source: issm/trunk-jpl/src/c/analyses/EnthalpyAnalysis.cpp@ 21779

Last change on this file since 21779 was 21779, checked in by Mathieu Morlighem, 8 years ago

CHG: fixed Viscous Heating output (was crashing because we are not looking for the right nodes) and fixed also memory leak

File size: 63.5 KB
Line 
1#include "./EnthalpyAnalysis.h"
2#include "../toolkits/toolkits.h"
3#include "../classes/classes.h"
4#include "../shared/shared.h"
5#include "../modules/modules.h"
6#include "../solutionsequences/solutionsequences.h"
7#include "../cores/cores.h"
8
9/*Model processing*/
10void EnthalpyAnalysis::CreateConstraints(Constraints* constraints,IoModel* iomodel){/*{{{*/
11
12 /*Intermediary*/
13 int count;
14 int M,N;
15 bool spcpresent = false;
16 int finiteelement;
17 IssmDouble heatcapacity;
18 IssmDouble referencetemperature;
19
20 /*Output*/
21 IssmDouble *spcvector = NULL;
22 IssmDouble* times=NULL;
23 IssmDouble* values=NULL;
24
25 /*Fetch parameters: */
26 iomodel->FindConstant(&heatcapacity,"md.materials.heatcapacity");
27 iomodel->FindConstant(&referencetemperature,"md.constants.referencetemperature");
28 iomodel->FindConstant(&finiteelement,"md.thermal.fe");
29
30 /*return if 2d mesh*/
31 if(iomodel->domaintype==Domain2DhorizontalEnum) return;
32
33 /*Fetch data: */
34 iomodel->FetchData(&spcvector,&M,&N,"md.thermal.spctemperature");
35
36 /*Convert spcs from temperatures to enthalpy*/
37 _assert_(N>0); _assert_(M>=iomodel->numberofvertices);
38 for(int i=0;i<iomodel->numberofvertices;i++){
39 for(int j=0;j<N;j++){
40 spcvector[i*N+j] = heatcapacity*(spcvector[i*N+j]-referencetemperature);
41 }
42 }
43
44 /*Specific case for PDD, we want the constaints to be updated by the PDD scheme itself*/
45 bool isdynamic = false;
46 if (iomodel->solution_enum==TransientSolutionEnum){
47 int smb_model;
48 iomodel->FindConstant(&smb_model,"md.smb.model");
49 if(smb_model==SMBpddEnum) isdynamic=true;
50 if(smb_model==SMBd18opddEnum) isdynamic=true;
51 }
52
53 if(isdynamic){
54 IoModelToDynamicConstraintsx(constraints,iomodel,spcvector,M,N,EnthalpyAnalysisEnum,finiteelement);
55 }
56 else{
57 IoModelToConstraintsx(constraints,iomodel,spcvector,M,N,EnthalpyAnalysisEnum,finiteelement);
58 }
59
60 /*Free ressources:*/
61 iomodel->DeleteData(spcvector,"md.thermal.spctemperature");
62 xDelete<IssmDouble>(times);
63 xDelete<IssmDouble>(values);
64}/*}}}*/
65void EnthalpyAnalysis::CreateLoads(Loads* loads, IoModel* iomodel){/*{{{*/
66
67 /*No loads */
68}/*}}}*/
69void EnthalpyAnalysis::CreateNodes(Nodes* nodes,IoModel* iomodel){/*{{{*/
70
71 int finiteelement;
72 iomodel->FindConstant(&finiteelement,"md.thermal.fe");
73
74 if(iomodel->domaintype==Domain3DEnum) iomodel->FetchData(2,"md.mesh.vertexonbase","md.mesh.vertexonsurface");
75 ::CreateNodes(nodes,iomodel,EnthalpyAnalysisEnum,finiteelement);
76 iomodel->DeleteData(2,"md.mesh.vertexonbase","md.mesh.vertexonsurface");
77}/*}}}*/
78int EnthalpyAnalysis::DofsPerNode(int** doflist,int domaintype,int approximation){/*{{{*/
79 return 1;
80}/*}}}*/
81void EnthalpyAnalysis::UpdateElements(Elements* elements,IoModel* iomodel,int analysis_counter,int analysis_type){/*{{{*/
82
83 bool dakota_analysis,ismovingfront,isenthalpy;
84 int frictionlaw,basalforcing_model,materialstype;
85 int FrictionCoupling;
86
87 /*Now, is the model 3d? otherwise, do nothing: */
88 if(iomodel->domaintype==Domain2DhorizontalEnum)return;
89
90 /*Is enthalpy requested?*/
91 iomodel->FindConstant(&isenthalpy,"md.thermal.isenthalpy");
92 if(!isenthalpy) return;
93
94 /*Fetch data needed: */
95 iomodel->FetchData(3,"md.initialization.temperature","md.initialization.waterfraction","md.initialization.pressure");
96
97 /*Finite element type*/
98 int finiteelement;
99 iomodel->FindConstant(&finiteelement,"md.thermal.fe");
100
101 /*Update elements: */
102 int counter=0;
103 for(int i=0;i<iomodel->numberofelements;i++){
104 if(iomodel->my_elements[i]){
105 Element* element=(Element*)elements->GetObjectByOffset(counter);
106 element->Update(i,iomodel,analysis_counter,analysis_type,finiteelement);
107 counter++;
108 }
109 }
110
111 iomodel->FindConstant(&dakota_analysis,"md.qmu.isdakota");
112 iomodel->FindConstant(&ismovingfront,"md.transient.ismovingfront");
113 iomodel->FindConstant(&frictionlaw,"md.friction.law");
114 iomodel->FindConstant(&materialstype,"md.materials.type");
115
116 iomodel->FetchDataToInput(elements,"md.geometry.thickness",ThicknessEnum);
117 iomodel->FetchDataToInput(elements,"md.geometry.surface",SurfaceEnum);
118 iomodel->FetchDataToInput(elements,"md.slr.sealevel",SealevelEnum,0);
119 iomodel->FetchDataToInput(elements,"md.geometry.base",BaseEnum);
120 iomodel->FetchDataToInput(elements,"md.mask.ice_levelset",MaskIceLevelsetEnum);
121 iomodel->FetchDataToInput(elements,"md.mask.groundedice_levelset",MaskGroundediceLevelsetEnum);
122 if(iomodel->domaintype!=Domain2DhorizontalEnum){
123 iomodel->FetchDataToInput(elements,"md.mesh.vertexonbase",MeshVertexonbaseEnum);
124 iomodel->FetchDataToInput(elements,"md.mesh.vertexonsurface",MeshVertexonsurfaceEnum);
125 }
126 iomodel->FetchDataToInput(elements,"md.initialization.pressure",PressureEnum);
127 iomodel->FetchDataToInput(elements,"md.initialization.temperature",TemperatureEnum);
128 iomodel->FetchDataToInput(elements,"md.initialization.waterfraction",WaterfractionEnum);
129 iomodel->FetchDataToInput(elements,"md.initialization.enthalpy",EnthalpyEnum);
130 iomodel->FetchDataToInput(elements,"md.initialization.watercolumn",WatercolumnEnum);
131 iomodel->FetchDataToInput(elements,"md.basalforcings.groundedice_melting_rate",BasalforcingsGroundediceMeltingRateEnum);
132 iomodel->FetchDataToInput(elements,"md.initialization.vx",VxEnum);
133 iomodel->FetchDataToInput(elements,"md.initialization.vy",VyEnum);
134 iomodel->FetchDataToInput(elements,"md.initialization.vz",VzEnum);
135 InputUpdateFromConstantx(elements,0.,VxMeshEnum);
136 InputUpdateFromConstantx(elements,0.,VyMeshEnum);
137 InputUpdateFromConstantx(elements,0.,VzMeshEnum);
138 if(ismovingfront){
139 iomodel->FetchDataToInput(elements,"md.mesh.vertexonbase",MeshVertexonbaseEnum); // required for updating active nodes
140 }
141
142 /*Basal forcings variables*/
143 iomodel->FindConstant(&basalforcing_model,"md.basalforcings.model");
144 switch(basalforcing_model){
145 case MantlePlumeGeothermalFluxEnum:
146 break;
147 default:
148 iomodel->FetchDataToInput(elements,"md.basalforcings.geothermalflux",BasalforcingsGeothermalfluxEnum);
149 break;
150 }
151
152 /*Rheology type*/
153 iomodel->FetchDataToInput(elements,"md.materials.rheology_B",MaterialsRheologyBEnum);
154 switch(materialstype){
155 case MatenhancediceEnum:
156 iomodel->FetchDataToInput(elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
157 iomodel->FetchDataToInput(elements,"md.materials.rheology_E",MaterialsRheologyEEnum);
158 break;
159 case MatdamageiceEnum:
160 iomodel->FetchDataToInput(elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
161 break;
162 case MatestarEnum:
163 iomodel->FetchDataToInput(elements,"md.materials.rheology_Ec",MaterialsRheologyEcEnum);
164 iomodel->FetchDataToInput(elements,"md.materials.rheology_Es",MaterialsRheologyEsEnum);
165 break;
166 case MaticeEnum:
167 iomodel->FetchDataToInput(elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
168 break;
169 default:
170 _error_("not supported");
171 }
172
173 /*Friction law variables*/
174 switch(frictionlaw){
175 case 1:
176 iomodel->FindConstant(&FrictionCoupling,"md.friction.coupling");
177 iomodel->FetchDataToInput(elements,"md.friction.coefficient",FrictionCoefficientEnum);
178 iomodel->FetchDataToInput(elements,"md.friction.p",FrictionPEnum);
179 iomodel->FetchDataToInput(elements,"md.friction.q",FrictionQEnum);
180 if (FrictionCoupling==1){
181 iomodel->FetchDataToInput(elements,"md.friction.effective_pressure",FrictionEffectivePressureEnum);
182 }
183 break;
184 case 2:
185 iomodel->FetchDataToInput(elements,"md.friction.C",FrictionCEnum);
186 iomodel->FetchDataToInput(elements,"md.friction.m",FrictionMEnum);
187 break;
188 case 3:
189 iomodel->FindConstant(&FrictionCoupling,"md.friction.coupling");
190 iomodel->FetchDataToInput(elements,"md.friction.C",FrictionCEnum);
191 iomodel->FetchDataToInput(elements,"md.friction.As",FrictionAsEnum);
192 iomodel->FetchDataToInput(elements,"md.friction.q",FrictionQEnum);
193 if (FrictionCoupling==1){
194 iomodel->FetchDataToInput(elements,"md.friction.effective_pressure",FrictionEffectivePressureEnum);
195 }
196 break;
197 case 4:
198 iomodel->FetchDataToInput(elements,"md.friction.coefficient",FrictionCoefficientEnum);
199 iomodel->FetchDataToInput(elements,"md.friction.p",FrictionPEnum);
200 iomodel->FetchDataToInput(elements,"md.friction.q",FrictionQEnum);
201 iomodel->FetchDataToInput(elements,"md.initialization.pressure",PressureEnum);
202 iomodel->FetchDataToInput(elements,"md.initialization.temperature",TemperatureEnum);
203 break;
204 case 5:
205 iomodel->FetchDataToInput(elements,"md.friction.coefficient",FrictionCoefficientEnum);
206 iomodel->FetchDataToInput(elements,"md.friction.p",FrictionPEnum);
207 iomodel->FetchDataToInput(elements,"md.friction.q",FrictionQEnum);
208 iomodel->FetchDataToInput(elements,"md.friction.water_layer",FrictionWaterLayerEnum);
209 break;
210 case 6:
211 iomodel->FetchDataToInput(elements,"md.friction.C",FrictionCEnum);
212 iomodel->FetchDataToInput(elements,"md.friction.m",FrictionMEnum);
213 iomodel->FetchDataToInput(elements,"md.initialization.pressure",PressureEnum);
214 iomodel->FetchDataToInput(elements,"md.initialization.temperature",TemperatureEnum);
215 break;
216 case 9:
217 iomodel->FetchDataToInput(elements,"md.friction.coefficient",FrictionCoefficientEnum);
218 iomodel->FetchDataToInput(elements,"md.friction.pressure_adjusted_temperature",FrictionPressureAdjustedTemperatureEnum);
219 InputUpdateFromConstantx(elements,1.,FrictionPEnum);
220 InputUpdateFromConstantx(elements,1.,FrictionQEnum);
221 break;
222 default:
223 _error_("not supported");
224 }
225
226 /*Free data: */
227 iomodel->DeleteData(3,"md.initialization.temperature","md.initialization.waterfraction","md.initialization.pressure");
228
229}/*}}}*/
230void EnthalpyAnalysis::UpdateParameters(Parameters* parameters,IoModel* iomodel,int solution_enum,int analysis_enum){/*{{{*/
231
232 int numoutputs;
233 char** requestedoutputs = NULL;
234
235 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.stabilization",ThermalStabilizationEnum));
236 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.maxiter",ThermalMaxiterEnum));
237 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.reltol",ThermalReltolEnum));
238 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.isenthalpy",ThermalIsenthalpyEnum));
239 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.isdynamicbasalspc",ThermalIsdynamicbasalspcEnum));
240 parameters->AddObject(iomodel->CopyConstantObject("md.friction.law",FrictionLawEnum));
241
242 iomodel->FindConstant(&requestedoutputs,&numoutputs,"md.thermal.requested_outputs");
243 parameters->AddObject(new IntParam(ThermalNumRequestedOutputsEnum,numoutputs));
244 if(numoutputs)parameters->AddObject(new StringArrayParam(ThermalRequestedOutputsEnum,requestedoutputs,numoutputs));
245 iomodel->DeleteData(&requestedoutputs,numoutputs,"md.thermal.requested_outputs");
246
247 /*Deal with friction parameters*/
248 int frictionlaw;
249 iomodel->FindConstant(&frictionlaw,"md.friction.law");
250 if(frictionlaw==4 || frictionlaw==6){
251 parameters->AddObject(iomodel->CopyConstantObject("md.friction.gamma",FrictionGammaEnum));
252 }
253 if(frictionlaw==3 || frictionlaw==1){
254 parameters->AddObject(iomodel->CopyConstantObject("md.friction.coupling",FrictionCouplingEnum));
255 }
256 if(frictionlaw==9){
257 parameters->AddObject(iomodel->CopyConstantObject("md.friction.gamma",FrictionGammaEnum));
258 parameters->AddObject(new IntParam(FrictionCouplingEnum,0));
259 }
260}/*}}}*/
261
262/*Finite Element Analysis*/
263void EnthalpyAnalysis::ApplyBasalConstraints(IssmDouble* serial_spc,Element* element){/*{{{*/
264
265 /* Do not check if ice in element, this may lead to inconsistencies between cpu partitions */
266 /* Only update constraints at the base. */
267 if(!(element->IsOnBase())) return;
268
269 /*Intermediary*/
270 bool isdynamicbasalspc;
271 int numindices;
272 int *indices = NULL;
273 Node* node = NULL;
274 IssmDouble pressure;
275
276 /*Check wether dynamic basal boundary conditions are activated */
277 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
278 if(!isdynamicbasalspc) return;
279
280 /*Get parameters and inputs: */
281 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
282
283 /*Fetch indices of basal & surface nodes for this finite element*/
284 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
285 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
286
287 GaussPenta* gauss=new GaussPenta();
288 for(int i=0;i<numindices;i++){
289 gauss->GaussNode(element->GetElementType(),indices[i]);
290
291 pressure_input->GetInputValue(&pressure,gauss);
292
293 /*apply or release spc*/
294 node=element->GetNode(indices[i]);
295 if(!node->IsActive()) continue;
296 if(serial_spc[node->Sid()]==1.){
297 pressure_input->GetInputValue(&pressure, gauss);
298 node->ApplyConstraint(0,PureIceEnthalpy(element,pressure));
299 }
300 else {
301 node->DofInFSet(0);
302 }
303 }
304
305 /*Free ressources:*/
306 xDelete<int>(indices);
307 delete gauss;
308}/*}}}*/
309void EnthalpyAnalysis::ComputeBasalMeltingrate(FemModel* femmodel){/*{{{*/
310 /*Compute basal melting rates: */
311 for(int i=0;i<femmodel->elements->Size();i++){
312 Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
313 ComputeBasalMeltingrate(element);
314 }
315}/*}}}*/
316void EnthalpyAnalysis::ComputeBasalMeltingrate(Element* element){/*{{{*/
317 /*Calculate the basal melt rates of the enthalpy model after Aschwanden 2012*/
318 /* melting rate is positive when melting, negative when refreezing*/
319
320 /* Check if ice in element */
321 if(!element->IsIceInElement()) return;
322
323 /* Only compute melt rates at the base of grounded ice*/
324 if(!element->IsOnBase() || element->IsFloating()) return;
325
326 /* Intermediaries */
327 bool converged;
328 const int dim=3;
329 int i,is,state;
330 int nodedown,nodeup,numnodes,numsegments;
331 int enthalpy_enum;
332 IssmDouble vec_heatflux[dim],normal_base[dim],d1enthalpy[dim],d1pressure[dim];
333 IssmDouble basalfriction,alpha2,geothermalflux,heatflux;
334 IssmDouble dt,yts;
335 IssmDouble melting_overshoot,lambda;
336 IssmDouble vx,vy,vz;
337 IssmDouble *xyz_list = NULL;
338 IssmDouble *xyz_list_base = NULL;
339 int *pairindices = NULL;
340
341 /*Fetch parameters*/
342 element->GetVerticesCoordinates(&xyz_list);
343 element->GetVerticesCoordinatesBase(&xyz_list_base);
344 element->GetInputValue(&converged,ConvergedEnum);
345 element->FindParam(&dt,TimesteppingTimeStepEnum);
346 element->FindParam(&yts, ConstantsYtsEnum);
347
348 if(dt==0. && !converged) enthalpy_enum=EnthalpyPicardEnum;
349 else enthalpy_enum=EnthalpyEnum;
350
351 IssmDouble latentheat = element->GetMaterialParameter(MaterialsLatentheatEnum);
352 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
353 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoFreshwaterEnum);
354 IssmDouble beta = element->GetMaterialParameter(MaterialsBetaEnum);
355 IssmDouble kappa = EnthalpyDiffusionParameterVolume(element,enthalpy_enum); _assert_(kappa>=0.);
356 IssmDouble kappa_mix;
357
358 /*retrieve inputs*/
359 Input* enthalpy_input = element->GetInput(enthalpy_enum); _assert_(enthalpy_input);
360 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
361 Input* geothermalflux_input = element->GetInput(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input);
362 Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
363 Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
364 Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
365
366 /*Build friction element, needed later: */
367 Friction* friction=new Friction(element,dim);
368
369 /******** MELTING RATES ************************************//*{{{*/
370 element->NormalBase(&normal_base[0],xyz_list_base);
371 element->VerticalSegmentIndicesBase(&pairindices,&numsegments);
372 IssmDouble* meltingrate_enthalpy = xNew<IssmDouble>(numsegments);
373 IssmDouble* heating = xNew<IssmDouble>(numsegments);
374
375 numnodes=element->GetNumberOfNodes();
376 IssmDouble* enthalpies = xNew<IssmDouble>(numnodes);
377 IssmDouble* pressures = xNew<IssmDouble>(numnodes);
378 IssmDouble* watercolumns = xNew<IssmDouble>(numnodes);
379 IssmDouble* basalmeltingrates = xNew<IssmDouble>(numnodes);
380 element->GetInputListOnNodes(enthalpies,enthalpy_enum);
381 element->GetInputListOnNodes(pressures,PressureEnum);
382 element->GetInputListOnNodes(watercolumns,WatercolumnEnum);
383 element->GetInputListOnNodes(basalmeltingrates,BasalforcingsGroundediceMeltingRateEnum);
384
385 Gauss* gauss=element->NewGauss();
386 for(is=0;is<numsegments;is++){
387 nodedown = pairindices[is*2+0];
388 nodeup = pairindices[is*2+1];
389 gauss->GaussNode(element->GetElementType(),nodedown);
390
391 state=GetThermalBasalCondition(element, enthalpies[nodedown], enthalpies[nodeup], pressures[nodedown], pressures[nodeup], watercolumns[nodedown], basalmeltingrates[nodedown]);
392 switch (state) {
393 case 0:
394 // cold, dry base: apply basal surface forcing
395 for(i=0;i<3;i++) vec_heatflux[i]=0.;
396 break;
397 case 1: case 2: case 3:
398 // case 1 : cold, wet base: keep at pressure melting point
399 // case 2: temperate, thin refreezing base: release spc
400 // case 3: temperate, thin melting base: set spc
401 enthalpy_input->GetInputDerivativeValue(&d1enthalpy[0],xyz_list,gauss);
402 for(i=0;i<3;i++) vec_heatflux[i]=-kappa*d1enthalpy[i];
403 break;
404 case 4:
405 // temperate, thick melting base: set grad H*n=0
406 kappa_mix=GetWetIceConductivity(element, enthalpies[nodedown], pressures[nodedown]);
407 pressure_input->GetInputDerivativeValue(&d1pressure[0],xyz_list,gauss);
408 for(i=0;i<3;i++) vec_heatflux[i]=kappa_mix*beta*d1pressure[i];
409 break;
410 default:
411 _printf0_(" unknown thermal basal state found!");
412 }
413 if(state==0) meltingrate_enthalpy[is]=0.;
414 else{
415 /*heat flux along normal*/
416 heatflux=0.;
417 for(i=0;i<3;i++) heatflux+=(vec_heatflux[i])*normal_base[i];
418
419 /*basal friction*/
420 friction->GetAlpha2(&alpha2,gauss);
421 vx_input->GetInputValue(&vx,gauss); vy_input->GetInputValue(&vy,gauss); vz_input->GetInputValue(&vz,gauss);
422 basalfriction=alpha2*(vx*vx + vy*vy + vz*vz);
423 geothermalflux_input->GetInputValue(&geothermalflux,gauss);
424 /* -Mb= Fb-(q-q_geo)/((1-w)*L*rho), and (1-w)*rho=rho_ice, cf Aschwanden 2012, eqs.1, 2, 66*/
425 heating[is]=(heatflux+basalfriction+geothermalflux);
426 meltingrate_enthalpy[is]=heating[is]/(latentheat*rho_ice); // m/s water equivalent
427 }
428 }/*}}}*/
429
430 /******** UPDATE MELTINGRATES AND WATERCOLUMN **************//*{{{*/
431 for(is=0;is<numsegments;is++){
432 nodedown = pairindices[is*2+0];
433 nodeup = pairindices[is*2+1];
434 if(dt!=0.){
435 if(watercolumns[nodedown]+meltingrate_enthalpy[is]*dt<0.){ // prevent too much freeze on
436 lambda = -watercolumns[nodedown]/(dt*meltingrate_enthalpy[is]); _assert_(lambda>=0.); _assert_(lambda<1.);
437 watercolumns[nodedown]=0.;
438 basalmeltingrates[nodedown]=lambda*meltingrate_enthalpy[is]; // restrict freeze on only to size of watercolumn
439 enthalpies[nodedown]+=(1.-lambda)*dt/yts*meltingrate_enthalpy[is]*latentheat*rho_ice; // use rest of energy to cool down base: dE=L*m, m=(1-lambda)*meltingrate*rho_ice
440 }
441 else{
442 basalmeltingrates[nodedown]=meltingrate_enthalpy[is];
443 watercolumns[nodedown]+=dt*meltingrate_enthalpy[is];
444 }
445 }
446 else{
447 basalmeltingrates[nodedown]=meltingrate_enthalpy[is];
448 if(watercolumns[nodedown]+meltingrate_enthalpy[is]<0.)
449 watercolumns[nodedown]=0.;
450 else
451 watercolumns[nodedown]+=meltingrate_enthalpy[is];
452 }
453 basalmeltingrates[nodedown]*=rho_water/rho_ice; // convert meltingrate from water to ice equivalent
454 _assert_(watercolumns[nodedown]>=0.);
455 }/*}}}*/
456
457 /*feed updated variables back into model*/
458 if(dt!=0.){
459 element->AddInput(enthalpy_enum,enthalpies,element->GetElementType());
460 element->AddInput(WatercolumnEnum,watercolumns,element->GetElementType());
461 }
462 element->AddInput(BasalforcingsGroundediceMeltingRateEnum,basalmeltingrates,element->GetElementType());
463
464 /*Clean up and return*/
465 delete gauss;
466 delete friction;
467 xDelete<int>(pairindices);
468 xDelete<IssmDouble>(enthalpies);
469 xDelete<IssmDouble>(pressures);
470 xDelete<IssmDouble>(watercolumns);
471 xDelete<IssmDouble>(basalmeltingrates);
472 xDelete<IssmDouble>(meltingrate_enthalpy);
473 xDelete<IssmDouble>(heating);
474 xDelete<IssmDouble>(xyz_list);
475 xDelete<IssmDouble>(xyz_list_base);
476}/*}}}*/
477void EnthalpyAnalysis::Core(FemModel* femmodel){/*{{{*/
478
479 IssmDouble dt;
480 bool isdynamicbasalspc;
481
482 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
483 femmodel->parameters->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
484
485 if(VerboseSolution()) _printf0_(" computing enthalpy\n");
486 femmodel->SetCurrentConfiguration(EnthalpyAnalysisEnum);
487 if((dt>0.) && isdynamicbasalspc) UpdateBasalConstraints(femmodel);
488 solutionsequence_thermal_nonlinear(femmodel);
489
490 /*transfer enthalpy to enthalpy picard for the next step: */
491 InputDuplicatex(femmodel,EnthalpyEnum,EnthalpyPicardEnum);
492
493 PostProcessing(femmodel);
494
495}/*}}}*/
496ElementVector* EnthalpyAnalysis::CreateDVector(Element* element){/*{{{*/
497 /*Default, return NULL*/
498 return NULL;
499}/*}}}*/
500ElementMatrix* EnthalpyAnalysis::CreateJacobianMatrix(Element* element){/*{{{*/
501_error_("Not implemented");
502}/*}}}*/
503ElementMatrix* EnthalpyAnalysis::CreateKMatrix(Element* element){/*{{{*/
504
505 /* Check if ice in element */
506 if(!element->IsIceInElement()) return NULL;
507
508 /*compute all stiffness matrices for this element*/
509 ElementMatrix* Ke1=CreateKMatrixVolume(element);
510 ElementMatrix* Ke2=CreateKMatrixShelf(element);
511 ElementMatrix* Ke =new ElementMatrix(Ke1,Ke2);
512
513 /*clean-up and return*/
514 delete Ke1;
515 delete Ke2;
516 return Ke;
517}/*}}}*/
518ElementMatrix* EnthalpyAnalysis::CreateKMatrixVolume(Element* element){/*{{{*/
519
520 /* Check if ice in element */
521 if(!element->IsIceInElement()) return NULL;
522
523 /*Intermediaries */
524 int stabilization;
525 IssmDouble Jdet,dt,u,v,w,um,vm,wm,vel;
526 IssmDouble h,hx,hy,hz,vx,vy,vz;
527 IssmDouble tau_parameter,diameter;
528 IssmDouble D_scalar;
529 IssmDouble* xyz_list = NULL;
530
531 /*Fetch number of nodes and dof for this finite element*/
532 int numnodes = element->GetNumberOfNodes();
533
534 /*Initialize Element vector and other vectors*/
535 ElementMatrix* Ke = element->NewElementMatrix();
536 IssmDouble* basis = xNew<IssmDouble>(numnodes);
537 IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
538 IssmDouble* B = xNew<IssmDouble>(3*numnodes);
539 IssmDouble* Bprime = xNew<IssmDouble>(3*numnodes);
540 IssmDouble D[3][3] = {0.};
541 IssmDouble K[3][3];
542
543 /*Retrieve all inputs and parameters*/
544 element->GetVerticesCoordinates(&xyz_list);
545 element->FindParam(&dt,TimesteppingTimeStepEnum);
546 element->FindParam(&stabilization,ThermalStabilizationEnum);
547 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
548 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
549 IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
550 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
551 IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
552 Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
553 Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
554 Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
555 Input* vxm_input = element->GetInput(VxMeshEnum); _assert_(vxm_input);
556 Input* vym_input = element->GetInput(VyMeshEnum); _assert_(vym_input);
557 Input* vzm_input = element->GetInput(VzMeshEnum); _assert_(vzm_input);
558 if(stabilization==2) diameter=element->MinEdgeLength(xyz_list);
559
560 /*Enthalpy diffusion parameter*/
561 IssmDouble kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
562
563 /* Start looping on the number of gaussian points: */
564 Gauss* gauss=element->NewGauss(4);
565 for(int ig=gauss->begin();ig<gauss->end();ig++){
566 gauss->GaussPoint(ig);
567
568 element->JacobianDeterminant(&Jdet,xyz_list,gauss);
569 D_scalar=gauss->weight*Jdet;
570 if(dt!=0.) D_scalar=D_scalar*dt;
571
572 /*Conduction: */
573 GetBConduct(B,element,xyz_list,gauss);
574 D[0][0]=D_scalar*kappa/rho_ice;
575 D[1][1]=D_scalar*kappa/rho_ice;
576 D[2][2]=D_scalar*kappa/rho_ice;
577 TripleMultiply(B,3,numnodes,1,
578 &D[0][0],3,3,0,
579 B,3,numnodes,0,
580 &Ke->values[0],1);
581
582 /*Advection: */
583 GetBAdvec(B,element,xyz_list,gauss);
584 GetBAdvecprime(Bprime,element,xyz_list,gauss);
585 vx_input->GetInputValue(&u,gauss); vxm_input->GetInputValue(&um,gauss); vx=u-um;
586 vy_input->GetInputValue(&v,gauss); vym_input->GetInputValue(&vm,gauss); vy=v-vm;
587 vz_input->GetInputValue(&w,gauss); vzm_input->GetInputValue(&wm,gauss); vz=w-wm;
588 D[0][0]=D_scalar*vx;
589 D[1][1]=D_scalar*vy;
590 D[2][2]=D_scalar*vz;
591 TripleMultiply(B,3,numnodes,1,
592 &D[0][0],3,3,0,
593 Bprime,3,numnodes,0,
594 &Ke->values[0],1);
595
596 /*Transient: */
597 if(dt!=0.){
598 D_scalar=gauss->weight*Jdet;
599 element->NodalFunctions(basis,gauss);
600 TripleMultiply(basis,numnodes,1,0,
601 &D_scalar,1,1,0,
602 basis,1,numnodes,0,
603 &Ke->values[0],1);
604 D_scalar=D_scalar*dt;
605 }
606
607 /*Artificial diffusivity*/
608 if(stabilization==1){
609 element->ElementSizes(&hx,&hy,&hz);
610 vel=sqrt(vx*vx + vy*vy + vz*vz)+1.e-14;
611 h=sqrt( pow(hx*vx/vel,2) + pow(hy*vy/vel,2) + pow(hz*vz/vel,2));
612 K[0][0]=h/(2.*vel)*fabs(vx*vx); K[0][1]=h/(2.*vel)*fabs(vx*vy); K[0][2]=h/(2.*vel)*fabs(vx*vz);
613 K[1][0]=h/(2.*vel)*fabs(vy*vx); K[1][1]=h/(2.*vel)*fabs(vy*vy); K[1][2]=h/(2.*vel)*fabs(vy*vz);
614 K[2][0]=h/(2.*vel)*fabs(vz*vx); K[2][1]=h/(2.*vel)*fabs(vz*vy); K[2][2]=h/(2.*vel)*fabs(vz*vz);
615 for(int i=0;i<3;i++) for(int j=0;j<3;j++) K[i][j] = D_scalar*K[i][j];
616
617 GetBAdvecprime(Bprime,element,xyz_list,gauss);
618 TripleMultiply(Bprime,3,numnodes,1,
619 &K[0][0],3,3,0,
620 Bprime,3,numnodes,0,
621 &Ke->values[0],1);
622 }
623 else if(stabilization==2){
624 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
625 tau_parameter=element->StabilizationParameter(u-um,v-vm,w-wm,diameter,kappa/rho_ice);
626 for(int i=0;i<numnodes;i++){
627 for(int j=0;j<numnodes;j++){
628 Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*
629 ((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i])*((u-um)*dbasis[0*numnodes+j]+(v-vm)*dbasis[1*numnodes+j]+(w-wm)*dbasis[2*numnodes+j]);
630 }
631 }
632 if(dt!=0.){
633 D_scalar=gauss->weight*Jdet;
634 for(int i=0;i<numnodes;i++){
635 for(int j=0;j<numnodes;j++){
636 Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*basis[j]*((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i]);
637 }
638 }
639 }
640 }
641 }
642
643 /*Clean up and return*/
644 xDelete<IssmDouble>(xyz_list);
645 xDelete<IssmDouble>(basis);
646 xDelete<IssmDouble>(dbasis);
647 xDelete<IssmDouble>(B);
648 xDelete<IssmDouble>(Bprime);
649 delete gauss;
650 return Ke;
651}/*}}}*/
652ElementMatrix* EnthalpyAnalysis::CreateKMatrixShelf(Element* element){/*{{{*/
653
654 /* Check if ice in element */
655 if(!element->IsIceInElement()) return NULL;
656
657 /*Initialize Element matrix and return if necessary*/
658 if(!element->IsOnBase() || !element->IsFloating()) return NULL;
659
660 /*Intermediaries*/
661 IssmDouble dt,Jdet,D;
662 IssmDouble *xyz_list_base = NULL;
663
664 /*Fetch number of nodes for this finite element*/
665 int numnodes = element->GetNumberOfNodes();
666
667 /*Initialize vectors*/
668 ElementMatrix* Ke = element->NewElementMatrix();
669 IssmDouble* basis = xNew<IssmDouble>(numnodes);
670
671 /*Retrieve all inputs and parameters*/
672 element->GetVerticesCoordinatesBase(&xyz_list_base);
673 element->FindParam(&dt,TimesteppingTimeStepEnum);
674 IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
675 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
676 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
677 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
678 IssmDouble mixed_layer_capacity= element->GetMaterialParameter(MaterialsMixedLayerCapacityEnum);
679 IssmDouble thermal_exchange_vel= element->GetMaterialParameter(MaterialsThermalExchangeVelocityEnum);
680
681 /* Start looping on the number of gaussian points: */
682 Gauss* gauss=element->NewGaussBase(4);
683 for(int ig=gauss->begin();ig<gauss->end();ig++){
684 gauss->GaussPoint(ig);
685
686 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
687 element->NodalFunctions(basis,gauss);
688
689 D=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel/(heatcapacity*rho_ice);
690 if(reCast<bool,IssmDouble>(dt)) D=dt*D;
691 TripleMultiply(basis,numnodes,1,0,
692 &D,1,1,0,
693 basis,1,numnodes,0,
694 &Ke->values[0],1);
695
696 }
697
698 /*Clean up and return*/
699 delete gauss;
700 xDelete<IssmDouble>(basis);
701 xDelete<IssmDouble>(xyz_list_base);
702 return Ke;
703}/*}}}*/
704ElementVector* EnthalpyAnalysis::CreatePVector(Element* element){/*{{{*/
705
706 /* Check if ice in element */
707 if(!element->IsIceInElement()) return NULL;
708
709 /*compute all load vectors for this element*/
710 ElementVector* pe1=CreatePVectorVolume(element);
711 ElementVector* pe2=CreatePVectorSheet(element);
712 ElementVector* pe3=CreatePVectorShelf(element);
713 ElementVector* pe =new ElementVector(pe1,pe2,pe3);
714
715 /*clean-up and return*/
716 delete pe1;
717 delete pe2;
718 delete pe3;
719 return pe;
720}/*}}}*/
721ElementVector* EnthalpyAnalysis::CreatePVectorVolume(Element* element){/*{{{*/
722
723 /* Check if ice in element */
724 if(!element->IsIceInElement()) return NULL;
725
726 /*Intermediaries*/
727 int i, stabilization;
728 IssmDouble Jdet,phi,dt;
729 IssmDouble enthalpy, Hpmp;
730 IssmDouble enthalpypicard, d1enthalpypicard[3];
731 IssmDouble pressure, d1pressure[3], d2pressure;
732 IssmDouble waterfractionpicard;
733 IssmDouble kappa,tau_parameter,diameter,kappa_w;
734 IssmDouble u,v,w;
735 IssmDouble scalar_def, scalar_sens ,scalar_transient;
736 IssmDouble* xyz_list = NULL;
737 IssmDouble d1H_d1P, d1P2;
738
739 /*Fetch number of nodes and dof for this finite element*/
740 int numnodes = element->GetNumberOfNodes();
741 int numvertices = element->GetNumberOfVertices();
742
743 /*Initialize Element vector*/
744 ElementVector* pe = element->NewElementVector();
745 IssmDouble* basis = xNew<IssmDouble>(numnodes);
746 IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
747
748 /*Retrieve all inputs and parameters*/
749 element->GetVerticesCoordinates(&xyz_list);
750 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
751 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
752 IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
753 IssmDouble temperateiceconductivity = element->GetMaterialParameter(MaterialsTemperateiceconductivityEnum);
754 IssmDouble beta = element->GetMaterialParameter(MaterialsBetaEnum);
755 IssmDouble latentheat = element->GetMaterialParameter(MaterialsLatentheatEnum);
756 element->FindParam(&dt,TimesteppingTimeStepEnum);
757 element->FindParam(&stabilization,ThermalStabilizationEnum);
758 Input* vx_input=element->GetInput(VxEnum); _assert_(vx_input);
759 Input* vy_input=element->GetInput(VyEnum); _assert_(vy_input);
760 Input* vz_input=element->GetInput(VzEnum); _assert_(vz_input);
761 Input* enthalpypicard_input=element->GetInput(EnthalpyPicardEnum); _assert_(enthalpypicard_input);
762 Input* pressure_input=element->GetInput(PressureEnum); _assert_(pressure_input);
763 Input* enthalpy_input=NULL;
764 if(reCast<bool,IssmDouble>(dt)){enthalpy_input = element->GetInput(EnthalpyEnum); _assert_(enthalpy_input);}
765 if(stabilization==2){
766 diameter=element->MinEdgeLength(xyz_list);
767 kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
768 }
769
770 /* Start looping on the number of gaussian points: */
771 Gauss* gauss=element->NewGauss(4);
772 for(int ig=gauss->begin();ig<gauss->end();ig++){
773 gauss->GaussPoint(ig);
774
775 element->JacobianDeterminant(&Jdet,xyz_list,gauss);
776 element->NodalFunctions(basis,gauss);
777
778 /*viscous dissipation*/
779 element->ViscousHeating(&phi,xyz_list,gauss,vx_input,vy_input,vz_input);
780
781 scalar_def=phi/rho_ice*Jdet*gauss->weight;
782 if(dt!=0.) scalar_def=scalar_def*dt;
783
784 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_def*basis[i];
785
786 /*sensible heat flux in temperate ice*/
787 enthalpypicard_input->GetInputValue(&enthalpypicard,gauss);
788 pressure_input->GetInputValue(&pressure,gauss);
789 Hpmp=this->PureIceEnthalpy(element, pressure);
790
791 if(enthalpypicard>=Hpmp){
792 enthalpypicard_input->GetInputDerivativeValue(&d1enthalpypicard[0],xyz_list,gauss);
793 pressure_input->GetInputDerivativeValue(&d1pressure[0],xyz_list,gauss);
794 d2pressure=0.; // for linear elements, 2nd derivative is zero
795
796 d1H_d1P=0.;
797 for(i=0;i<3;i++) d1H_d1P+=d1enthalpypicard[i]*d1pressure[i];
798 d1P2=0.;
799 for(i=0;i<3;i++) d1P2+=pow(d1pressure[i],2.);
800
801 scalar_sens=-beta*((temperateiceconductivity - thermalconductivity)/latentheat*(d1H_d1P + beta*heatcapacity*d1P2))/rho_ice;
802 if(dt!=0.) scalar_sens=scalar_sens*dt;
803 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_sens*basis[i];
804 }
805
806 /* Build transient now */
807 if(reCast<bool,IssmDouble>(dt)){
808 enthalpy_input->GetInputValue(&enthalpy, gauss);
809 scalar_transient=enthalpy*Jdet*gauss->weight;
810 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_transient*basis[i];
811 }
812
813 if(stabilization==2){
814 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
815
816 vx_input->GetInputValue(&u,gauss);
817 vy_input->GetInputValue(&v,gauss);
818 vz_input->GetInputValue(&w,gauss);
819 tau_parameter=element->StabilizationParameter(u,v,w,diameter,kappa/rho_ice);
820
821 for(i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_def*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]);
822
823 if(dt!=0.){
824 for(i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_transient*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]);
825 }
826 }
827 }
828
829 /*Clean up and return*/
830 xDelete<IssmDouble>(basis);
831 xDelete<IssmDouble>(dbasis);
832 xDelete<IssmDouble>(xyz_list);
833 delete gauss;
834 return pe;
835
836}/*}}}*/
837ElementVector* EnthalpyAnalysis::CreatePVectorSheet(Element* element){/*{{{*/
838
839 /* Check if ice in element */
840 if(!element->IsIceInElement()) return NULL;
841
842 /* implementation of the basal condition decision chart of Aschwanden 2012, Fig.5 */
843 if(!element->IsOnBase() || element->IsFloating()) return NULL;
844
845 bool converged, isdynamicbasalspc;
846 int i, state;
847 int enthalpy_enum;
848 IssmDouble dt,Jdet,scalar;
849 IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
850 IssmDouble vx,vy,vz;
851 IssmDouble alpha2,basalfriction,geothermalflux,heatflux;
852 IssmDouble *xyz_list_base = NULL;
853
854 /*Fetch number of nodes for this finite element*/
855 int numnodes = element->GetNumberOfNodes();
856
857 /*Initialize vectors*/
858 ElementVector* pe = element->NewElementVector();
859 IssmDouble* basis = xNew<IssmDouble>(numnodes);
860
861 /*Retrieve all inputs and parameters*/
862 element->GetVerticesCoordinatesBase(&xyz_list_base);
863 element->FindParam(&dt,TimesteppingTimeStepEnum);
864 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
865 element->GetInputValue(&converged,ConvergedEnum);
866 if(dt==0. && !converged) enthalpy_enum=EnthalpyPicardEnum; // use enthalpy from last iteration
867 else enthalpy_enum=EnthalpyEnum; // use enthalpy from last time step
868 Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
869 Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
870 Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
871 Input* enthalpy_input = element->GetInput(enthalpy_enum); _assert_(enthalpy_input);
872 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
873 Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
874 Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
875 Input* geothermalflux_input = element->GetInput(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input);
876 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
877
878 /*Build friction element, needed later: */
879 Friction* friction=new Friction(element,3);
880
881 /* Start looping on the number of gaussian points: */
882 Gauss* gauss=element->NewGaussBase(4);
883 Gauss* gaussup=element->NewGaussTop(4);
884 for(int ig=gauss->begin();ig<gauss->end();ig++){
885 gauss->GaussPoint(ig);
886 gaussup->GaussPoint(ig);
887
888 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
889 element->NodalFunctions(basis,gauss);
890
891 if(isdynamicbasalspc){
892 enthalpy_input->GetInputValue(&enthalpy,gauss);
893 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
894 pressure_input->GetInputValue(&pressure,gauss);
895 pressure_input->GetInputValue(&pressureup,gaussup);
896 watercolumn_input->GetInputValue(&watercolumn,gauss);
897 meltingrate_input->GetInputValue(&meltingrate,gauss);
898 state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
899 }
900 else
901 state=0;
902
903 switch (state) {
904 case 0: case 1: case 2: case 3:
905 // cold, dry base; cold, wet base; refreezing temperate base; thin temperate base:
906 // Apply basal surface forcing.
907 // Interpolated values of enthalpy on gauss nodes may indicate cold base,
908 // although one node might have become temperate. So keep heat flux switched on.
909 geothermalflux_input->GetInputValue(&geothermalflux,gauss);
910 friction->GetAlpha2(&alpha2,gauss);
911 vx_input->GetInputValue(&vx,gauss);
912 vy_input->GetInputValue(&vy,gauss);
913 vz_input->GetInputValue(&vz,gauss);
914 basalfriction=alpha2*(vx*vx+vy*vy+vz*vz);
915 heatflux=(basalfriction+geothermalflux)/(rho_ice);
916 scalar=gauss->weight*Jdet*heatflux;
917 if(dt!=0.) scalar=dt*scalar;
918 for(i=0;i<numnodes;i++)
919 pe->values[i]+=scalar*basis[i];
920 break;
921 case 4:
922 // temperate, thick melting base: set grad H*n=0
923 for(i=0;i<numnodes;i++)
924 pe->values[i]+=0.;
925 break;
926 default:
927 _printf0_(" unknown thermal basal state found!");
928 }
929 }
930
931 /*Clean up and return*/
932 delete gauss;
933 delete gaussup;
934 delete friction;
935 xDelete<IssmDouble>(basis);
936 xDelete<IssmDouble>(xyz_list_base);
937 return pe;
938
939}/*}}}*/
940ElementVector* EnthalpyAnalysis::CreatePVectorShelf(Element* element){/*{{{*/
941
942 /* Check if ice in element */
943 if(!element->IsIceInElement()) return NULL;
944
945 /*Get basal element*/
946 if(!element->IsOnBase() || !element->IsFloating()) return NULL;
947
948 IssmDouble Hpmp,dt,Jdet,scalar_ocean,pressure;
949 IssmDouble *xyz_list_base = NULL;
950
951 /*Fetch number of nodes for this finite element*/
952 int numnodes = element->GetNumberOfNodes();
953
954 /*Initialize vectors*/
955 ElementVector* pe = element->NewElementVector();
956 IssmDouble* basis = xNew<IssmDouble>(numnodes);
957
958 /*Retrieve all inputs and parameters*/
959 element->GetVerticesCoordinatesBase(&xyz_list_base);
960 element->FindParam(&dt,TimesteppingTimeStepEnum);
961 Input* pressure_input=element->GetInput(PressureEnum); _assert_(pressure_input);
962 IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
963 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
964 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
965 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
966 IssmDouble mixed_layer_capacity= element->GetMaterialParameter(MaterialsMixedLayerCapacityEnum);
967 IssmDouble thermal_exchange_vel= element->GetMaterialParameter(MaterialsThermalExchangeVelocityEnum);
968
969 /* Start looping on the number of gaussian points: */
970 Gauss* gauss=element->NewGaussBase(4);
971 for(int ig=gauss->begin();ig<gauss->end();ig++){
972 gauss->GaussPoint(ig);
973
974 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
975 element->NodalFunctions(basis,gauss);
976
977 pressure_input->GetInputValue(&pressure,gauss);
978 Hpmp=element->PureIceEnthalpy(pressure);
979
980 scalar_ocean=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel*Hpmp/(heatcapacity*rho_ice);
981 if(reCast<bool,IssmDouble>(dt)) scalar_ocean=dt*scalar_ocean;
982
983 for(int i=0;i<numnodes;i++) pe->values[i]+=scalar_ocean*basis[i];
984 }
985
986 /*Clean up and return*/
987 delete gauss;
988 xDelete<IssmDouble>(basis);
989 xDelete<IssmDouble>(xyz_list_base);
990 return pe;
991}/*}}}*/
992void EnthalpyAnalysis::DrainWaterfraction(FemModel* femmodel){/*{{{*/
993 /*Drain excess water fraction in ice column: */
994 ComputeWaterfractionDrainage(femmodel);
995 DrainageUpdateWatercolumn(femmodel);
996 DrainageUpdateEnthalpy(femmodel);
997}/*}}}*/
998void EnthalpyAnalysis::ComputeWaterfractionDrainage(FemModel* femmodel){/*{{{*/
999
1000 int i,k,numnodes;
1001 IssmDouble dt;
1002 Element* element= NULL;
1003
1004 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
1005
1006 for(i=0;i<femmodel->elements->Size();i++){
1007 element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1008 numnodes=element->GetNumberOfNodes();
1009 IssmDouble* waterfractions= xNew<IssmDouble>(numnodes);
1010 IssmDouble* drainage= xNew<IssmDouble>(numnodes);
1011
1012 element->GetInputListOnNodes(waterfractions,WaterfractionEnum);
1013 for(k=0; k<numnodes;k++){
1014 drainage[k]=DrainageFunctionWaterfraction(waterfractions[k], dt);
1015 }
1016 element->AddInput(WaterfractionDrainageEnum,drainage,element->GetElementType());
1017
1018 xDelete<IssmDouble>(waterfractions);
1019 xDelete<IssmDouble>(drainage);
1020 }
1021}/*}}}*/
1022void EnthalpyAnalysis::DrainageUpdateWatercolumn(FemModel* femmodel){/*{{{*/
1023
1024 int i,k,numnodes, numbasalnodes;
1025 IssmDouble dt;
1026 int* basalnodeindices=NULL;
1027 Element* element= NULL;
1028
1029 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
1030
1031 /*depth-integrate the drained water fraction */
1032 femmodel->parameters->SetParam(WaterfractionDrainageEnum,InputToDepthaverageInEnum);
1033 femmodel->parameters->SetParam(WaterfractionDrainageIntegratedEnum,InputToDepthaverageOutEnum);
1034 depthaverage_core(femmodel);
1035 femmodel->parameters->SetParam(WaterfractionDrainageIntegratedEnum,InputToExtrudeEnum);
1036 extrudefrombase_core(femmodel);
1037 /*multiply depth-average by ice thickness*/
1038 for(i=0;i<femmodel->elements->Size();i++){
1039 element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1040 numnodes=element->GetNumberOfNodes();
1041 IssmDouble* drainage_int= xNew<IssmDouble>(numnodes);
1042 IssmDouble* thicknesses= xNew<IssmDouble>(numnodes);
1043
1044 element->GetInputListOnNodes(drainage_int,WaterfractionDrainageIntegratedEnum);
1045 element->GetInputListOnNodes(thicknesses,ThicknessEnum);
1046 for(k=0;k<numnodes;k++){
1047 drainage_int[k]*=thicknesses[k];
1048 }
1049 element->AddInput(WaterfractionDrainageIntegratedEnum, drainage_int, element->GetElementType());
1050
1051 xDelete<IssmDouble>(drainage_int);
1052 xDelete<IssmDouble>(thicknesses);
1053 }
1054
1055 /*update water column*/
1056 for(i=0;i<femmodel->elements->Size();i++){
1057 element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1058 /* Check if ice in element */
1059 if(!element->IsIceInElement()) continue;
1060 if(!element->IsOnBase()) continue;
1061
1062 numnodes=element->GetNumberOfNodes();
1063 IssmDouble* watercolumn= xNew<IssmDouble>(numnodes);
1064 IssmDouble* drainage_int= xNew<IssmDouble>(numnodes);
1065 element->GetInputListOnNodes(watercolumn,WatercolumnEnum);
1066 element->GetInputListOnNodes(drainage_int,WaterfractionDrainageIntegratedEnum);
1067
1068 element->BasalNodeIndices(&numbasalnodes,&basalnodeindices,element->GetElementType());
1069 for(k=0;k<numbasalnodes;k++){
1070 watercolumn[basalnodeindices[k]]+=dt*drainage_int[basalnodeindices[k]];
1071 }
1072 element->AddInput(WatercolumnEnum, watercolumn, element->GetElementType());
1073
1074 xDelete<IssmDouble>(watercolumn);
1075 xDelete<IssmDouble>(drainage_int);
1076 xDelete<int>(basalnodeindices);
1077 }
1078}/*}}}*/
1079void EnthalpyAnalysis::DrainageUpdateEnthalpy(FemModel* femmodel){/*{{{*/
1080
1081 int i,k,numnodes;
1082 IssmDouble dt;
1083 Element* element= NULL;
1084 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
1085
1086 for(i=0;i<femmodel->elements->Size();i++){
1087 element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1088 numnodes=element->GetNumberOfNodes();
1089 IssmDouble* enthalpies= xNew<IssmDouble>(numnodes);
1090 IssmDouble* pressures= xNew<IssmDouble>(numnodes);
1091 IssmDouble* temperatures= xNew<IssmDouble>(numnodes);
1092 IssmDouble* waterfractions= xNew<IssmDouble>(numnodes);
1093 IssmDouble* drainage= xNew<IssmDouble>(numnodes);
1094
1095 element->GetInputListOnNodes(pressures,PressureEnum);
1096 element->GetInputListOnNodes(temperatures,TemperatureEnum);
1097 element->GetInputListOnNodes(waterfractions,WaterfractionEnum);
1098 element->GetInputListOnNodes(drainage,WaterfractionDrainageEnum);
1099
1100 for(k=0;k<numnodes;k++){
1101 waterfractions[k]-=dt*drainage[k];
1102 element->ThermalToEnthalpy(&enthalpies[k], temperatures[k], waterfractions[k], pressures[k]);
1103 }
1104 element->AddInput(WaterfractionEnum,waterfractions,element->GetElementType());
1105 element->AddInput(EnthalpyEnum,enthalpies,element->GetElementType());
1106
1107 xDelete<IssmDouble>(enthalpies);
1108 xDelete<IssmDouble>(pressures);
1109 xDelete<IssmDouble>(temperatures);
1110 xDelete<IssmDouble>(waterfractions);
1111 xDelete<IssmDouble>(drainage);
1112 }
1113}/*}}}*/
1114IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameter(Element* element,IssmDouble enthalpy,IssmDouble pressure){/*{{{*/
1115
1116 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
1117 IssmDouble temperateiceconductivity = element->GetMaterialParameter(MaterialsTemperateiceconductivityEnum);
1118 IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
1119
1120 if(enthalpy < PureIceEnthalpy(element,pressure)){
1121 return thermalconductivity/heatcapacity;
1122 }
1123 else{
1124 return temperateiceconductivity/heatcapacity;
1125 }
1126}/*}}}*/
1127IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameterVolume(Element* element,int enthalpy_enum){/*{{{*/
1128
1129 int iv;
1130 IssmDouble lambda; /* fraction of cold ice */
1131 IssmDouble kappa,kappa_c,kappa_t; /* enthalpy conductivities */
1132 IssmDouble Hc,Ht;
1133
1134 /*Get pressures and enthalpies on vertices*/
1135 int numvertices = element->GetNumberOfVertices();
1136 IssmDouble* pressures = xNew<IssmDouble>(numvertices);
1137 IssmDouble* enthalpies = xNew<IssmDouble>(numvertices);
1138 IssmDouble* PIE = xNew<IssmDouble>(numvertices);
1139 IssmDouble* dHpmp = xNew<IssmDouble>(numvertices);
1140 element->GetInputListOnVertices(pressures,PressureEnum);
1141 element->GetInputListOnVertices(enthalpies,enthalpy_enum);
1142 for(iv=0;iv<numvertices;iv++){
1143 PIE[iv] = PureIceEnthalpy(element,pressures[iv]);
1144 dHpmp[iv] = enthalpies[iv]-PIE[iv];
1145 }
1146
1147 bool allequalsign = true;
1148 if(dHpmp[0]<0.){
1149 for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]<0.));
1150 }
1151 else{
1152 for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]>=0.));
1153 }
1154
1155 if(allequalsign){
1156 kappa = EnthalpyDiffusionParameter(element,enthalpies[0],pressures[0]);
1157 }
1158 else{
1159 /* return harmonic mean of thermal conductivities, weighted by fraction of cold/temperate ice,
1160 cf Patankar 1980, pp44 */
1161 kappa_c = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)-1.,0.);
1162 kappa_t = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)+1.,0.);
1163 Hc=0.; Ht=0.;
1164 for(iv=0; iv<numvertices;iv++){
1165 if(enthalpies[iv]<PIE[iv])
1166 Hc+=(PIE[iv]-enthalpies[iv]);
1167 else
1168 Ht+=(enthalpies[iv]-PIE[iv]);
1169 }
1170 _assert_((Hc+Ht)>0.);
1171 lambda = Hc/(Hc+Ht);
1172 kappa = kappa_c*kappa_t/(lambda*kappa_t+(1.-lambda)*kappa_c); // ==(lambda/kappa_c + (1.-lambda)/kappa_t)^-1
1173 }
1174
1175 /*Clean up and return*/
1176 xDelete<IssmDouble>(PIE);
1177 xDelete<IssmDouble>(dHpmp);
1178 xDelete<IssmDouble>(pressures);
1179 xDelete<IssmDouble>(enthalpies);
1180 return kappa;
1181}/*}}}*/
1182void EnthalpyAnalysis::GetBAdvec(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
1183 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
1184 * For node i, Bi' can be expressed in the actual coordinate system
1185 * by:
1186 * Bi_advec =[ h ]
1187 * [ h ]
1188 * [ h ]
1189 * where h is the interpolation function for node i.
1190 *
1191 * We assume B has been allocated already, of size: 3x(NDOF1*NUMNODESP1)
1192 */
1193
1194 /*Fetch number of nodes for this finite element*/
1195 int numnodes = element->GetNumberOfNodes();
1196
1197 /*Get nodal functions*/
1198 IssmDouble* basis=xNew<IssmDouble>(numnodes);
1199 element->NodalFunctions(basis,gauss);
1200
1201 /*Build B: */
1202 for(int i=0;i<numnodes;i++){
1203 B[numnodes*0+i] = basis[i];
1204 B[numnodes*1+i] = basis[i];
1205 B[numnodes*2+i] = basis[i];
1206 }
1207
1208 /*Clean-up*/
1209 xDelete<IssmDouble>(basis);
1210}/*}}}*/
1211void EnthalpyAnalysis::GetBAdvecprime(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
1212 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
1213 * For node i, Bi' can be expressed in the actual coordinate system
1214 * by:
1215 * Biprime_advec=[ dh/dx ]
1216 * [ dh/dy ]
1217 * [ dh/dz ]
1218 * where h is the interpolation function for node i.
1219 *
1220 * We assume B has been allocated already, of size: 3x(NDOF1*numnodes)
1221 */
1222
1223 /*Fetch number of nodes for this finite element*/
1224 int numnodes = element->GetNumberOfNodes();
1225
1226 /*Get nodal functions derivatives*/
1227 IssmDouble* dbasis=xNew<IssmDouble>(3*numnodes);
1228 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
1229
1230 /*Build B: */
1231 for(int i=0;i<numnodes;i++){
1232 B[numnodes*0+i] = dbasis[0*numnodes+i];
1233 B[numnodes*1+i] = dbasis[1*numnodes+i];
1234 B[numnodes*2+i] = dbasis[2*numnodes+i];
1235 }
1236
1237 /*Clean-up*/
1238 xDelete<IssmDouble>(dbasis);
1239}/*}}}*/
1240void EnthalpyAnalysis::GetBasalConstraints(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
1241
1242 /*Intermediary*/
1243 bool isdynamicbasalspc;
1244 IssmDouble dt;
1245
1246 /*Check wether dynamic basal boundary conditions are activated */
1247 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
1248 if(!isdynamicbasalspc) return;
1249
1250 element->FindParam(&dt,TimesteppingTimeStepEnum);
1251 if(dt==0.){
1252 GetBasalConstraintsSteadystate(vec_spc,element);
1253 }
1254 else{
1255 GetBasalConstraintsTransient(vec_spc,element);
1256 }
1257}/*}}}*/
1258void EnthalpyAnalysis::GetBasalConstraintsSteadystate(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
1259
1260 /* Check if ice in element */
1261 if(!element->IsIceInElement()) return;
1262
1263 /* Only update constraints at the base.
1264 * Floating ice is not affected by basal BC decision chart. */
1265 if(!(element->IsOnBase()) || element->IsFloating()) return;
1266
1267 /*Intermediary*/
1268 int numindices, numindicesup, state;
1269 int *indices = NULL, *indicesup = NULL;
1270 IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
1271
1272 /*Get parameters and inputs: */
1273 Input* enthalpy_input = element->GetInput(EnthalpyPicardEnum); _assert_(enthalpy_input);
1274 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
1275 Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
1276 Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
1277
1278 /*Fetch indices of basal & surface nodes for this finite element*/
1279 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
1280 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
1281 penta->SurfaceNodeIndices(&numindicesup,&indicesup,element->GetElementType()); _assert_(numindices==numindicesup);
1282
1283 GaussPenta* gauss=new GaussPenta();
1284 GaussPenta* gaussup=new GaussPenta();
1285 for(int i=0;i<numindices;i++){
1286 gauss->GaussNode(element->GetElementType(),indices[i]);
1287 gaussup->GaussNode(element->GetElementType(),indicesup[i]);
1288
1289 enthalpy_input->GetInputValue(&enthalpy,gauss);
1290 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
1291 pressure_input->GetInputValue(&pressure,gauss);
1292 pressure_input->GetInputValue(&pressureup,gaussup);
1293 watercolumn_input->GetInputValue(&watercolumn,gauss);
1294 meltingrate_input->GetInputValue(&meltingrate,gauss);
1295
1296 state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
1297 switch (state) {
1298 case 0:
1299 // cold, dry base: apply basal surface forcing
1300 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
1301 break;
1302 case 1:
1303 // cold, wet base: keep at pressure melting point
1304 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1305 break;
1306 case 2:
1307 // temperate, thin refreezing base:
1308 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1309 break;
1310 case 3:
1311 // temperate, thin melting base: set spc
1312 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1313 break;
1314 case 4:
1315 // temperate, thick melting base:
1316 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1317 break;
1318 default:
1319 _printf0_(" unknown thermal basal state found!");
1320 }
1321 }
1322
1323 /*Free ressources:*/
1324 xDelete<int>(indices);
1325 xDelete<int>(indicesup);
1326 delete gauss;
1327 delete gaussup;
1328}/*}}}*/
1329void EnthalpyAnalysis::GetBasalConstraintsTransient(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
1330
1331 /* Check if ice in element */
1332 if(!element->IsIceInElement()) return;
1333
1334 /* Only update constraints at the base.
1335 * Floating ice is not affected by basal BC decision chart.*/
1336 if(!(element->IsOnBase()) || element->IsFloating()) return;
1337
1338 /*Intermediary*/
1339 int numindices, numindicesup, state;
1340 int *indices = NULL, *indicesup = NULL;
1341 IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
1342
1343 /*Get parameters and inputs: */
1344 Input* enthalpy_input = element->GetInput(EnthalpyEnum); _assert_(enthalpy_input); //TODO: check EnthalpyPicard?
1345 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
1346 Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
1347 Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
1348
1349 /*Fetch indices of basal & surface nodes for this finite element*/
1350 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
1351 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
1352 penta->SurfaceNodeIndices(&numindicesup,&indicesup,element->GetElementType()); _assert_(numindices==numindicesup);
1353
1354 GaussPenta* gauss=new GaussPenta();
1355 GaussPenta* gaussup=new GaussPenta();
1356
1357 for(int i=0;i<numindices;i++){
1358 gauss->GaussNode(element->GetElementType(),indices[i]);
1359 gaussup->GaussNode(element->GetElementType(),indicesup[i]);
1360
1361 enthalpy_input->GetInputValue(&enthalpy,gauss);
1362 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
1363 pressure_input->GetInputValue(&pressure,gauss);
1364 pressure_input->GetInputValue(&pressureup,gaussup);
1365 watercolumn_input->GetInputValue(&watercolumn,gauss);
1366 meltingrate_input->GetInputValue(&meltingrate,gauss);
1367
1368 state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
1369
1370 switch (state) {
1371 case 0:
1372 // cold, dry base: apply basal surface forcing
1373 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
1374 break;
1375 case 1:
1376 // cold, wet base: keep at pressure melting point
1377 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1378 break;
1379 case 2:
1380 // temperate, thin refreezing base: release spc
1381 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
1382 break;
1383 case 3:
1384 // temperate, thin melting base: set spc
1385 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1386 break;
1387 case 4:
1388 // temperate, thick melting base: set grad H*n=0
1389 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
1390 break;
1391 default:
1392 _printf0_(" unknown thermal basal state found!");
1393 }
1394
1395 }
1396
1397 /*Free ressources:*/
1398 xDelete<int>(indices);
1399 xDelete<int>(indicesup);
1400 delete gauss;
1401 delete gaussup;
1402}/*}}}*/
1403void EnthalpyAnalysis::GetBConduct(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
1404 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
1405 * For node i, Bi' can be expressed in the actual coordinate system
1406 * by:
1407 * Bi_conduct=[ dh/dx ]
1408 * [ dh/dy ]
1409 * [ dh/dz ]
1410 * where h is the interpolation function for node i.
1411 *
1412 * We assume B has been allocated already, of size: 3x(NDOF1*numnodes)
1413 */
1414
1415 /*Fetch number of nodes for this finite element*/
1416 int numnodes = element->GetNumberOfNodes();
1417
1418 /*Get nodal functions derivatives*/
1419 IssmDouble* dbasis=xNew<IssmDouble>(3*numnodes);
1420 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
1421
1422 /*Build B: */
1423 for(int i=0;i<numnodes;i++){
1424 B[numnodes*0+i] = dbasis[0*numnodes+i];
1425 B[numnodes*1+i] = dbasis[1*numnodes+i];
1426 B[numnodes*2+i] = dbasis[2*numnodes+i];
1427 }
1428
1429 /*Clean-up*/
1430 xDelete<IssmDouble>(dbasis);
1431}/*}}}*/
1432void EnthalpyAnalysis::GetSolutionFromInputs(Vector<IssmDouble>* solution,Element* element){/*{{{*/
1433 element->GetSolutionFromInputsOneDof(solution,EnthalpyEnum);
1434}/*}}}*/
1435int EnthalpyAnalysis::GetThermalBasalCondition(Element* element, IssmDouble enthalpy, IssmDouble enthalpyup, IssmDouble pressure, IssmDouble pressureup, IssmDouble watercolumn, IssmDouble meltingrate){/*{{{*/
1436
1437 /* Check if ice in element */
1438 if(!element->IsIceInElement()) return -1;
1439
1440 /* Only update Constraints at the base of grounded ice*/
1441 if(!(element->IsOnBase())) return -1;
1442
1443 /*Intermediary*/
1444 int state=-1;
1445 IssmDouble dt;
1446
1447 /*Get parameters and inputs: */
1448 element->FindParam(&dt,TimesteppingTimeStepEnum);
1449
1450 if(enthalpy<PureIceEnthalpy(element,pressure)){
1451 if(watercolumn<=0.) state=0; // cold, dry base
1452 else state=1; // cold, wet base (refreezing)
1453 }
1454 else{
1455 if(enthalpyup<PureIceEnthalpy(element,pressureup)){
1456 if((dt==0.) && (meltingrate<0.)) state=2; // refreezing temperate base (non-physical, only for steadystate solver)
1457 else state=3; // temperate base, but no temperate layer
1458 }
1459 else state=4; // temperate layer with positive thickness
1460 }
1461
1462 _assert_(state>=0);
1463 return state;
1464}/*}}}*/
1465IssmDouble EnthalpyAnalysis::GetWetIceConductivity(Element* element, IssmDouble enthalpy, IssmDouble pressure){/*{{{*/
1466
1467 IssmDouble temperature, waterfraction;
1468 IssmDouble kappa_w = 0.6; // thermal conductivity of water (in W/m/K)
1469 IssmDouble kappa_i = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
1470 element->EnthalpyToThermal(&temperature, &waterfraction, enthalpy, pressure);
1471
1472 return (1.-waterfraction)*kappa_i + waterfraction*kappa_w;
1473}/*}}}*/
1474void EnthalpyAnalysis::GradientJ(Vector<IssmDouble>* gradient,Element* element,int control_type,int control_index){/*{{{*/
1475 _error_("Not implemented yet");
1476}/*}}}*/
1477void EnthalpyAnalysis::InputUpdateFromSolution(IssmDouble* solution,Element* element){/*{{{*/
1478
1479 bool converged;
1480 int i,rheology_law;
1481 IssmDouble B_average,s_average,T_average=0.,P_average=0.;
1482 IssmDouble n=3.0;
1483 int *doflist = NULL;
1484 IssmDouble *xyz_list = NULL;
1485
1486 /*Fetch number of nodes and dof for this finite element*/
1487 int numnodes = element->GetNumberOfNodes();
1488
1489 /*Fetch dof list and allocate solution vector*/
1490 element->GetDofList(&doflist,NoneApproximationEnum,GsetEnum);
1491 IssmDouble* values = xNew<IssmDouble>(numnodes);
1492 IssmDouble* pressure = xNew<IssmDouble>(numnodes);
1493 IssmDouble* surface = xNew<IssmDouble>(numnodes);
1494 IssmDouble* B = xNew<IssmDouble>(numnodes);
1495 IssmDouble* temperature = xNew<IssmDouble>(numnodes);
1496 IssmDouble* waterfraction = xNew<IssmDouble>(numnodes);
1497
1498 /*Use the dof list to index into the solution vector: */
1499 for(i=0;i<numnodes;i++){
1500 values[i]=solution[doflist[i]];
1501
1502 /*Check solution*/
1503 if(xIsNan<IssmDouble>(values[i])) _error_("NaN found in solution vector");
1504 if(xIsInf<IssmDouble>(values[i])) _error_("Inf found in solution vector");
1505 }
1506
1507 /*Get all inputs and parameters*/
1508 if(element->material->ObjectEnum()!=MatestarEnum) n=element->GetMaterialParameter(MaterialsRheologyNEnum);
1509 element->GetInputValue(&converged,ConvergedEnum);
1510 element->GetInputListOnNodes(&pressure[0],PressureEnum);
1511 if(converged){
1512 for(i=0;i<numnodes;i++){
1513 element->EnthalpyToThermal(&temperature[i],&waterfraction[i],values[i],pressure[i]);
1514 if(waterfraction[i]<0.) _error_("Negative water fraction found in solution vector");
1515 //if(waterfraction[i]>1.) _error_("Water fraction >1 found in solution vector");
1516 }
1517 element->AddInput(EnthalpyEnum,values,element->GetElementType());
1518 element->AddInput(WaterfractionEnum,waterfraction,element->GetElementType());
1519 element->AddInput(TemperatureEnum,temperature,element->GetElementType());
1520
1521 /*Update Rheology only if converged (we must make sure that the temperature is below melting point
1522 * otherwise the rheology could be negative*/
1523 element->FindParam(&rheology_law,MaterialsRheologyLawEnum);
1524 element->GetInputListOnNodes(&surface[0],SurfaceEnum);
1525 switch(rheology_law){
1526 case NoneEnum:
1527 /*Do nothing: B is not temperature dependent*/
1528 break;
1529 case BuddJackaEnum:
1530 for(i=0;i<numnodes;i++) B[i]=BuddJacka(temperature[i]);
1531 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1532 break;
1533 case CuffeyEnum:
1534 for(i=0;i<numnodes;i++) B[i]=Cuffey(temperature[i]);
1535 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1536 break;
1537 case CuffeyTemperateEnum:
1538 for(i=0;i<numnodes;i++) B[i]=CuffeyTemperate(temperature[i], waterfraction[i],n);
1539 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1540 break;
1541 case PatersonEnum:
1542 for(i=0;i<numnodes;i++) B[i]=Paterson(temperature[i]);
1543 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1544 break;
1545 case ArrheniusEnum:
1546 element->GetVerticesCoordinates(&xyz_list);
1547 for(i=0;i<numnodes;i++) B[i]=Arrhenius(temperature[i],surface[i]-xyz_list[i*3+2],n);
1548 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1549 break;
1550 case LliboutryDuvalEnum:
1551 for(i=0;i<numnodes;i++) B[i]=LliboutryDuval(values[i],pressure[i],n,element->GetMaterialParameter(MaterialsBetaEnum),element->GetMaterialParameter(ConstantsReferencetemperatureEnum),element->GetMaterialParameter(MaterialsHeatcapacityEnum),element->GetMaterialParameter(MaterialsLatentheatEnum));
1552 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1553 break;
1554 default: _error_("Rheology law " << EnumToStringx(rheology_law) << " not supported yet");
1555 }
1556 }
1557 else{
1558 element->AddInput(EnthalpyPicardEnum,values,element->GetElementType());
1559 }
1560
1561 /*Free ressources:*/
1562 xDelete<IssmDouble>(values);
1563 xDelete<IssmDouble>(pressure);
1564 xDelete<IssmDouble>(surface);
1565 xDelete<IssmDouble>(B);
1566 xDelete<IssmDouble>(temperature);
1567 xDelete<IssmDouble>(waterfraction);
1568 xDelete<IssmDouble>(xyz_list);
1569 xDelete<int>(doflist);
1570}/*}}}*/
1571void EnthalpyAnalysis::PostProcessing(FemModel* femmodel){/*{{{*/
1572
1573 /*Intermediaries*/
1574 bool computebasalmeltingrates=true;
1575 bool drainicecolumn=true;
1576 IssmDouble dt;
1577
1578 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
1579
1580 if(drainicecolumn && (dt>0.)) DrainWaterfraction(femmodel);
1581 if(computebasalmeltingrates) ComputeBasalMeltingrate(femmodel);
1582
1583}/*}}}*/
1584IssmDouble EnthalpyAnalysis::PureIceEnthalpy(Element* element,IssmDouble pressure){/*{{{*/
1585
1586 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
1587 IssmDouble referencetemperature = element->GetMaterialParameter(ConstantsReferencetemperatureEnum);
1588
1589 return heatcapacity*(TMeltingPoint(element,pressure)-referencetemperature);
1590}/*}}}*/
1591IssmDouble EnthalpyAnalysis::TMeltingPoint(Element* element,IssmDouble pressure){/*{{{*/
1592
1593 IssmDouble meltingpoint = element->GetMaterialParameter(MaterialsMeltingpointEnum);
1594 IssmDouble beta = element->GetMaterialParameter(MaterialsBetaEnum);
1595
1596 return meltingpoint-beta*pressure;
1597}/*}}}*/
1598void EnthalpyAnalysis::UpdateBasalConstraints(FemModel* femmodel){/*{{{*/
1599
1600 /*Update basal dirichlet BCs for enthalpy: */
1601 Vector<IssmDouble>* spc = NULL;
1602 IssmDouble* serial_spc = NULL;
1603
1604 spc=new Vector<IssmDouble>(femmodel->nodes->NumberOfNodes(EnthalpyAnalysisEnum));
1605 /*First create a vector to figure out what elements should be constrained*/
1606 for(int i=0;i<femmodel->elements->Size();i++){
1607 Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1608 GetBasalConstraints(spc,element);
1609 }
1610
1611 /*Assemble and serialize*/
1612 spc->Assemble();
1613 serial_spc=spc->ToMPISerial();
1614 delete spc;
1615
1616 /*Then update basal constraints nodes accordingly*/
1617 for(int i=0;i<femmodel->elements->Size();i++){
1618 Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1619 ApplyBasalConstraints(serial_spc,element);
1620 }
1621
1622 femmodel->UpdateConstraintsx();
1623
1624 /*Delete*/
1625 xDelete<IssmDouble>(serial_spc);
1626}/*}}}*/
1627void EnthalpyAnalysis::UpdateConstraints(FemModel* femmodel){/*{{{*/
1628 SetActiveNodesLSMx(femmodel);
1629}/*}}}*/
Note: See TracBrowser for help on using the repository browser.