75 }
76
77 /*Free ressources:*/
78 iomodel->DeleteData(spcvector,"md.thermal.spctemperature");
79 iomodel->DeleteData(spcvectorstatic,"md.thermal.spctemperature");
80 iomodel->DeleteData(issurface,"md.mesh.vertexonsurface");
81 xDelete<IssmDouble>(times);
82 xDelete<IssmDouble>(values);
83}/*}}}*/
84void EnthalpyAnalysis::CreateLoads(Loads* loads, IoModel* iomodel){/*{{{*/
85
86 /*No loads */
87}/*}}}*/
88void EnthalpyAnalysis::CreateNodes(Nodes* nodes,IoModel* iomodel){/*{{{*/
89
90 int finiteelement;
91 iomodel->FindConstant(&finiteelement,"md.thermal.fe");
92
93 if(iomodel->domaintype==Domain3DEnum) iomodel->FetchData(2,"md.mesh.vertexonbase","md.mesh.vertexonsurface");
94 ::CreateNodes(nodes,iomodel,EnthalpyAnalysisEnum,finiteelement);
95 iomodel->DeleteData(2,"md.mesh.vertexonbase","md.mesh.vertexonsurface");
96}/*}}}*/
97int EnthalpyAnalysis::DofsPerNode(int** doflist,int domaintype,int approximation){/*{{{*/
98 return 1;
99}/*}}}*/
100void EnthalpyAnalysis::UpdateElements(Elements* elements,IoModel* iomodel,int analysis_counter,int analysis_type){/*{{{*/
101
102 bool dakota_analysis,ismovingfront,isenthalpy;
103 int frictionlaw,basalforcing_model,materialstype;
104 int FrictionCoupling;
105
106 /*Now, is the model 3d? otherwise, do nothing: */
107 if(iomodel->domaintype==Domain2DhorizontalEnum)return;
108
109 /*Is enthalpy requested?*/
110 iomodel->FindConstant(&isenthalpy,"md.thermal.isenthalpy");
111 if(!isenthalpy) return;
112
113 /*Fetch data needed: */
114 iomodel->FetchData(3,"md.initialization.temperature","md.initialization.waterfraction","md.initialization.pressure");
115
116 /*Finite element type*/
117 int finiteelement;
118 iomodel->FindConstant(&finiteelement,"md.thermal.fe");
119
120 /*Update elements: */
121 int counter=0;
122 for(int i=0;i<iomodel->numberofelements;i++){
123 if(iomodel->my_elements[i]){
124 Element* element=(Element*)elements->GetObjectByOffset(counter);
125 element->Update(i,iomodel,analysis_counter,analysis_type,finiteelement);
126 counter++;
127 }
128 }
129
130 iomodel->FindConstant(&dakota_analysis,"md.qmu.isdakota");
131 iomodel->FindConstant(&ismovingfront,"md.transient.ismovingfront");
132 iomodel->FindConstant(&frictionlaw,"md.friction.law");
133 iomodel->FindConstant(&materialstype,"md.materials.type");
134
135 iomodel->FetchDataToInput(elements,"md.geometry.thickness",ThicknessEnum);
136 iomodel->FetchDataToInput(elements,"md.geometry.surface",SurfaceEnum);
137 iomodel->FetchDataToInput(elements,"md.slr.sealevel",SealevelEnum,0);
138 iomodel->FetchDataToInput(elements,"md.geometry.base",BaseEnum);
139 iomodel->FetchDataToInput(elements,"md.mask.ice_levelset",MaskIceLevelsetEnum);
140 iomodel->FetchDataToInput(elements,"md.mask.groundedice_levelset",MaskGroundediceLevelsetEnum);
141 if(iomodel->domaintype!=Domain2DhorizontalEnum){
142 iomodel->FetchDataToInput(elements,"md.mesh.vertexonbase",MeshVertexonbaseEnum);
143 iomodel->FetchDataToInput(elements,"md.mesh.vertexonsurface",MeshVertexonsurfaceEnum);
144 }
145 iomodel->FetchDataToInput(elements,"md.initialization.pressure",PressureEnum);
146 iomodel->FetchDataToInput(elements,"md.initialization.temperature",TemperatureEnum);
147 iomodel->FetchDataToInput(elements,"md.initialization.waterfraction",WaterfractionEnum);
148 iomodel->FetchDataToInput(elements,"md.initialization.enthalpy",EnthalpyEnum);
149 iomodel->FetchDataToInput(elements,"md.initialization.watercolumn",WatercolumnEnum);
150 iomodel->FetchDataToInput(elements,"md.basalforcings.groundedice_melting_rate",BasalforcingsGroundediceMeltingRateEnum);
151 iomodel->FetchDataToInput(elements,"md.initialization.vx",VxEnum);
152 iomodel->FetchDataToInput(elements,"md.initialization.vy",VyEnum);
153 iomodel->FetchDataToInput(elements,"md.initialization.vz",VzEnum);
154 InputUpdateFromConstantx(elements,0.,VxMeshEnum);
155 InputUpdateFromConstantx(elements,0.,VyMeshEnum);
156 InputUpdateFromConstantx(elements,0.,VzMeshEnum);
157 if(ismovingfront){
158 iomodel->FetchDataToInput(elements,"md.mesh.vertexonbase",MeshVertexonbaseEnum); // required for updating active nodes
159 }
160
161 /*Basal forcings variables*/
162 iomodel->FindConstant(&basalforcing_model,"md.basalforcings.model");
163 switch(basalforcing_model){
164 case MantlePlumeGeothermalFluxEnum:
165 break;
166 default:
167 iomodel->FetchDataToInput(elements,"md.basalforcings.geothermalflux",BasalforcingsGeothermalfluxEnum);
168 break;
169 }
170
171 /*Rheology type*/
172 iomodel->FetchDataToInput(elements,"md.materials.rheology_B",MaterialsRheologyBEnum);
173 switch(materialstype){
174 case MatenhancediceEnum:
175 iomodel->FetchDataToInput(elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
176 iomodel->FetchDataToInput(elements,"md.materials.rheology_E",MaterialsRheologyEEnum);
177 break;
178 case MatdamageiceEnum:
179 iomodel->FetchDataToInput(elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
180 break;
181 case MatestarEnum:
182 iomodel->FetchDataToInput(elements,"md.materials.rheology_Ec",MaterialsRheologyEcEnum);
183 iomodel->FetchDataToInput(elements,"md.materials.rheology_Es",MaterialsRheologyEsEnum);
184 break;
185 case MaticeEnum:
186 iomodel->FetchDataToInput(elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
187 break;
188 default:
189 _error_("not supported");
190 }
191
192 /*Friction law variables*/
193 switch(frictionlaw){
194 case 1:
195 iomodel->FindConstant(&FrictionCoupling,"md.friction.coupling");
196 iomodel->FetchDataToInput(elements,"md.friction.coefficient",FrictionCoefficientEnum);
197 iomodel->FetchDataToInput(elements,"md.friction.p",FrictionPEnum);
198 iomodel->FetchDataToInput(elements,"md.friction.q",FrictionQEnum);
199 if (FrictionCoupling==1){
200 iomodel->FetchDataToInput(elements,"md.friction.effective_pressure",FrictionEffectivePressureEnum);
201 }
202 break;
203 case 2:
204 iomodel->FetchDataToInput(elements,"md.friction.C",FrictionCEnum);
205 iomodel->FetchDataToInput(elements,"md.friction.m",FrictionMEnum);
206 break;
207 case 3:
208 iomodel->FindConstant(&FrictionCoupling,"md.friction.coupling");
209 iomodel->FetchDataToInput(elements,"md.friction.C",FrictionCEnum);
210 iomodel->FetchDataToInput(elements,"md.friction.As",FrictionAsEnum);
211 iomodel->FetchDataToInput(elements,"md.friction.q",FrictionQEnum);
212 if (FrictionCoupling==1){
213 iomodel->FetchDataToInput(elements,"md.friction.effective_pressure",FrictionEffectivePressureEnum);
214 }
215 break;
216 case 4:
217 iomodel->FetchDataToInput(elements,"md.friction.coefficient",FrictionCoefficientEnum);
218 iomodel->FetchDataToInput(elements,"md.friction.p",FrictionPEnum);
219 iomodel->FetchDataToInput(elements,"md.friction.q",FrictionQEnum);
220 iomodel->FetchDataToInput(elements,"md.initialization.pressure",PressureEnum);
221 iomodel->FetchDataToInput(elements,"md.initialization.temperature",TemperatureEnum);
222 break;
223 case 5:
224 iomodel->FetchDataToInput(elements,"md.friction.coefficient",FrictionCoefficientEnum);
225 iomodel->FetchDataToInput(elements,"md.friction.p",FrictionPEnum);
226 iomodel->FetchDataToInput(elements,"md.friction.q",FrictionQEnum);
227 iomodel->FetchDataToInput(elements,"md.friction.water_layer",FrictionWaterLayerEnum);
228 break;
229 case 6:
230 iomodel->FetchDataToInput(elements,"md.friction.C",FrictionCEnum);
231 iomodel->FetchDataToInput(elements,"md.friction.m",FrictionMEnum);
232 iomodel->FetchDataToInput(elements,"md.initialization.pressure",PressureEnum);
233 iomodel->FetchDataToInput(elements,"md.initialization.temperature",TemperatureEnum);
234 break;
235 case 7:
236 iomodel->FindConstant(&FrictionCoupling,"md.friction.coupling");
237 iomodel->FetchDataToInput(elements,"md.friction.coefficient",FrictionCoefficientEnum);
238 iomodel->FetchDataToInput(elements,"md.friction.coefficientcoulomb",FrictionCoefficientcoulombEnum);
239 iomodel->FetchDataToInput(elements,"md.friction.p",FrictionPEnum);
240 iomodel->FetchDataToInput(elements,"md.friction.q",FrictionQEnum);
241 if (FrictionCoupling==1){
242 iomodel->FetchDataToInput(elements,"md.friction.effective_pressure",FrictionEffectivePressureEnum);
243 }
244 break;
245 case 9:
246 iomodel->FetchDataToInput(elements,"md.friction.coefficient",FrictionCoefficientEnum);
247 iomodel->FetchDataToInput(elements,"md.friction.pressure_adjusted_temperature",FrictionPressureAdjustedTemperatureEnum);
248 InputUpdateFromConstantx(elements,1.,FrictionPEnum);
249 InputUpdateFromConstantx(elements,1.,FrictionQEnum);
250 break;
251 default:
252 _error_("friction law not supported");
253 }
254
255 /*Free data: */
256 iomodel->DeleteData(3,"md.initialization.temperature","md.initialization.waterfraction","md.initialization.pressure");
257
258}/*}}}*/
259void EnthalpyAnalysis::UpdateParameters(Parameters* parameters,IoModel* iomodel,int solution_enum,int analysis_enum){/*{{{*/
260
261 int numoutputs;
262 char** requestedoutputs = NULL;
263
264 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.stabilization",ThermalStabilizationEnum));
265 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.maxiter",ThermalMaxiterEnum));
266 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.reltol",ThermalReltolEnum));
267 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.isenthalpy",ThermalIsenthalpyEnum));
268 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.isdynamicbasalspc",ThermalIsdynamicbasalspcEnum));
269 parameters->AddObject(iomodel->CopyConstantObject("md.friction.law",FrictionLawEnum));
270
271 iomodel->FindConstant(&requestedoutputs,&numoutputs,"md.thermal.requested_outputs");
272 parameters->AddObject(new IntParam(ThermalNumRequestedOutputsEnum,numoutputs));
273 if(numoutputs)parameters->AddObject(new StringArrayParam(ThermalRequestedOutputsEnum,requestedoutputs,numoutputs));
274 iomodel->DeleteData(&requestedoutputs,numoutputs,"md.thermal.requested_outputs");
275
276 /*Deal with friction parameters*/
277 int frictionlaw;
278 iomodel->FindConstant(&frictionlaw,"md.friction.law");
279 if(frictionlaw==4 || frictionlaw==6){
280 parameters->AddObject(iomodel->CopyConstantObject("md.friction.gamma",FrictionGammaEnum));
281 }
282 if(frictionlaw==3 || frictionlaw==1 || frictionlaw==7){
283 parameters->AddObject(iomodel->CopyConstantObject("md.friction.coupling",FrictionCouplingEnum));
284 }
285 if(frictionlaw==9){
286 parameters->AddObject(iomodel->CopyConstantObject("md.friction.gamma",FrictionGammaEnum));
287 parameters->AddObject(new IntParam(FrictionCouplingEnum,0));
288 }
289}/*}}}*/
290
291/*Finite Element Analysis*/
292void EnthalpyAnalysis::ApplyBasalConstraints(IssmDouble* serial_spc,Element* element){/*{{{*/
293
294 /* Do not check if ice in element, this may lead to inconsistencies between cpu partitions */
295 /* Only update constraints at the base. */
296 if(!(element->IsOnBase())) return;
297
298 /*Intermediary*/
299 bool isdynamicbasalspc;
300 int numindices;
301 int *indices = NULL;
302 Node* node = NULL;
303 IssmDouble pressure;
304
305 /*Check wether dynamic basal boundary conditions are activated */
306 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
307 if(!isdynamicbasalspc) return;
308
309 /*Get parameters and inputs: */
310 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
311
312 /*Fetch indices of basal & surface nodes for this finite element*/
313 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
314 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
315
316 GaussPenta* gauss=new GaussPenta();
317 for(int i=0;i<numindices;i++){
318 gauss->GaussNode(element->GetElementType(),indices[i]);
319
320 pressure_input->GetInputValue(&pressure,gauss);
321
322 /*apply or release spc*/
323 node=element->GetNode(indices[i]);
324 if(!node->IsActive()) continue;
325 if(serial_spc[node->Sid()]==1.){
326 pressure_input->GetInputValue(&pressure, gauss);
327 node->ApplyConstraint(0,PureIceEnthalpy(element,pressure));
328 }
329 else {
330 node->DofInFSet(0);
331 }
332 }
333
334 /*Free ressources:*/
335 xDelete<int>(indices);
336 delete gauss;
337}/*}}}*/
338void EnthalpyAnalysis::ComputeBasalMeltingrate(FemModel* femmodel){/*{{{*/
339 /*Compute basal melting rates: */
340 for(int i=0;i<femmodel->elements->Size();i++){
341 Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
342 ComputeBasalMeltingrate(element);
343 }
344
345 /*extrude inputs*/
346 femmodel->parameters->SetParam(BasalforcingsGroundediceMeltingRateEnum,InputToExtrudeEnum);
347 extrudefrombase_core(femmodel);
348}/*}}}*/
349void EnthalpyAnalysis::ComputeBasalMeltingrate(Element* element){/*{{{*/
350 /*Calculate the basal melt rates of the enthalpy model after Aschwanden 2012*/
351 /* melting rate is positive when melting, negative when refreezing*/
352
353 /* Check if ice in element */
354 if(!element->IsIceInElement()) return;
355
356 /* Only compute melt rates at the base of grounded ice*/
357 if(!element->IsOnBase() || element->IsFloating()) return;
358
359 /* Intermediaries */
360 bool converged;
361 const int dim=3;
362 int i,is,state;
363 int nodedown,nodeup,numnodes,numsegments;
364 int enthalpy_enum;
365 IssmDouble vec_heatflux[dim],normal_base[dim],d1enthalpy[dim],d1pressure[dim];
366 IssmDouble basalfriction,alpha2,geothermalflux,heatflux;
367 IssmDouble dt,yts;
368 IssmDouble melting_overshoot,lambda;
369 IssmDouble vx,vy,vz;
370 IssmDouble *xyz_list = NULL;
371 IssmDouble *xyz_list_base = NULL;
372 int *pairindices = NULL;
373
374 /*Fetch parameters*/
375 element->GetVerticesCoordinates(&xyz_list);
376 element->GetVerticesCoordinatesBase(&xyz_list_base);
377 element->GetInputValue(&converged,ConvergedEnum);
378 element->FindParam(&dt,TimesteppingTimeStepEnum);
379 element->FindParam(&yts, ConstantsYtsEnum);
380
381 if(dt==0. && !converged) enthalpy_enum=EnthalpyPicardEnum;
382 else enthalpy_enum=EnthalpyEnum;
383
384 IssmDouble latentheat = element->GetMaterialParameter(MaterialsLatentheatEnum);
385 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
386 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoFreshwaterEnum);
387 IssmDouble beta = element->GetMaterialParameter(MaterialsBetaEnum);
388 IssmDouble kappa = EnthalpyDiffusionParameterVolume(element,enthalpy_enum); _assert_(kappa>=0.);
389 IssmDouble kappa_mix;
390
391 /*retrieve inputs*/
392 Input* enthalpy_input = element->GetInput(enthalpy_enum); _assert_(enthalpy_input);
393 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
394 Input* geothermalflux_input = element->GetInput(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input);
395 Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
396 Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
397 Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
398
399 /*Build friction element, needed later: */
400 Friction* friction=new Friction(element,dim);
401
402 /******** MELTING RATES ************************************//*{{{*/
403 element->NormalBase(&normal_base[0],xyz_list_base);
404 element->VerticalSegmentIndicesBase(&pairindices,&numsegments);
405 IssmDouble* meltingrate_enthalpy = xNew<IssmDouble>(numsegments);
406 IssmDouble* heating = xNew<IssmDouble>(numsegments);
407
408 numnodes=element->GetNumberOfNodes();
409 IssmDouble* enthalpies = xNew<IssmDouble>(numnodes);
410 IssmDouble* pressures = xNew<IssmDouble>(numnodes);
411 IssmDouble* watercolumns = xNew<IssmDouble>(numnodes);
412 IssmDouble* basalmeltingrates = xNew<IssmDouble>(numnodes);
413 element->GetInputListOnNodes(enthalpies,enthalpy_enum);
414 element->GetInputListOnNodes(pressures,PressureEnum);
415 element->GetInputListOnNodes(watercolumns,WatercolumnEnum);
416 element->GetInputListOnNodes(basalmeltingrates,BasalforcingsGroundediceMeltingRateEnum);
417
418 Gauss* gauss=element->NewGauss();
419 for(is=0;is<numsegments;is++){
420 nodedown = pairindices[is*2+0];
421 nodeup = pairindices[is*2+1];
422 gauss->GaussNode(element->GetElementType(),nodedown);
423
424 state=GetThermalBasalCondition(element, enthalpies[nodedown], enthalpies[nodeup], pressures[nodedown], pressures[nodeup], watercolumns[nodedown], basalmeltingrates[nodedown]);
425 switch (state) {
426 case 0:
427 // cold, dry base: apply basal surface forcing
428 for(i=0;i<3;i++) vec_heatflux[i]=0.;
429 break;
430 case 1: case 2: case 3:
431 // case 1 : cold, wet base: keep at pressure melting point
432 // case 2: temperate, thin refreezing base: release spc
433 // case 3: temperate, thin melting base: set spc
434 enthalpy_input->GetInputDerivativeValue(&d1enthalpy[0],xyz_list,gauss);
435 for(i=0;i<3;i++) vec_heatflux[i]=-kappa*d1enthalpy[i];
436 break;
437 case 4:
438 // temperate, thick melting base: set grad H*n=0
439 kappa_mix=GetWetIceConductivity(element, enthalpies[nodedown], pressures[nodedown]);
440 pressure_input->GetInputDerivativeValue(&d1pressure[0],xyz_list,gauss);
441 for(i=0;i<3;i++) vec_heatflux[i]=kappa_mix*beta*d1pressure[i];
442 break;
443 default:
444 _printf0_(" unknown thermal basal state found!");
445 }
446 if(state==0) meltingrate_enthalpy[is]=0.;
447 else{
448 /*heat flux along normal*/
449 heatflux=0.;
450 for(i=0;i<3;i++) heatflux+=(vec_heatflux[i])*normal_base[i];
451
452 /*basal friction*/
453 friction->GetAlpha2(&alpha2,gauss);
454 vx_input->GetInputValue(&vx,gauss); vy_input->GetInputValue(&vy,gauss); vz_input->GetInputValue(&vz,gauss);
455 basalfriction=alpha2*(vx*vx + vy*vy + vz*vz);
456 geothermalflux_input->GetInputValue(&geothermalflux,gauss);
457 /* -Mb= Fb-(q-q_geo)/((1-w)*L*rho), and (1-w)*rho=rho_ice, cf Aschwanden 2012, eqs.1, 2, 66*/
458 heating[is]=(heatflux+basalfriction+geothermalflux);
459 meltingrate_enthalpy[is]=heating[is]/(latentheat*rho_ice); // m/s water equivalent
460 }
461 }/*}}}*/
462
463 /******** UPDATE MELTINGRATES AND WATERCOLUMN **************//*{{{*/
464 for(is=0;is<numsegments;is++){
465 nodedown = pairindices[is*2+0];
466 nodeup = pairindices[is*2+1];
467 if(dt!=0.){
468 if(watercolumns[nodedown]+meltingrate_enthalpy[is]*dt<0.){ // prevent too much freeze on
469 lambda = -watercolumns[nodedown]/(dt*meltingrate_enthalpy[is]); _assert_(lambda>=0.); _assert_(lambda<1.);
470 watercolumns[nodedown]=0.;
471 basalmeltingrates[nodedown]=lambda*meltingrate_enthalpy[is]; // restrict freeze on only to size of watercolumn
472 enthalpies[nodedown]+=(1.-lambda)*dt/yts*meltingrate_enthalpy[is]*latentheat*rho_ice; // use rest of energy to cool down base: dE=L*m, m=(1-lambda)*meltingrate*rho_ice
473 }
474 else{
475 basalmeltingrates[nodedown]=meltingrate_enthalpy[is];
476 watercolumns[nodedown]+=dt*meltingrate_enthalpy[is];
477 }
478 }
479 else{
480 basalmeltingrates[nodedown]=meltingrate_enthalpy[is];
481 if(watercolumns[nodedown]+meltingrate_enthalpy[is]<0.)
482 watercolumns[nodedown]=0.;
483 else
484 watercolumns[nodedown]+=meltingrate_enthalpy[is];
485 }
486 basalmeltingrates[nodedown]*=rho_water/rho_ice; // convert meltingrate from water to ice equivalent
487 _assert_(watercolumns[nodedown]>=0.);
488 }/*}}}*/
489
490 /*feed updated variables back into model*/
491 if(dt!=0.){
492 element->AddInput(enthalpy_enum,enthalpies,element->GetElementType());
493 element->AddInput(WatercolumnEnum,watercolumns,element->GetElementType());
494 }
495 element->AddInput(BasalforcingsGroundediceMeltingRateEnum,basalmeltingrates,element->GetElementType());
496
497 /*Clean up and return*/
498 delete gauss;
499 delete friction;
500 xDelete<int>(pairindices);
501 xDelete<IssmDouble>(enthalpies);
502 xDelete<IssmDouble>(pressures);
503 xDelete<IssmDouble>(watercolumns);
504 xDelete<IssmDouble>(basalmeltingrates);
505 xDelete<IssmDouble>(meltingrate_enthalpy);
506 xDelete<IssmDouble>(heating);
507 xDelete<IssmDouble>(xyz_list);
508 xDelete<IssmDouble>(xyz_list_base);
509}/*}}}*/
510void EnthalpyAnalysis::Core(FemModel* femmodel){/*{{{*/
511
512 IssmDouble dt;
513 bool isdynamicbasalspc;
514
515 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
516 femmodel->parameters->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
517
518 if(VerboseSolution()) _printf0_(" computing enthalpy\n");
519 femmodel->SetCurrentConfiguration(EnthalpyAnalysisEnum);
520 if((dt>0.) && isdynamicbasalspc) UpdateBasalConstraints(femmodel);
521 solutionsequence_thermal_nonlinear(femmodel);
522
523 /*transfer enthalpy to enthalpy picard for the next step: */
524 InputDuplicatex(femmodel,EnthalpyEnum,EnthalpyPicardEnum);
525
526 PostProcessing(femmodel);
527
528}/*}}}*/
529ElementVector* EnthalpyAnalysis::CreateDVector(Element* element){/*{{{*/
530 /*Default, return NULL*/
531 return NULL;
532}/*}}}*/
533ElementMatrix* EnthalpyAnalysis::CreateJacobianMatrix(Element* element){/*{{{*/
534_error_("Not implemented");
535}/*}}}*/
536ElementMatrix* EnthalpyAnalysis::CreateKMatrix(Element* element){/*{{{*/
537
538 /* Check if ice in element */
539 if(!element->IsIceInElement()) return NULL;
540
541 /*compute all stiffness matrices for this element*/
542 ElementMatrix* Ke1=CreateKMatrixVolume(element);
543 ElementMatrix* Ke2=CreateKMatrixShelf(element);
544 ElementMatrix* Ke =new ElementMatrix(Ke1,Ke2);
545
546 /*clean-up and return*/
547 delete Ke1;
548 delete Ke2;
549 return Ke;
550}/*}}}*/
551ElementMatrix* EnthalpyAnalysis::CreateKMatrixVolume(Element* element){/*{{{*/
552
553 /* Check if ice in element */
554 if(!element->IsIceInElement()) return NULL;
555
556 /*Intermediaries */
557 int stabilization;
558 IssmDouble Jdet,dt,u,v,w,um,vm,wm,vel;
559 IssmDouble h,hx,hy,hz,vx,vy,vz;
560 IssmDouble tau_parameter,diameter;
561 IssmDouble D_scalar;
562 IssmDouble* xyz_list = NULL;
563
564 /*Fetch number of nodes and dof for this finite element*/
565 int numnodes = element->GetNumberOfNodes();
566
567 /*Initialize Element vector and other vectors*/
568 ElementMatrix* Ke = element->NewElementMatrix();
569 IssmDouble* basis = xNew<IssmDouble>(numnodes);
570 IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
571 IssmDouble* B = xNew<IssmDouble>(3*numnodes);
572 IssmDouble* Bprime = xNew<IssmDouble>(3*numnodes);
573 IssmDouble D[3][3] = {0.};
574 IssmDouble K[3][3];
575
576 /*Retrieve all inputs and parameters*/
577 element->GetVerticesCoordinates(&xyz_list);
578 element->FindParam(&dt,TimesteppingTimeStepEnum);
579 element->FindParam(&stabilization,ThermalStabilizationEnum);
580 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
581 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
582 IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
583 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
584 IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
585 Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
586 Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
587 Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
588 Input* vxm_input = element->GetInput(VxMeshEnum); _assert_(vxm_input);
589 Input* vym_input = element->GetInput(VyMeshEnum); _assert_(vym_input);
590 Input* vzm_input = element->GetInput(VzMeshEnum); _assert_(vzm_input);
591 if(stabilization==2) diameter=element->MinEdgeLength(xyz_list);
592
593 /*Enthalpy diffusion parameter*/
594 IssmDouble kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
595
596 /* Start looping on the number of gaussian points: */
597 Gauss* gauss=element->NewGauss(4);
598 for(int ig=gauss->begin();ig<gauss->end();ig++){
599 gauss->GaussPoint(ig);
600
601 element->JacobianDeterminant(&Jdet,xyz_list,gauss);
602 D_scalar=gauss->weight*Jdet;
603 if(dt!=0.) D_scalar=D_scalar*dt;
604
605 /*Conduction: */
606 GetBConduct(B,element,xyz_list,gauss);
607 D[0][0]=D_scalar*kappa/rho_ice;
608 D[1][1]=D_scalar*kappa/rho_ice;
609 D[2][2]=D_scalar*kappa/rho_ice;
610 TripleMultiply(B,3,numnodes,1,
611 &D[0][0],3,3,0,
612 B,3,numnodes,0,
613 &Ke->values[0],1);
614
615 /*Advection: */
616 GetBAdvec(B,element,xyz_list,gauss);
617 GetBAdvecprime(Bprime,element,xyz_list,gauss);
618 vx_input->GetInputValue(&u,gauss); vxm_input->GetInputValue(&um,gauss); vx=u-um;
619 vy_input->GetInputValue(&v,gauss); vym_input->GetInputValue(&vm,gauss); vy=v-vm;
620 vz_input->GetInputValue(&w,gauss); vzm_input->GetInputValue(&wm,gauss); vz=w-wm;
621 D[0][0]=D_scalar*vx;
622 D[1][1]=D_scalar*vy;
623 D[2][2]=D_scalar*vz;
624 TripleMultiply(B,3,numnodes,1,
625 &D[0][0],3,3,0,
626 Bprime,3,numnodes,0,
627 &Ke->values[0],1);
628
629 /*Transient: */
630 if(dt!=0.){
631 D_scalar=gauss->weight*Jdet;
632 element->NodalFunctions(basis,gauss);
633 TripleMultiply(basis,numnodes,1,0,
634 &D_scalar,1,1,0,
635 basis,1,numnodes,0,
636 &Ke->values[0],1);
637 D_scalar=D_scalar*dt;
638 }
639
640 /*Artificial diffusivity*/
641 if(stabilization==1){
642 element->ElementSizes(&hx,&hy,&hz);
643 vel=sqrt(vx*vx + vy*vy + vz*vz)+1.e-14;
644 h=sqrt( pow(hx*vx/vel,2) + pow(hy*vy/vel,2) + pow(hz*vz/vel,2));
645 K[0][0]=h/(2.*vel)*fabs(vx*vx); K[0][1]=h/(2.*vel)*fabs(vx*vy); K[0][2]=h/(2.*vel)*fabs(vx*vz);
646 K[1][0]=h/(2.*vel)*fabs(vy*vx); K[1][1]=h/(2.*vel)*fabs(vy*vy); K[1][2]=h/(2.*vel)*fabs(vy*vz);
647 K[2][0]=h/(2.*vel)*fabs(vz*vx); K[2][1]=h/(2.*vel)*fabs(vz*vy); K[2][2]=h/(2.*vel)*fabs(vz*vz);
648 for(int i=0;i<3;i++) for(int j=0;j<3;j++) K[i][j] = D_scalar*K[i][j];
649
650 GetBAdvecprime(Bprime,element,xyz_list,gauss);
651 TripleMultiply(Bprime,3,numnodes,1,
652 &K[0][0],3,3,0,
653 Bprime,3,numnodes,0,
654 &Ke->values[0],1);
655 }
656 else if(stabilization==2){
657 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
658 tau_parameter=element->StabilizationParameter(u-um,v-vm,w-wm,diameter,kappa/rho_ice);
659 for(int i=0;i<numnodes;i++){
660 for(int j=0;j<numnodes;j++){
661 Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*
662 ((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i])*((u-um)*dbasis[0*numnodes+j]+(v-vm)*dbasis[1*numnodes+j]+(w-wm)*dbasis[2*numnodes+j]);
663 }
664 }
665 if(dt!=0.){
666 D_scalar=gauss->weight*Jdet;
667 for(int i=0;i<numnodes;i++){
668 for(int j=0;j<numnodes;j++){
669 Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*basis[j]*((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i]);
670 }
671 }
672 }
673 }
674 }
675
676 /*Clean up and return*/
677 xDelete<IssmDouble>(xyz_list);
678 xDelete<IssmDouble>(basis);
679 xDelete<IssmDouble>(dbasis);
680 xDelete<IssmDouble>(B);
681 xDelete<IssmDouble>(Bprime);
682 delete gauss;
683 return Ke;
684}/*}}}*/
685ElementMatrix* EnthalpyAnalysis::CreateKMatrixShelf(Element* element){/*{{{*/
686
687 /* Check if ice in element */
688 if(!element->IsIceInElement()) return NULL;
689
690 /*Initialize Element matrix and return if necessary*/
691 if(!element->IsOnBase() || !element->IsFloating()) return NULL;
692
693 /*Intermediaries*/
694 IssmDouble dt,Jdet,D;
695 IssmDouble *xyz_list_base = NULL;
696
697 /*Fetch number of nodes for this finite element*/
698 int numnodes = element->GetNumberOfNodes();
699
700 /*Initialize vectors*/
701 ElementMatrix* Ke = element->NewElementMatrix();
702 IssmDouble* basis = xNew<IssmDouble>(numnodes);
703
704 /*Retrieve all inputs and parameters*/
705 element->GetVerticesCoordinatesBase(&xyz_list_base);
706 element->FindParam(&dt,TimesteppingTimeStepEnum);
707 IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
708 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
709 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
710 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
711 IssmDouble mixed_layer_capacity= element->GetMaterialParameter(MaterialsMixedLayerCapacityEnum);
712 IssmDouble thermal_exchange_vel= element->GetMaterialParameter(MaterialsThermalExchangeVelocityEnum);
713
714 /* Start looping on the number of gaussian points: */
715 Gauss* gauss=element->NewGaussBase(4);
716 for(int ig=gauss->begin();ig<gauss->end();ig++){
717 gauss->GaussPoint(ig);
718
719 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
720 element->NodalFunctions(basis,gauss);
721
722 D=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel/(heatcapacity*rho_ice);
723 if(reCast<bool,IssmDouble>(dt)) D=dt*D;
724 TripleMultiply(basis,numnodes,1,0,
725 &D,1,1,0,
726 basis,1,numnodes,0,
727 &Ke->values[0],1);
728
729 }
730
731 /*Clean up and return*/
732 delete gauss;
733 xDelete<IssmDouble>(basis);
734 xDelete<IssmDouble>(xyz_list_base);
735 return Ke;
736}/*}}}*/
737ElementVector* EnthalpyAnalysis::CreatePVector(Element* element){/*{{{*/
738
739 /* Check if ice in element */
740 if(!element->IsIceInElement()) return NULL;
741
742 /*compute all load vectors for this element*/
743 ElementVector* pe1=CreatePVectorVolume(element);
744 ElementVector* pe2=CreatePVectorSheet(element);
745 ElementVector* pe3=CreatePVectorShelf(element);
746 ElementVector* pe =new ElementVector(pe1,pe2,pe3);
747
748 /*clean-up and return*/
749 delete pe1;
750 delete pe2;
751 delete pe3;
752 return pe;
753}/*}}}*/
754ElementVector* EnthalpyAnalysis::CreatePVectorVolume(Element* element){/*{{{*/
755
756 /* Check if ice in element */
757 if(!element->IsIceInElement()) return NULL;
758
759 /*Intermediaries*/
760 int i, stabilization;
761 IssmDouble Jdet,phi,dt;
762 IssmDouble enthalpy, Hpmp;
763 IssmDouble enthalpypicard, d1enthalpypicard[3];
764 IssmDouble pressure, d1pressure[3], d2pressure;
765 IssmDouble waterfractionpicard;
766 IssmDouble kappa,tau_parameter,diameter,kappa_w;
767 IssmDouble u,v,w;
768 IssmDouble scalar_def, scalar_sens ,scalar_transient;
769 IssmDouble* xyz_list = NULL;
770 IssmDouble d1H_d1P, d1P2;
771
772 /*Fetch number of nodes and dof for this finite element*/
773 int numnodes = element->GetNumberOfNodes();
774 int numvertices = element->GetNumberOfVertices();
775
776 /*Initialize Element vector*/
777 ElementVector* pe = element->NewElementVector();
778 IssmDouble* basis = xNew<IssmDouble>(numnodes);
779 IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
780
781 /*Retrieve all inputs and parameters*/
782 element->GetVerticesCoordinates(&xyz_list);
783 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
784 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
785 IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
786 IssmDouble temperateiceconductivity = element->GetMaterialParameter(MaterialsTemperateiceconductivityEnum);
787 IssmDouble beta = element->GetMaterialParameter(MaterialsBetaEnum);
788 IssmDouble latentheat = element->GetMaterialParameter(MaterialsLatentheatEnum);
789 element->FindParam(&dt,TimesteppingTimeStepEnum);
790 element->FindParam(&stabilization,ThermalStabilizationEnum);
791 Input* vx_input=element->GetInput(VxEnum); _assert_(vx_input);
792 Input* vy_input=element->GetInput(VyEnum); _assert_(vy_input);
793 Input* vz_input=element->GetInput(VzEnum); _assert_(vz_input);
794 Input* enthalpypicard_input=element->GetInput(EnthalpyPicardEnum); _assert_(enthalpypicard_input);
795 Input* pressure_input=element->GetInput(PressureEnum); _assert_(pressure_input);
796 Input* enthalpy_input=NULL;
797 if(reCast<bool,IssmDouble>(dt)){enthalpy_input = element->GetInput(EnthalpyEnum); _assert_(enthalpy_input);}
798 if(stabilization==2){
799 diameter=element->MinEdgeLength(xyz_list);
800 kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
801 }
802
803 /* Start looping on the number of gaussian points: */
804 Gauss* gauss=element->NewGauss(4);
805 for(int ig=gauss->begin();ig<gauss->end();ig++){
806 gauss->GaussPoint(ig);
807
808 element->JacobianDeterminant(&Jdet,xyz_list,gauss);
809 element->NodalFunctions(basis,gauss);
810
811 /*viscous dissipation*/
812 element->ViscousHeating(&phi,xyz_list,gauss,vx_input,vy_input,vz_input);
813
814 scalar_def=phi/rho_ice*Jdet*gauss->weight;
815 if(dt!=0.) scalar_def=scalar_def*dt;
816
817 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_def*basis[i];
818
819 /*sensible heat flux in temperate ice*/
820 enthalpypicard_input->GetInputValue(&enthalpypicard,gauss);
821 pressure_input->GetInputValue(&pressure,gauss);
822 Hpmp=this->PureIceEnthalpy(element, pressure);
823
824 if(enthalpypicard>=Hpmp){
825 enthalpypicard_input->GetInputDerivativeValue(&d1enthalpypicard[0],xyz_list,gauss);
826 pressure_input->GetInputDerivativeValue(&d1pressure[0],xyz_list,gauss);
827 d2pressure=0.; // for linear elements, 2nd derivative is zero
828
829 d1H_d1P=0.;
830 for(i=0;i<3;i++) d1H_d1P+=d1enthalpypicard[i]*d1pressure[i];
831 d1P2=0.;
832 for(i=0;i<3;i++) d1P2+=pow(d1pressure[i],2.);
833
834 scalar_sens=-beta*((temperateiceconductivity - thermalconductivity)/latentheat*(d1H_d1P + beta*heatcapacity*d1P2))/rho_ice;
835 if(dt!=0.) scalar_sens=scalar_sens*dt;
836 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_sens*basis[i];
837 }
838
839 /* Build transient now */
840 if(reCast<bool,IssmDouble>(dt)){
841 enthalpy_input->GetInputValue(&enthalpy, gauss);
842 scalar_transient=enthalpy*Jdet*gauss->weight;
843 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_transient*basis[i];
844 }
845
846 if(stabilization==2){
847 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
848
849 vx_input->GetInputValue(&u,gauss);
850 vy_input->GetInputValue(&v,gauss);
851 vz_input->GetInputValue(&w,gauss);
852 tau_parameter=element->StabilizationParameter(u,v,w,diameter,kappa/rho_ice);
853
854 for(i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_def*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]);
855
856 if(dt!=0.){
857 for(i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_transient*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]);
858 }
859 }
860 }
861
862 /*Clean up and return*/
863 xDelete<IssmDouble>(basis);
864 xDelete<IssmDouble>(dbasis);
865 xDelete<IssmDouble>(xyz_list);
866 delete gauss;
867 return pe;
868
869}/*}}}*/
870ElementVector* EnthalpyAnalysis::CreatePVectorSheet(Element* element){/*{{{*/
871
872 /* Check if ice in element */
873 if(!element->IsIceInElement()) return NULL;
874
875 /* implementation of the basal condition decision chart of Aschwanden 2012, Fig.5 */
876 if(!element->IsOnBase() || element->IsFloating()) return NULL;
877
878 bool converged, isdynamicbasalspc;
879 int i, state;
880 int enthalpy_enum;
881 IssmDouble dt,Jdet,scalar;
882 IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
883 IssmDouble vx,vy,vz;
884 IssmDouble alpha2,basalfriction,geothermalflux,heatflux;
885 IssmDouble *xyz_list_base = NULL;
886
887 /*Fetch number of nodes for this finite element*/
888 int numnodes = element->GetNumberOfNodes();
889
890 /*Initialize vectors*/
891 ElementVector* pe = element->NewElementVector();
892 IssmDouble* basis = xNew<IssmDouble>(numnodes);
893
894 /*Retrieve all inputs and parameters*/
895 element->GetVerticesCoordinatesBase(&xyz_list_base);
896 element->FindParam(&dt,TimesteppingTimeStepEnum);
897 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
898 element->GetInputValue(&converged,ConvergedEnum);
899 if(dt==0. && !converged) enthalpy_enum=EnthalpyPicardEnum; // use enthalpy from last iteration
900 else enthalpy_enum=EnthalpyEnum; // use enthalpy from last time step
901 Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
902 Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
903 Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
904 Input* enthalpy_input = element->GetInput(enthalpy_enum); _assert_(enthalpy_input);
905 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
906 Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
907 Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
908 Input* geothermalflux_input = element->GetInput(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input);
909 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
910
911 /*Build friction element, needed later: */
912 Friction* friction=new Friction(element,3);
913
914 /* Start looping on the number of gaussian points: */
915 Gauss* gauss=element->NewGaussBase(4);
916 Gauss* gaussup=element->NewGaussTop(4);
917 for(int ig=gauss->begin();ig<gauss->end();ig++){
918 gauss->GaussPoint(ig);
919 gaussup->GaussPoint(ig);
920
921 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
922 element->NodalFunctions(basis,gauss);
923
924 if(isdynamicbasalspc){
925 enthalpy_input->GetInputValue(&enthalpy,gauss);
926 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
927 pressure_input->GetInputValue(&pressure,gauss);
928 pressure_input->GetInputValue(&pressureup,gaussup);
929 watercolumn_input->GetInputValue(&watercolumn,gauss);
930 meltingrate_input->GetInputValue(&meltingrate,gauss);
931 state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
932 }
933 else
934 state=0;
935
936 switch (state) {
937 case 0: case 1: case 2: case 3:
938 // cold, dry base; cold, wet base; refreezing temperate base; thin temperate base:
939 // Apply basal surface forcing.
940 // Interpolated values of enthalpy on gauss nodes may indicate cold base,
941 // although one node might have become temperate. So keep heat flux switched on.
942 geothermalflux_input->GetInputValue(&geothermalflux,gauss);
943 friction->GetAlpha2(&alpha2,gauss);
944 vx_input->GetInputValue(&vx,gauss);
945 vy_input->GetInputValue(&vy,gauss);
946 vz_input->GetInputValue(&vz,gauss);
947 basalfriction=alpha2*(vx*vx+vy*vy+vz*vz);
948 heatflux=(basalfriction+geothermalflux)/(rho_ice);
949 scalar=gauss->weight*Jdet*heatflux;
950 if(dt!=0.) scalar=dt*scalar;
951 for(i=0;i<numnodes;i++)
952 pe->values[i]+=scalar*basis[i];
953 break;
954 case 4:
955 // temperate, thick melting base: set grad H*n=0
956 for(i=0;i<numnodes;i++)
957 pe->values[i]+=0.;
958 break;
959 default:
960 _printf0_(" unknown thermal basal state found!");
961 }
962 }
963
964 /*Clean up and return*/
965 delete gauss;
966 delete gaussup;
967 delete friction;
968 xDelete<IssmDouble>(basis);
969 xDelete<IssmDouble>(xyz_list_base);
970 return pe;
971
972}/*}}}*/
973ElementVector* EnthalpyAnalysis::CreatePVectorShelf(Element* element){/*{{{*/
974
975 /* Check if ice in element */
976 if(!element->IsIceInElement()) return NULL;
977
978 /*Get basal element*/
979 if(!element->IsOnBase() || !element->IsFloating()) return NULL;
980
981 IssmDouble Hpmp,dt,Jdet,scalar_ocean,pressure;
982 IssmDouble *xyz_list_base = NULL;
983
984 /*Fetch number of nodes for this finite element*/
985 int numnodes = element->GetNumberOfNodes();
986
987 /*Initialize vectors*/
988 ElementVector* pe = element->NewElementVector();
989 IssmDouble* basis = xNew<IssmDouble>(numnodes);
990
991 /*Retrieve all inputs and parameters*/
992 element->GetVerticesCoordinatesBase(&xyz_list_base);
993 element->FindParam(&dt,TimesteppingTimeStepEnum);
994 Input* pressure_input=element->GetInput(PressureEnum); _assert_(pressure_input);
995 IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
996 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
997 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
998 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
999 IssmDouble mixed_layer_capacity= element->GetMaterialParameter(MaterialsMixedLayerCapacityEnum);
1000 IssmDouble thermal_exchange_vel= element->GetMaterialParameter(MaterialsThermalExchangeVelocityEnum);
1001
1002 /* Start looping on the number of gaussian points: */
1003 Gauss* gauss=element->NewGaussBase(4);
1004 for(int ig=gauss->begin();ig<gauss->end();ig++){
1005 gauss->GaussPoint(ig);
1006
1007 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
1008 element->NodalFunctions(basis,gauss);
1009
1010 pressure_input->GetInputValue(&pressure,gauss);
1011 Hpmp=element->PureIceEnthalpy(pressure);
1012
1013 scalar_ocean=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel*Hpmp/(heatcapacity*rho_ice);
1014 if(reCast<bool,IssmDouble>(dt)) scalar_ocean=dt*scalar_ocean;
1015
1016 for(int i=0;i<numnodes;i++) pe->values[i]+=scalar_ocean*basis[i];
1017 }
1018
1019 /*Clean up and return*/
1020 delete gauss;
1021 xDelete<IssmDouble>(basis);
1022 xDelete<IssmDouble>(xyz_list_base);
1023 return pe;
1024}/*}}}*/
1025void EnthalpyAnalysis::DrainWaterfraction(FemModel* femmodel){/*{{{*/
1026 /*Drain excess water fraction in ice column: */
1027 ComputeWaterfractionDrainage(femmodel);
1028 DrainageUpdateWatercolumn(femmodel);
1029 DrainageUpdateEnthalpy(femmodel);
1030}/*}}}*/
1031void EnthalpyAnalysis::ComputeWaterfractionDrainage(FemModel* femmodel){/*{{{*/
1032
1033 int i,k,numnodes;
1034 IssmDouble dt;
1035 Element* element= NULL;
1036
1037 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
1038
1039 for(i=0;i<femmodel->elements->Size();i++){
1040 element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1041 numnodes=element->GetNumberOfNodes();
1042 IssmDouble* waterfractions= xNew<IssmDouble>(numnodes);
1043 IssmDouble* drainage= xNew<IssmDouble>(numnodes);
1044
1045 element->GetInputListOnNodes(waterfractions,WaterfractionEnum);
1046 for(k=0; k<numnodes;k++){
1047 drainage[k]=DrainageFunctionWaterfraction(waterfractions[k], dt);
1048 }
1049 element->AddInput(WaterfractionDrainageEnum,drainage,element->GetElementType());
1050
1051 xDelete<IssmDouble>(waterfractions);
1052 xDelete<IssmDouble>(drainage);
1053 }
1054}/*}}}*/
1055void EnthalpyAnalysis::DrainageUpdateWatercolumn(FemModel* femmodel){/*{{{*/
1056
1057 int i,k,numnodes, numbasalnodes;
1058 IssmDouble dt;
1059 int* basalnodeindices=NULL;
1060 Element* element= NULL;
1061
1062 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
1063
1064 /*depth-integrate the drained water fraction */
1065 femmodel->parameters->SetParam(WaterfractionDrainageEnum,InputToDepthaverageInEnum);
1066 femmodel->parameters->SetParam(WaterfractionDrainageIntegratedEnum,InputToDepthaverageOutEnum);
1067 depthaverage_core(femmodel);
1068 femmodel->parameters->SetParam(WaterfractionDrainageIntegratedEnum,InputToExtrudeEnum);
1069 extrudefrombase_core(femmodel);
1070 /*multiply depth-average by ice thickness*/
1071 for(i=0;i<femmodel->elements->Size();i++){
1072 element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1073 numnodes=element->GetNumberOfNodes();
1074 IssmDouble* drainage_int= xNew<IssmDouble>(numnodes);
1075 IssmDouble* thicknesses= xNew<IssmDouble>(numnodes);
1076
1077 element->GetInputListOnNodes(drainage_int,WaterfractionDrainageIntegratedEnum);
1078 element->GetInputListOnNodes(thicknesses,ThicknessEnum);
1079 for(k=0;k<numnodes;k++){
1080 drainage_int[k]*=thicknesses[k];
1081 }
1082 element->AddInput(WaterfractionDrainageIntegratedEnum, drainage_int, element->GetElementType());
1083
1084 xDelete<IssmDouble>(drainage_int);
1085 xDelete<IssmDouble>(thicknesses);
1086 }
1087
1088 /*update water column*/
1089 for(i=0;i<femmodel->elements->Size();i++){
1090 element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1091 /* Check if ice in element */
1092 if(!element->IsIceInElement()) continue;
1093 if(!element->IsOnBase()) continue;
1094
1095 numnodes=element->GetNumberOfNodes();
1096 IssmDouble* watercolumn= xNew<IssmDouble>(numnodes);
1097 IssmDouble* drainage_int= xNew<IssmDouble>(numnodes);
1098 element->GetInputListOnNodes(watercolumn,WatercolumnEnum);
1099 element->GetInputListOnNodes(drainage_int,WaterfractionDrainageIntegratedEnum);
1100
1101 element->BasalNodeIndices(&numbasalnodes,&basalnodeindices,element->GetElementType());
1102 for(k=0;k<numbasalnodes;k++){
1103 watercolumn[basalnodeindices[k]]+=dt*drainage_int[basalnodeindices[k]];
1104 }
1105 element->AddInput(WatercolumnEnum, watercolumn, element->GetElementType());
1106
1107 xDelete<IssmDouble>(watercolumn);
1108 xDelete<IssmDouble>(drainage_int);
1109 xDelete<int>(basalnodeindices);
1110 }
1111}/*}}}*/
1112void EnthalpyAnalysis::DrainageUpdateEnthalpy(FemModel* femmodel){/*{{{*/
1113
1114 int i,k,numnodes;
1115 IssmDouble dt;
1116 Element* element= NULL;
1117 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
1118
1119 for(i=0;i<femmodel->elements->Size();i++){
1120 element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1121 numnodes=element->GetNumberOfNodes();
1122 IssmDouble* enthalpies= xNew<IssmDouble>(numnodes);
1123 IssmDouble* pressures= xNew<IssmDouble>(numnodes);
1124 IssmDouble* temperatures= xNew<IssmDouble>(numnodes);
1125 IssmDouble* waterfractions= xNew<IssmDouble>(numnodes);
1126 IssmDouble* drainage= xNew<IssmDouble>(numnodes);
1127
1128 element->GetInputListOnNodes(pressures,PressureEnum);
1129 element->GetInputListOnNodes(temperatures,TemperatureEnum);
1130 element->GetInputListOnNodes(waterfractions,WaterfractionEnum);
1131 element->GetInputListOnNodes(drainage,WaterfractionDrainageEnum);
1132
1133 for(k=0;k<numnodes;k++){
1134 waterfractions[k]-=dt*drainage[k];
1135 element->ThermalToEnthalpy(&enthalpies[k], temperatures[k], waterfractions[k], pressures[k]);
1136 }
1137 element->AddInput(WaterfractionEnum,waterfractions,element->GetElementType());
1138 element->AddInput(EnthalpyEnum,enthalpies,element->GetElementType());
1139
1140 xDelete<IssmDouble>(enthalpies);
1141 xDelete<IssmDouble>(pressures);
1142 xDelete<IssmDouble>(temperatures);
1143 xDelete<IssmDouble>(waterfractions);
1144 xDelete<IssmDouble>(drainage);
1145 }
1146}/*}}}*/
1147IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameter(Element* element,IssmDouble enthalpy,IssmDouble pressure){/*{{{*/
1148
1149 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
1150 IssmDouble temperateiceconductivity = element->GetMaterialParameter(MaterialsTemperateiceconductivityEnum);
1151 IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
1152
1153 if(enthalpy < PureIceEnthalpy(element,pressure)){
1154 return thermalconductivity/heatcapacity;
1155 }
1156 else{
1157 return temperateiceconductivity/heatcapacity;
1158 }
1159}/*}}}*/
1160IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameterVolume(Element* element,int enthalpy_enum){/*{{{*/
1161
1162 int iv;
1163 IssmDouble lambda; /* fraction of cold ice */
1164 IssmDouble kappa,kappa_c,kappa_t; /* enthalpy conductivities */
1165 IssmDouble Hc,Ht;
1166
1167 /*Get pressures and enthalpies on vertices*/
1168 int numvertices = element->GetNumberOfVertices();
1169 IssmDouble* pressures = xNew<IssmDouble>(numvertices);
1170 IssmDouble* enthalpies = xNew<IssmDouble>(numvertices);
1171 IssmDouble* PIE = xNew<IssmDouble>(numvertices);
1172 IssmDouble* dHpmp = xNew<IssmDouble>(numvertices);
1173 element->GetInputListOnVertices(pressures,PressureEnum);
1174 element->GetInputListOnVertices(enthalpies,enthalpy_enum);
1175 for(iv=0;iv<numvertices;iv++){
1176 PIE[iv] = PureIceEnthalpy(element,pressures[iv]);
1177 dHpmp[iv] = enthalpies[iv]-PIE[iv];
1178 }
1179
1180 bool allequalsign = true;
1181 if(dHpmp[0]<0.){
1182 for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]<0.));
1183 }
1184 else{
1185 for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]>=0.));
1186 }
1187
1188 if(allequalsign){
1189 kappa = EnthalpyDiffusionParameter(element,enthalpies[0],pressures[0]);
1190 }
1191 else{
1192 /* return harmonic mean of thermal conductivities, weighted by fraction of cold/temperate ice,
1193 cf Patankar 1980, pp44 */
1194 kappa_c = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)-1.,0.);
1195 kappa_t = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)+1.,0.);
1196 Hc=0.; Ht=0.;
1197 for(iv=0; iv<numvertices;iv++){
1198 if(enthalpies[iv]<PIE[iv])
1199 Hc+=(PIE[iv]-enthalpies[iv]);
1200 else
1201 Ht+=(enthalpies[iv]-PIE[iv]);
1202 }
1203 _assert_((Hc+Ht)>0.);
1204 lambda = Hc/(Hc+Ht);
1205 kappa = kappa_c*kappa_t/(lambda*kappa_t+(1.-lambda)*kappa_c); // ==(lambda/kappa_c + (1.-lambda)/kappa_t)^-1
1206 }
1207
1208 /*Clean up and return*/
1209 xDelete<IssmDouble>(PIE);
1210 xDelete<IssmDouble>(dHpmp);
1211 xDelete<IssmDouble>(pressures);
1212 xDelete<IssmDouble>(enthalpies);
1213 return kappa;
1214}/*}}}*/
1215void EnthalpyAnalysis::GetBAdvec(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
1216 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
1217 * For node i, Bi' can be expressed in the actual coordinate system
1218 * by:
1219 * Bi_advec =[ h ]
1220 * [ h ]
1221 * [ h ]
1222 * where h is the interpolation function for node i.
1223 *
1224 * We assume B has been allocated already, of size: 3x(NDOF1*NUMNODESP1)
1225 */
1226
1227 /*Fetch number of nodes for this finite element*/
1228 int numnodes = element->GetNumberOfNodes();
1229
1230 /*Get nodal functions*/
1231 IssmDouble* basis=xNew<IssmDouble>(numnodes);
1232 element->NodalFunctions(basis,gauss);
1233
1234 /*Build B: */
1235 for(int i=0;i<numnodes;i++){
1236 B[numnodes*0+i] = basis[i];
1237 B[numnodes*1+i] = basis[i];
1238 B[numnodes*2+i] = basis[i];
1239 }
1240
1241 /*Clean-up*/
1242 xDelete<IssmDouble>(basis);
1243}/*}}}*/
1244void EnthalpyAnalysis::GetBAdvecprime(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
1245 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
1246 * For node i, Bi' can be expressed in the actual coordinate system
1247 * by:
1248 * Biprime_advec=[ dh/dx ]
1249 * [ dh/dy ]
1250 * [ dh/dz ]
1251 * where h is the interpolation function for node i.
1252 *
1253 * We assume B has been allocated already, of size: 3x(NDOF1*numnodes)
1254 */
1255
1256 /*Fetch number of nodes for this finite element*/
1257 int numnodes = element->GetNumberOfNodes();
1258
1259 /*Get nodal functions derivatives*/
1260 IssmDouble* dbasis=xNew<IssmDouble>(3*numnodes);
1261 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
1262
1263 /*Build B: */
1264 for(int i=0;i<numnodes;i++){
1265 B[numnodes*0+i] = dbasis[0*numnodes+i];
1266 B[numnodes*1+i] = dbasis[1*numnodes+i];
1267 B[numnodes*2+i] = dbasis[2*numnodes+i];
1268 }
1269
1270 /*Clean-up*/
1271 xDelete<IssmDouble>(dbasis);
1272}/*}}}*/
1273void EnthalpyAnalysis::GetBasalConstraints(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
1274
1275 /*Intermediary*/
1276 bool isdynamicbasalspc;
1277 IssmDouble dt;
1278
1279 /*Check wether dynamic basal boundary conditions are activated */
1280 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
1281 if(!isdynamicbasalspc) return;
1282
1283 element->FindParam(&dt,TimesteppingTimeStepEnum);
1284 if(dt==0.){
1285 GetBasalConstraintsSteadystate(vec_spc,element);
1286 }
1287 else{
1288 GetBasalConstraintsTransient(vec_spc,element);
1289 }
1290}/*}}}*/
1291void EnthalpyAnalysis::GetBasalConstraintsSteadystate(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
1292
1293 /* Check if ice in element */
1294 if(!element->IsIceInElement()) return;
1295
1296 /* Only update constraints at the base.
1297 * Floating ice is not affected by basal BC decision chart. */
1298 if(!(element->IsOnBase()) || element->IsFloating()) return;
1299
1300 /*Intermediary*/
1301 int numindices, numindicesup, state;
1302 int *indices = NULL, *indicesup = NULL;
1303 IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
1304
1305 /*Get parameters and inputs: */
1306 Input* enthalpy_input = element->GetInput(EnthalpyPicardEnum); _assert_(enthalpy_input);
1307 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
1308 Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
1309 Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
1310
1311 /*Fetch indices of basal & surface nodes for this finite element*/
1312 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
1313 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
1314 penta->SurfaceNodeIndices(&numindicesup,&indicesup,element->GetElementType()); _assert_(numindices==numindicesup);
1315
1316 GaussPenta* gauss=new GaussPenta();
1317 GaussPenta* gaussup=new GaussPenta();
1318 for(int i=0;i<numindices;i++){
1319 gauss->GaussNode(element->GetElementType(),indices[i]);
1320 gaussup->GaussNode(element->GetElementType(),indicesup[i]);
1321
1322 enthalpy_input->GetInputValue(&enthalpy,gauss);
1323 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
1324 pressure_input->GetInputValue(&pressure,gauss);
1325 pressure_input->GetInputValue(&pressureup,gaussup);
1326 watercolumn_input->GetInputValue(&watercolumn,gauss);
1327 meltingrate_input->GetInputValue(&meltingrate,gauss);
1328
1329 state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
1330 switch (state) {
1331 case 0:
1332 // cold, dry base: apply basal surface forcing
1333 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
1334 break;
1335 case 1:
1336 // cold, wet base: keep at pressure melting point
1337 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1338 break;
1339 case 2:
1340 // temperate, thin refreezing base:
1341 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1342 break;
1343 case 3:
1344 // temperate, thin melting base: set spc
1345 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1346 break;
1347 case 4:
1348 // temperate, thick melting base:
1349 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1350 break;
1351 default:
1352 _printf0_(" unknown thermal basal state found!");
1353 }
1354 }
1355
1356 /*Free ressources:*/
1357 xDelete<int>(indices);
1358 xDelete<int>(indicesup);
1359 delete gauss;
1360 delete gaussup;
1361}/*}}}*/
1362void EnthalpyAnalysis::GetBasalConstraintsTransient(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
1363
1364 /* Check if ice in element */
1365 if(!element->IsIceInElement()) return;
1366
1367 /* Only update constraints at the base.
1368 * Floating ice is not affected by basal BC decision chart.*/
1369 if(!(element->IsOnBase()) || element->IsFloating()) return;
1370
1371 /*Intermediary*/
1372 int numindices, numindicesup, state;
1373 int *indices = NULL, *indicesup = NULL;
1374 IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
1375
1376 /*Get parameters and inputs: */
1377 Input* enthalpy_input = element->GetInput(EnthalpyEnum); _assert_(enthalpy_input); //TODO: check EnthalpyPicard?
1378 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
1379 Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
1380 Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
1381
1382 /*Fetch indices of basal & surface nodes for this finite element*/
1383 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
1384 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
1385 penta->SurfaceNodeIndices(&numindicesup,&indicesup,element->GetElementType()); _assert_(numindices==numindicesup);
1386
1387 GaussPenta* gauss=new GaussPenta();
1388 GaussPenta* gaussup=new GaussPenta();
1389
1390 for(int i=0;i<numindices;i++){
1391 gauss->GaussNode(element->GetElementType(),indices[i]);
1392 gaussup->GaussNode(element->GetElementType(),indicesup[i]);
1393
1394 enthalpy_input->GetInputValue(&enthalpy,gauss);
1395 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
1396 pressure_input->GetInputValue(&pressure,gauss);
1397 pressure_input->GetInputValue(&pressureup,gaussup);
1398 watercolumn_input->GetInputValue(&watercolumn,gauss);
1399 meltingrate_input->GetInputValue(&meltingrate,gauss);
1400
1401 state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
1402
1403 switch (state) {
1404 case 0:
1405 // cold, dry base: apply basal surface forcing
1406 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
1407 break;
1408 case 1:
1409 // cold, wet base: keep at pressure melting point
1410 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1411 break;
1412 case 2:
1413 // temperate, thin refreezing base: release spc
1414 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
1415 break;
1416 case 3:
1417 // temperate, thin melting base: set spc
1418 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1419 break;
1420 case 4:
1421 // temperate, thick melting base: set grad H*n=0
1422 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
1423 break;
1424 default:
1425 _printf0_(" unknown thermal basal state found!");
1426 }
1427
1428 }
1429
1430 /*Free ressources:*/
1431 xDelete<int>(indices);
1432 xDelete<int>(indicesup);
1433 delete gauss;
1434 delete gaussup;
1435}/*}}}*/
1436void EnthalpyAnalysis::GetBConduct(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
1437 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
1438 * For node i, Bi' can be expressed in the actual coordinate system
1439 * by:
1440 * Bi_conduct=[ dh/dx ]
1441 * [ dh/dy ]
1442 * [ dh/dz ]
1443 * where h is the interpolation function for node i.
1444 *
1445 * We assume B has been allocated already, of size: 3x(NDOF1*numnodes)
1446 */
1447
1448 /*Fetch number of nodes for this finite element*/
1449 int numnodes = element->GetNumberOfNodes();
1450
1451 /*Get nodal functions derivatives*/
1452 IssmDouble* dbasis=xNew<IssmDouble>(3*numnodes);
1453 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
1454
1455 /*Build B: */
1456 for(int i=0;i<numnodes;i++){
1457 B[numnodes*0+i] = dbasis[0*numnodes+i];
1458 B[numnodes*1+i] = dbasis[1*numnodes+i];
1459 B[numnodes*2+i] = dbasis[2*numnodes+i];
1460 }
1461
1462 /*Clean-up*/
1463 xDelete<IssmDouble>(dbasis);
1464}/*}}}*/
1465void EnthalpyAnalysis::GetSolutionFromInputs(Vector<IssmDouble>* solution,Element* element){/*{{{*/
1466 element->GetSolutionFromInputsOneDof(solution,EnthalpyEnum);
1467}/*}}}*/
1468int EnthalpyAnalysis::GetThermalBasalCondition(Element* element, IssmDouble enthalpy, IssmDouble enthalpyup, IssmDouble pressure, IssmDouble pressureup, IssmDouble watercolumn, IssmDouble meltingrate){/*{{{*/
1469
1470 /* Check if ice in element */
1471 if(!element->IsIceInElement()) return -1;
1472
1473 /* Only update Constraints at the base of grounded ice*/
1474 if(!(element->IsOnBase())) return -1;
1475
1476 /*Intermediary*/
1477 int state=-1;
1478 IssmDouble dt;
1479
1480 /*Get parameters and inputs: */
1481 element->FindParam(&dt,TimesteppingTimeStepEnum);
1482
1483 if(enthalpy<PureIceEnthalpy(element,pressure)){
1484 if(watercolumn<=0.) state=0; // cold, dry base
1485 else state=1; // cold, wet base (refreezing)
1486 }
1487 else{
1488 if(enthalpyup<PureIceEnthalpy(element,pressureup)){
1489 if((dt==0.) && (meltingrate<0.)) state=2; // refreezing temperate base (non-physical, only for steadystate solver)
1490 else state=3; // temperate base, but no temperate layer
1491 }
1492 else state=4; // temperate layer with positive thickness
1493 }
1494
1495 _assert_(state>=0);
1496 return state;
1497}/*}}}*/
1498IssmDouble EnthalpyAnalysis::GetWetIceConductivity(Element* element, IssmDouble enthalpy, IssmDouble pressure){/*{{{*/
1499
1500 IssmDouble temperature, waterfraction;
1501 IssmDouble kappa_w = 0.6; // thermal conductivity of water (in W/m/K)
1502 IssmDouble kappa_i = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
1503 element->EnthalpyToThermal(&temperature, &waterfraction, enthalpy, pressure);
1504
1505 return (1.-waterfraction)*kappa_i + waterfraction*kappa_w;
1506}/*}}}*/
1507void EnthalpyAnalysis::GradientJ(Vector<IssmDouble>* gradient,Element* element,int control_type,int control_index){/*{{{*/
1508 _error_("Not implemented yet");
1509}/*}}}*/
1510void EnthalpyAnalysis::InputUpdateFromSolution(IssmDouble* solution,Element* element){/*{{{*/
1511
1512 bool converged;
1513 int i,rheology_law;
1514 IssmDouble B_average,s_average,T_average=0.,P_average=0.;
1515 IssmDouble n=3.0;
1516 int *doflist = NULL;
1517 IssmDouble *xyz_list = NULL;
1518
1519 /*Fetch number of nodes and dof for this finite element*/
1520 int numnodes = element->GetNumberOfNodes();
1521
1522 /*Fetch dof list and allocate solution vector*/
1523 element->GetDofList(&doflist,NoneApproximationEnum,GsetEnum);
1524 IssmDouble* values = xNew<IssmDouble>(numnodes);
1525 IssmDouble* pressure = xNew<IssmDouble>(numnodes);
1526 IssmDouble* surface = xNew<IssmDouble>(numnodes);
1527 IssmDouble* B = xNew<IssmDouble>(numnodes);
1528 IssmDouble* temperature = xNew<IssmDouble>(numnodes);
1529 IssmDouble* waterfraction = xNew<IssmDouble>(numnodes);
1530
1531 /*Use the dof list to index into the solution vector: */
1532 for(i=0;i<numnodes;i++){
1533 values[i]=solution[doflist[i]];
1534
1535 /*Check solution*/
1536 if(xIsNan<IssmDouble>(values[i])) _error_("NaN found in solution vector");
1537 if(xIsInf<IssmDouble>(values[i])) _error_("Inf found in solution vector");
1538 }
1539
1540 /*Get all inputs and parameters*/
1541 if(element->material->ObjectEnum()!=MatestarEnum) n=element->GetMaterialParameter(MaterialsRheologyNEnum);
1542 element->GetInputValue(&converged,ConvergedEnum);
1543 element->GetInputListOnNodes(&pressure[0],PressureEnum);
1544 if(converged){
1545 for(i=0;i<numnodes;i++){
1546 element->EnthalpyToThermal(&temperature[i],&waterfraction[i],values[i],pressure[i]);
1547 if(waterfraction[i]<0.) _error_("Negative water fraction found in solution vector");
1548 //if(waterfraction[i]>1.) _error_("Water fraction >1 found in solution vector");
1549 }
1550 element->AddInput(EnthalpyEnum,values,element->GetElementType());
1551 element->AddInput(WaterfractionEnum,waterfraction,element->GetElementType());
1552 element->AddInput(TemperatureEnum,temperature,element->GetElementType());
1553
1554 /*Update Rheology only if converged (we must make sure that the temperature is below melting point
1555 * otherwise the rheology could be negative*/
1556 rheology_law=element->GetIntegerMaterialParameter(MaterialsRheologyLawEnum);
1557 element->GetInputListOnNodes(&surface[0],SurfaceEnum);
1558 switch(rheology_law){
1559 case NoneEnum:
1560 /*Do nothing: B is not temperature dependent*/
1561 break;
1562 case BuddJackaEnum:
1563 for(i=0;i<numnodes;i++) B[i]=BuddJacka(temperature[i]);
1564 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1565 break;
1566 case CuffeyEnum:
1567 for(i=0;i<numnodes;i++) B[i]=Cuffey(temperature[i]);
1568 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1569 break;
1570 case CuffeyTemperateEnum:
1571 for(i=0;i<numnodes;i++) B[i]=CuffeyTemperate(temperature[i], waterfraction[i],n);
1572 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1573 break;
1574 case PatersonEnum:
1575 for(i=0;i<numnodes;i++) B[i]=Paterson(temperature[i]);
1576 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1577 break;
1578 case ArrheniusEnum:
1579 element->GetVerticesCoordinates(&xyz_list);
1580 for(i=0;i<numnodes;i++) B[i]=Arrhenius(temperature[i],surface[i]-xyz_list[i*3+2],n);
1581 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1582 break;
1583 case LliboutryDuvalEnum:
1584 for(i=0;i<numnodes;i++) B[i]=LliboutryDuval(values[i],pressure[i],n,element->GetMaterialParameter(MaterialsBetaEnum),element->GetMaterialParameter(ConstantsReferencetemperatureEnum),element->GetMaterialParameter(MaterialsHeatcapacityEnum),element->GetMaterialParameter(MaterialsLatentheatEnum));
1585 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1586 break;
1587 default: _error_("Rheology law " << EnumToStringx(rheology_law) << " not supported yet");
1588 }
1589 }
1590 else{
1591 element->AddInput(EnthalpyPicardEnum,values,element->GetElementType());
1592 }
1593
1594 /*Free ressources:*/
1595 xDelete<IssmDouble>(values);
1596 xDelete<IssmDouble>(pressure);
1597 xDelete<IssmDouble>(surface);
1598 xDelete<IssmDouble>(B);
1599 xDelete<IssmDouble>(temperature);
1600 xDelete<IssmDouble>(waterfraction);
1601 xDelete<IssmDouble>(xyz_list);
1602 xDelete<int>(doflist);
1603}/*}}}*/
1604void EnthalpyAnalysis::PostProcessing(FemModel* femmodel){/*{{{*/
1605
1606 /*Intermediaries*/
1607 bool computebasalmeltingrates=true;
1608 bool drainicecolumn=true;
1609 IssmDouble dt;
1610
1611 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
1612
1613 if(drainicecolumn && (dt>0.)) DrainWaterfraction(femmodel);
1614 if(computebasalmeltingrates) ComputeBasalMeltingrate(femmodel);
1615
1616}/*}}}*/
1617IssmDouble EnthalpyAnalysis::PureIceEnthalpy(Element* element,IssmDouble pressure){/*{{{*/
1618
1619 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
1620 IssmDouble referencetemperature = element->GetMaterialParameter(ConstantsReferencetemperatureEnum);
1621
1622 return heatcapacity*(TMeltingPoint(element,pressure)-referencetemperature);
1623}/*}}}*/
1624IssmDouble EnthalpyAnalysis::TMeltingPoint(Element* element,IssmDouble pressure){/*{{{*/
1625
1626 IssmDouble meltingpoint = element->GetMaterialParameter(MaterialsMeltingpointEnum);
1627 IssmDouble beta = element->GetMaterialParameter(MaterialsBetaEnum);
1628
1629 return meltingpoint-beta*pressure;
1630}/*}}}*/
1631void EnthalpyAnalysis::UpdateBasalConstraints(FemModel* femmodel){/*{{{*/
1632
1633 /*Update basal dirichlet BCs for enthalpy: */
1634 Vector<IssmDouble>* spc = NULL;
1635 IssmDouble* serial_spc = NULL;
1636
1637 spc=new Vector<IssmDouble>(femmodel->nodes->NumberOfNodes(EnthalpyAnalysisEnum));
1638 /*First create a vector to figure out what elements should be constrained*/
1639 for(int i=0;i<femmodel->elements->Size();i++){
1640 Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1641 GetBasalConstraints(spc,element);
1642 }
1643
1644 /*Assemble and serialize*/
1645 spc->Assemble();
1646 serial_spc=spc->ToMPISerial();
1647 delete spc;
1648
1649 /*Then update basal constraints nodes accordingly*/
1650 for(int i=0;i<femmodel->elements->Size();i++){
1651 Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1652 ApplyBasalConstraints(serial_spc,element);
1653 }
1654
1655 femmodel->UpdateConstraintsx();
1656
1657 /*Delete*/
1658 xDelete<IssmDouble>(serial_spc);
1659}/*}}}*/
1660void EnthalpyAnalysis::UpdateConstraints(FemModel* femmodel){/*{{{*/
1661 SetActiveNodesLSMx(femmodel);
1662}/*}}}*/
Note: See TracBrowser for help on using the repository browser.