source: issm/trunk-jpl/src/c/analyses/EnthalpyAnalysis.cpp@ 21740

Last change on this file since 21740 was 21740, checked in by sjohnsen, 8 years ago

NEW: adding a friction effective pressure flag

File size: 63.4 KB
Line 
1#include "./EnthalpyAnalysis.h"
2#include "../toolkits/toolkits.h"
3#include "../classes/classes.h"
4#include "../shared/shared.h"
5#include "../modules/modules.h"
6#include "../solutionsequences/solutionsequences.h"
7#include "../cores/cores.h"
8
9/*Model processing*/
10void EnthalpyAnalysis::CreateConstraints(Constraints* constraints,IoModel* iomodel){/*{{{*/
11
12 /*Intermediary*/
13 int count;
14 int M,N;
15 bool spcpresent = false;
16 int finiteelement;
17 IssmDouble heatcapacity;
18 IssmDouble referencetemperature;
19
20 /*Output*/
21 IssmDouble *spcvector = NULL;
22 IssmDouble* times=NULL;
23 IssmDouble* values=NULL;
24
25 /*Fetch parameters: */
26 iomodel->FindConstant(&heatcapacity,"md.materials.heatcapacity");
27 iomodel->FindConstant(&referencetemperature,"md.constants.referencetemperature");
28 iomodel->FindConstant(&finiteelement,"md.thermal.fe");
29
30 /*return if 2d mesh*/
31 if(iomodel->domaintype==Domain2DhorizontalEnum) return;
32
33 /*Fetch data: */
34 iomodel->FetchData(&spcvector,&M,&N,"md.thermal.spctemperature");
35
36 /*Convert spcs from temperatures to enthalpy*/
37 _assert_(N>0); _assert_(M>=iomodel->numberofvertices);
38 for(int i=0;i<iomodel->numberofvertices;i++){
39 for(int j=0;j<N;j++){
40 spcvector[i*N+j] = heatcapacity*(spcvector[i*N+j]-referencetemperature);
41 }
42 }
43
44 /*Specific case for PDD, we want the constaints to be updated by the PDD scheme itself*/
45 bool isdynamic = false;
46 if (iomodel->solution_enum==TransientSolutionEnum){
47 int smb_model;
48 iomodel->FindConstant(&smb_model,"md.smb.model");
49 if(smb_model==SMBpddEnum) isdynamic=true;
50 if(smb_model==SMBd18opddEnum) isdynamic=true;
51 }
52
53 if(isdynamic){
54 IoModelToDynamicConstraintsx(constraints,iomodel,spcvector,M,N,EnthalpyAnalysisEnum,finiteelement);
55 }
56 else{
57 IoModelToConstraintsx(constraints,iomodel,spcvector,M,N,EnthalpyAnalysisEnum,finiteelement);
58 }
59
60 /*Free ressources:*/
61 iomodel->DeleteData(spcvector,"md.thermal.spctemperature");
62 xDelete<IssmDouble>(times);
63 xDelete<IssmDouble>(values);
64}/*}}}*/
65void EnthalpyAnalysis::CreateLoads(Loads* loads, IoModel* iomodel){/*{{{*/
66
67 /*No loads */
68}/*}}}*/
69void EnthalpyAnalysis::CreateNodes(Nodes* nodes,IoModel* iomodel){/*{{{*/
70
71 int finiteelement;
72 iomodel->FindConstant(&finiteelement,"md.thermal.fe");
73
74 if(iomodel->domaintype==Domain3DEnum) iomodel->FetchData(2,"md.mesh.vertexonbase","md.mesh.vertexonsurface");
75 ::CreateNodes(nodes,iomodel,EnthalpyAnalysisEnum,finiteelement);
76 iomodel->DeleteData(2,"md.mesh.vertexonbase","md.mesh.vertexonsurface");
77}/*}}}*/
78int EnthalpyAnalysis::DofsPerNode(int** doflist,int domaintype,int approximation){/*{{{*/
79 return 1;
80}/*}}}*/
81void EnthalpyAnalysis::UpdateElements(Elements* elements,IoModel* iomodel,int analysis_counter,int analysis_type){/*{{{*/
82
83 bool dakota_analysis,ismovingfront,isenthalpy;
84 int frictionlaw,basalforcing_model,materialstype;
85 int FrictionCoupling;
86
87 /*Now, is the model 3d? otherwise, do nothing: */
88 if(iomodel->domaintype==Domain2DhorizontalEnum)return;
89
90 /*Is enthalpy requested?*/
91 iomodel->FindConstant(&isenthalpy,"md.thermal.isenthalpy");
92 if(!isenthalpy) return;
93
94 /*Fetch data needed: */
95 iomodel->FetchData(3,"md.initialization.temperature","md.initialization.waterfraction","md.initialization.pressure");
96
97 /*Finite element type*/
98 int finiteelement;
99 iomodel->FindConstant(&finiteelement,"md.thermal.fe");
100
101 /*Update elements: */
102 int counter=0;
103 for(int i=0;i<iomodel->numberofelements;i++){
104 if(iomodel->my_elements[i]){
105 Element* element=(Element*)elements->GetObjectByOffset(counter);
106 element->Update(i,iomodel,analysis_counter,analysis_type,finiteelement);
107 counter++;
108 }
109 }
110
111 iomodel->FindConstant(&dakota_analysis,"md.qmu.isdakota");
112 iomodel->FindConstant(&ismovingfront,"md.transient.ismovingfront");
113 iomodel->FindConstant(&frictionlaw,"md.friction.law");
114 iomodel->FindConstant(&materialstype,"md.materials.type");
115
116 iomodel->FetchDataToInput(elements,"md.geometry.thickness",ThicknessEnum);
117 iomodel->FetchDataToInput(elements,"md.geometry.surface",SurfaceEnum);
118 iomodel->FetchDataToInput(elements,"md.slr.sealevel",SealevelEnum,0);
119 iomodel->FetchDataToInput(elements,"md.geometry.base",BaseEnum);
120 iomodel->FetchDataToInput(elements,"md.mask.ice_levelset",MaskIceLevelsetEnum);
121 iomodel->FetchDataToInput(elements,"md.mask.groundedice_levelset",MaskGroundediceLevelsetEnum);
122 if(iomodel->domaintype!=Domain2DhorizontalEnum){
123 iomodel->FetchDataToInput(elements,"md.mesh.vertexonbase",MeshVertexonbaseEnum);
124 iomodel->FetchDataToInput(elements,"md.mesh.vertexonsurface",MeshVertexonsurfaceEnum);
125 }
126 iomodel->FetchDataToInput(elements,"md.initialization.pressure",PressureEnum);
127 iomodel->FetchDataToInput(elements,"md.initialization.temperature",TemperatureEnum);
128 iomodel->FetchDataToInput(elements,"md.initialization.waterfraction",WaterfractionEnum);
129 iomodel->FetchDataToInput(elements,"md.initialization.enthalpy",EnthalpyEnum);
130 iomodel->FetchDataToInput(elements,"md.initialization.watercolumn",WatercolumnEnum);
131 iomodel->FetchDataToInput(elements,"md.basalforcings.groundedice_melting_rate",BasalforcingsGroundediceMeltingRateEnum);
132 iomodel->FetchDataToInput(elements,"md.initialization.vx",VxEnum);
133 iomodel->FetchDataToInput(elements,"md.initialization.vy",VyEnum);
134 iomodel->FetchDataToInput(elements,"md.initialization.vz",VzEnum);
135 InputUpdateFromConstantx(elements,0.,VxMeshEnum);
136 InputUpdateFromConstantx(elements,0.,VyMeshEnum);
137 InputUpdateFromConstantx(elements,0.,VzMeshEnum);
138 if(ismovingfront){
139 iomodel->FetchDataToInput(elements,"md.mesh.vertexonbase",MeshVertexonbaseEnum); // required for updating active nodes
140 }
141
142 /*Basal forcings variables*/
143 iomodel->FindConstant(&basalforcing_model,"md.basalforcings.model");
144 switch(basalforcing_model){
145 case MantlePlumeGeothermalFluxEnum:
146 break;
147 default:
148 iomodel->FetchDataToInput(elements,"md.basalforcings.geothermalflux",BasalforcingsGeothermalfluxEnum);
149 break;
150 }
151
152 /*Rheology type*/
153 iomodel->FetchDataToInput(elements,"md.materials.rheology_B",MaterialsRheologyBEnum);
154 switch(materialstype){
155 case MatenhancediceEnum:
156 iomodel->FetchDataToInput(elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
157 iomodel->FetchDataToInput(elements,"md.materials.rheology_E",MaterialsRheologyEEnum);
158 break;
159 case MatdamageiceEnum:
160 iomodel->FetchDataToInput(elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
161 break;
162 case MatestarEnum:
163 iomodel->FetchDataToInput(elements,"md.materials.rheology_Ec",MaterialsRheologyEcEnum);
164 iomodel->FetchDataToInput(elements,"md.materials.rheology_Es",MaterialsRheologyEsEnum);
165 break;
166 case MaticeEnum:
167 iomodel->FetchDataToInput(elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
168 break;
169 default:
170 _error_("not supported");
171 }
172
173 /*Friction law variables*/
174 switch(frictionlaw){
175 case 1:
176 iomodel->FindConstant(&FrictionCoupling,"md.friction.coupling");
177 iomodel->FetchDataToInput(elements,"md.friction.coefficient",FrictionCoefficientEnum);
178 iomodel->FetchDataToInput(elements,"md.friction.p",FrictionPEnum);
179 iomodel->FetchDataToInput(elements,"md.friction.q",FrictionQEnum);
180 if (FrictionCoupling==1){
181 iomodel->FetchDataToInput(elements,"md.friction.effective_pressure",FrictionEffectivePressureEnum);
182 }
183 break;
184 case 2:
185 iomodel->FetchDataToInput(elements,"md.friction.C",FrictionCEnum);
186 iomodel->FetchDataToInput(elements,"md.friction.m",FrictionMEnum);
187 break;
188 case 3:
189 iomodel->FindConstant(&FrictionCoupling,"md.friction.coupling");
190 iomodel->FetchDataToInput(elements,"md.friction.C",FrictionCEnum);
191 iomodel->FetchDataToInput(elements,"md.friction.As",FrictionAsEnum);
192 iomodel->FetchDataToInput(elements,"md.friction.q",FrictionQEnum);
193 if (FrictionCoupling==1){
194 iomodel->FetchDataToInput(elements,"md.friction.effective_pressure",FrictionEffectivePressureEnum);
195 }
196 break;
197 case 4:
198 iomodel->FetchDataToInput(elements,"md.friction.coefficient",FrictionCoefficientEnum);
199 iomodel->FetchDataToInput(elements,"md.friction.p",FrictionPEnum);
200 iomodel->FetchDataToInput(elements,"md.friction.q",FrictionQEnum);
201 iomodel->FetchDataToInput(elements,"md.initialization.pressure",PressureEnum);
202 iomodel->FetchDataToInput(elements,"md.initialization.temperature",TemperatureEnum);
203 break;
204 case 5:
205 iomodel->FetchDataToInput(elements,"md.friction.coefficient",FrictionCoefficientEnum);
206 iomodel->FetchDataToInput(elements,"md.friction.p",FrictionPEnum);
207 iomodel->FetchDataToInput(elements,"md.friction.q",FrictionQEnum);
208 iomodel->FetchDataToInput(elements,"md.friction.water_layer",FrictionWaterLayerEnum);
209 break;
210 case 6:
211 iomodel->FetchDataToInput(elements,"md.friction.C",FrictionCEnum);
212 iomodel->FetchDataToInput(elements,"md.friction.m",FrictionMEnum);
213 iomodel->FetchDataToInput(elements,"md.initialization.pressure",PressureEnum);
214 iomodel->FetchDataToInput(elements,"md.initialization.temperature",TemperatureEnum);
215 break;
216 case 9:
217 iomodel->FetchDataToInput(elements,"md.friction.coefficient",FrictionCoefficientEnum);
218 iomodel->FetchDataToInput(elements,"md.friction.pressure_adjusted_temperature",FrictionPressureAdjustedTemperatureEnum);
219 InputUpdateFromConstantx(elements,1.,FrictionPEnum);
220 InputUpdateFromConstantx(elements,1.,FrictionQEnum);
221 break;
222 default:
223 _error_("not supported");
224 }
225
226 /*Free data: */
227 iomodel->DeleteData(3,"md.initialization.temperature","md.initialization.waterfraction","md.initialization.pressure");
228
229}/*}}}*/
230void EnthalpyAnalysis::UpdateParameters(Parameters* parameters,IoModel* iomodel,int solution_enum,int analysis_enum){/*{{{*/
231
232 int numoutputs;
233 char** requestedoutputs = NULL;
234
235 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.stabilization",ThermalStabilizationEnum));
236 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.maxiter",ThermalMaxiterEnum));
237 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.reltol",ThermalReltolEnum));
238 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.isenthalpy",ThermalIsenthalpyEnum));
239 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.isdynamicbasalspc",ThermalIsdynamicbasalspcEnum));
240 parameters->AddObject(iomodel->CopyConstantObject("md.friction.law",FrictionLawEnum));
241
242 iomodel->FindConstant(&requestedoutputs,&numoutputs,"md.thermal.requested_outputs");
243 parameters->AddObject(new IntParam(ThermalNumRequestedOutputsEnum,numoutputs));
244 if(numoutputs)parameters->AddObject(new StringArrayParam(ThermalRequestedOutputsEnum,requestedoutputs,numoutputs));
245 iomodel->DeleteData(&requestedoutputs,numoutputs,"md.thermal.requested_outputs");
246
247 /*Deal with friction parameters*/
248 int frictionlaw;
249 iomodel->FindConstant(&frictionlaw,"md.friction.law");
250 if(frictionlaw==4 || frictionlaw==6) parameters->AddObject(iomodel->CopyConstantObject("md.friction.gamma",FrictionGammaEnum));
251 if(frictionlaw==3 || frictionlaw==1) parameters->AddObject(iomodel->CopyConstantObject("md.friction.coupling",FrictionCouplingEnum));
252 if(frictionlaw==9) parameters->AddObject(iomodel->CopyConstantObject("md.friction.gamma",FrictionGammaEnum));
253}/*}}}*/
254
255/*Finite Element Analysis*/
256void EnthalpyAnalysis::ApplyBasalConstraints(IssmDouble* serial_spc,Element* element){/*{{{*/
257
258 /* Do not check if ice in element, this may lead to inconsistencies between cpu partitions */
259 /* Only update constraints at the base. */
260 if(!(element->IsOnBase())) return;
261
262 /*Intermediary*/
263 bool isdynamicbasalspc;
264 int numindices;
265 int *indices = NULL;
266 Node* node = NULL;
267 IssmDouble pressure;
268
269 /*Check wether dynamic basal boundary conditions are activated */
270 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
271 if(!isdynamicbasalspc) return;
272
273 /*Get parameters and inputs: */
274 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
275
276 /*Fetch indices of basal & surface nodes for this finite element*/
277 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
278 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
279
280 GaussPenta* gauss=new GaussPenta();
281 for(int i=0;i<numindices;i++){
282 gauss->GaussNode(element->GetElementType(),indices[i]);
283
284 pressure_input->GetInputValue(&pressure,gauss);
285
286 /*apply or release spc*/
287 node=element->GetNode(indices[i]);
288 if(!node->IsActive()) continue;
289 if(serial_spc[node->Sid()]==1.){
290 pressure_input->GetInputValue(&pressure, gauss);
291 node->ApplyConstraint(0,PureIceEnthalpy(element,pressure));
292 }
293 else {
294 node->DofInFSet(0);
295 }
296 }
297
298 /*Free ressources:*/
299 xDelete<int>(indices);
300 delete gauss;
301}/*}}}*/
302void EnthalpyAnalysis::ComputeBasalMeltingrate(FemModel* femmodel){/*{{{*/
303 /*Compute basal melting rates: */
304 for(int i=0;i<femmodel->elements->Size();i++){
305 Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
306 ComputeBasalMeltingrate(element);
307 }
308}/*}}}*/
309void EnthalpyAnalysis::ComputeBasalMeltingrate(Element* element){/*{{{*/
310 /*Calculate the basal melt rates of the enthalpy model after Aschwanden 2012*/
311 /* melting rate is positive when melting, negative when refreezing*/
312
313 /* Check if ice in element */
314 if(!element->IsIceInElement()) return;
315
316 /* Only compute melt rates at the base of grounded ice*/
317 if(!element->IsOnBase() || element->IsFloating()) return;
318
319 /* Intermediaries */
320 bool converged;
321 const int dim=3;
322 int i,is,state;
323 int nodedown,nodeup,numnodes,numsegments;
324 int enthalpy_enum;
325 IssmDouble vec_heatflux[dim],normal_base[dim],d1enthalpy[dim],d1pressure[dim];
326 IssmDouble basalfriction,alpha2,geothermalflux,heatflux;
327 IssmDouble dt,yts;
328 IssmDouble melting_overshoot,lambda;
329 IssmDouble vx,vy,vz;
330 IssmDouble *xyz_list = NULL;
331 IssmDouble *xyz_list_base = NULL;
332 int *pairindices = NULL;
333
334 /*Fetch parameters*/
335 element->GetVerticesCoordinates(&xyz_list);
336 element->GetVerticesCoordinatesBase(&xyz_list_base);
337 element->GetInputValue(&converged,ConvergedEnum);
338 element->FindParam(&dt,TimesteppingTimeStepEnum);
339 element->FindParam(&yts, ConstantsYtsEnum);
340
341 if(dt==0. && !converged) enthalpy_enum=EnthalpyPicardEnum;
342 else enthalpy_enum=EnthalpyEnum;
343
344 IssmDouble latentheat = element->GetMaterialParameter(MaterialsLatentheatEnum);
345 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
346 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoFreshwaterEnum);
347 IssmDouble beta = element->GetMaterialParameter(MaterialsBetaEnum);
348 IssmDouble kappa = EnthalpyDiffusionParameterVolume(element,enthalpy_enum); _assert_(kappa>=0.);
349 IssmDouble kappa_mix;
350
351 /*retrieve inputs*/
352 Input* enthalpy_input = element->GetInput(enthalpy_enum); _assert_(enthalpy_input);
353 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
354 Input* geothermalflux_input = element->GetInput(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input);
355 Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
356 Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
357 Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
358
359 /*Build friction element, needed later: */
360 Friction* friction=new Friction(element,dim);
361
362 /******** MELTING RATES ************************************//*{{{*/
363 element->NormalBase(&normal_base[0],xyz_list_base);
364 element->VerticalSegmentIndicesBase(&pairindices,&numsegments);
365 IssmDouble* meltingrate_enthalpy = xNew<IssmDouble>(numsegments);
366 IssmDouble* heating = xNew<IssmDouble>(numsegments);
367
368 numnodes=element->GetNumberOfNodes();
369 IssmDouble* enthalpies = xNew<IssmDouble>(numnodes);
370 IssmDouble* pressures = xNew<IssmDouble>(numnodes);
371 IssmDouble* watercolumns = xNew<IssmDouble>(numnodes);
372 IssmDouble* basalmeltingrates = xNew<IssmDouble>(numnodes);
373 element->GetInputListOnNodes(enthalpies,enthalpy_enum);
374 element->GetInputListOnNodes(pressures,PressureEnum);
375 element->GetInputListOnNodes(watercolumns,WatercolumnEnum);
376 element->GetInputListOnNodes(basalmeltingrates,BasalforcingsGroundediceMeltingRateEnum);
377
378 Gauss* gauss=element->NewGauss();
379 for(is=0;is<numsegments;is++){
380 nodedown = pairindices[is*2+0];
381 nodeup = pairindices[is*2+1];
382 gauss->GaussNode(element->GetElementType(),nodedown);
383
384 state=GetThermalBasalCondition(element, enthalpies[nodedown], enthalpies[nodeup], pressures[nodedown], pressures[nodeup], watercolumns[nodedown], basalmeltingrates[nodedown]);
385 switch (state) {
386 case 0:
387 // cold, dry base: apply basal surface forcing
388 for(i=0;i<3;i++) vec_heatflux[i]=0.;
389 break;
390 case 1: case 2: case 3:
391 // case 1 : cold, wet base: keep at pressure melting point
392 // case 2: temperate, thin refreezing base: release spc
393 // case 3: temperate, thin melting base: set spc
394 enthalpy_input->GetInputDerivativeValue(&d1enthalpy[0],xyz_list,gauss);
395 for(i=0;i<3;i++) vec_heatflux[i]=-kappa*d1enthalpy[i];
396 break;
397 case 4:
398 // temperate, thick melting base: set grad H*n=0
399 kappa_mix=GetWetIceConductivity(element, enthalpies[nodedown], pressures[nodedown]);
400 pressure_input->GetInputDerivativeValue(&d1pressure[0],xyz_list,gauss);
401 for(i=0;i<3;i++) vec_heatflux[i]=kappa_mix*beta*d1pressure[i];
402 break;
403 default:
404 _printf0_(" unknown thermal basal state found!");
405 }
406 if(state==0) meltingrate_enthalpy[is]=0.;
407 else{
408 /*heat flux along normal*/
409 heatflux=0.;
410 for(i=0;i<3;i++) heatflux+=(vec_heatflux[i])*normal_base[i];
411
412 /*basal friction*/
413 friction->GetAlpha2(&alpha2,gauss);
414 vx_input->GetInputValue(&vx,gauss); vy_input->GetInputValue(&vy,gauss); vz_input->GetInputValue(&vz,gauss);
415 basalfriction=alpha2*(vx*vx + vy*vy + vz*vz);
416 geothermalflux_input->GetInputValue(&geothermalflux,gauss);
417 /* -Mb= Fb-(q-q_geo)/((1-w)*L*rho), and (1-w)*rho=rho_ice, cf Aschwanden 2012, eqs.1, 2, 66*/
418 heating[is]=(heatflux+basalfriction+geothermalflux);
419 meltingrate_enthalpy[is]=heating[is]/(latentheat*rho_ice); // m/s water equivalent
420 }
421 }/*}}}*/
422
423 /******** UPDATE MELTINGRATES AND WATERCOLUMN **************//*{{{*/
424 for(is=0;is<numsegments;is++){
425 nodedown = pairindices[is*2+0];
426 nodeup = pairindices[is*2+1];
427 if(dt!=0.){
428 if(watercolumns[nodedown]+meltingrate_enthalpy[is]*dt<0.){ // prevent too much freeze on
429 lambda = -watercolumns[nodedown]/(dt*meltingrate_enthalpy[is]); _assert_(lambda>=0.); _assert_(lambda<1.);
430 watercolumns[nodedown]=0.;
431 basalmeltingrates[nodedown]=lambda*meltingrate_enthalpy[is]; // restrict freeze on only to size of watercolumn
432 enthalpies[nodedown]+=(1.-lambda)*dt/yts*meltingrate_enthalpy[is]*latentheat*rho_ice; // use rest of energy to cool down base: dE=L*m, m=(1-lambda)*meltingrate*rho_ice
433 }
434 else{
435 basalmeltingrates[nodedown]=meltingrate_enthalpy[is];
436 watercolumns[nodedown]+=dt*meltingrate_enthalpy[is];
437 }
438 }
439 else{
440 basalmeltingrates[nodedown]=meltingrate_enthalpy[is];
441 if(watercolumns[nodedown]+meltingrate_enthalpy[is]<0.)
442 watercolumns[nodedown]=0.;
443 else
444 watercolumns[nodedown]+=meltingrate_enthalpy[is];
445 }
446 basalmeltingrates[nodedown]*=rho_water/rho_ice; // convert meltingrate from water to ice equivalent
447 _assert_(watercolumns[nodedown]>=0.);
448 }/*}}}*/
449
450 /*feed updated variables back into model*/
451 if(dt!=0.){
452 element->AddInput(enthalpy_enum,enthalpies,element->GetElementType());
453 element->AddInput(WatercolumnEnum,watercolumns,element->GetElementType());
454 }
455 element->AddInput(BasalforcingsGroundediceMeltingRateEnum,basalmeltingrates,element->GetElementType());
456
457 /*Clean up and return*/
458 delete gauss;
459 delete friction;
460 xDelete<int>(pairindices);
461 xDelete<IssmDouble>(enthalpies);
462 xDelete<IssmDouble>(pressures);
463 xDelete<IssmDouble>(watercolumns);
464 xDelete<IssmDouble>(basalmeltingrates);
465 xDelete<IssmDouble>(meltingrate_enthalpy);
466 xDelete<IssmDouble>(heating);
467 xDelete<IssmDouble>(xyz_list);
468 xDelete<IssmDouble>(xyz_list_base);
469}/*}}}*/
470void EnthalpyAnalysis::Core(FemModel* femmodel){/*{{{*/
471
472 IssmDouble dt;
473 bool isdynamicbasalspc;
474
475 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
476 femmodel->parameters->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
477
478 if(VerboseSolution()) _printf0_(" computing enthalpy\n");
479 femmodel->SetCurrentConfiguration(EnthalpyAnalysisEnum);
480 if((dt>0.) && isdynamicbasalspc) UpdateBasalConstraints(femmodel);
481 solutionsequence_thermal_nonlinear(femmodel);
482
483 /*transfer enthalpy to enthalpy picard for the next step: */
484 InputDuplicatex(femmodel,EnthalpyEnum,EnthalpyPicardEnum);
485
486 PostProcessing(femmodel);
487
488}/*}}}*/
489ElementVector* EnthalpyAnalysis::CreateDVector(Element* element){/*{{{*/
490 /*Default, return NULL*/
491 return NULL;
492}/*}}}*/
493ElementMatrix* EnthalpyAnalysis::CreateJacobianMatrix(Element* element){/*{{{*/
494_error_("Not implemented");
495}/*}}}*/
496ElementMatrix* EnthalpyAnalysis::CreateKMatrix(Element* element){/*{{{*/
497
498 /* Check if ice in element */
499 if(!element->IsIceInElement()) return NULL;
500
501 /*compute all stiffness matrices for this element*/
502 ElementMatrix* Ke1=CreateKMatrixVolume(element);
503 ElementMatrix* Ke2=CreateKMatrixShelf(element);
504 ElementMatrix* Ke =new ElementMatrix(Ke1,Ke2);
505
506 /*clean-up and return*/
507 delete Ke1;
508 delete Ke2;
509 return Ke;
510}/*}}}*/
511ElementMatrix* EnthalpyAnalysis::CreateKMatrixVolume(Element* element){/*{{{*/
512
513 /* Check if ice in element */
514 if(!element->IsIceInElement()) return NULL;
515
516 /*Intermediaries */
517 int stabilization;
518 IssmDouble Jdet,dt,u,v,w,um,vm,wm,vel;
519 IssmDouble h,hx,hy,hz,vx,vy,vz;
520 IssmDouble tau_parameter,diameter;
521 IssmDouble D_scalar;
522 IssmDouble* xyz_list = NULL;
523
524 /*Fetch number of nodes and dof for this finite element*/
525 int numnodes = element->GetNumberOfNodes();
526
527 /*Initialize Element vector and other vectors*/
528 ElementMatrix* Ke = element->NewElementMatrix();
529 IssmDouble* basis = xNew<IssmDouble>(numnodes);
530 IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
531 IssmDouble* B = xNew<IssmDouble>(3*numnodes);
532 IssmDouble* Bprime = xNew<IssmDouble>(3*numnodes);
533 IssmDouble D[3][3] = {0.};
534 IssmDouble K[3][3];
535
536 /*Retrieve all inputs and parameters*/
537 element->GetVerticesCoordinates(&xyz_list);
538 element->FindParam(&dt,TimesteppingTimeStepEnum);
539 element->FindParam(&stabilization,ThermalStabilizationEnum);
540 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
541 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
542 IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
543 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
544 IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
545 Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
546 Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
547 Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
548 Input* vxm_input = element->GetInput(VxMeshEnum); _assert_(vxm_input);
549 Input* vym_input = element->GetInput(VyMeshEnum); _assert_(vym_input);
550 Input* vzm_input = element->GetInput(VzMeshEnum); _assert_(vzm_input);
551 if(stabilization==2) diameter=element->MinEdgeLength(xyz_list);
552
553 /*Enthalpy diffusion parameter*/
554 IssmDouble kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
555
556 /* Start looping on the number of gaussian points: */
557 Gauss* gauss=element->NewGauss(4);
558 for(int ig=gauss->begin();ig<gauss->end();ig++){
559 gauss->GaussPoint(ig);
560
561 element->JacobianDeterminant(&Jdet,xyz_list,gauss);
562 D_scalar=gauss->weight*Jdet;
563 if(dt!=0.) D_scalar=D_scalar*dt;
564
565 /*Conduction: */
566 GetBConduct(B,element,xyz_list,gauss);
567 D[0][0]=D_scalar*kappa/rho_ice;
568 D[1][1]=D_scalar*kappa/rho_ice;
569 D[2][2]=D_scalar*kappa/rho_ice;
570 TripleMultiply(B,3,numnodes,1,
571 &D[0][0],3,3,0,
572 B,3,numnodes,0,
573 &Ke->values[0],1);
574
575 /*Advection: */
576 GetBAdvec(B,element,xyz_list,gauss);
577 GetBAdvecprime(Bprime,element,xyz_list,gauss);
578 vx_input->GetInputValue(&u,gauss); vxm_input->GetInputValue(&um,gauss); vx=u-um;
579 vy_input->GetInputValue(&v,gauss); vym_input->GetInputValue(&vm,gauss); vy=v-vm;
580 vz_input->GetInputValue(&w,gauss); vzm_input->GetInputValue(&wm,gauss); vz=w-wm;
581 D[0][0]=D_scalar*vx;
582 D[1][1]=D_scalar*vy;
583 D[2][2]=D_scalar*vz;
584 TripleMultiply(B,3,numnodes,1,
585 &D[0][0],3,3,0,
586 Bprime,3,numnodes,0,
587 &Ke->values[0],1);
588
589 /*Transient: */
590 if(dt!=0.){
591 D_scalar=gauss->weight*Jdet;
592 element->NodalFunctions(basis,gauss);
593 TripleMultiply(basis,numnodes,1,0,
594 &D_scalar,1,1,0,
595 basis,1,numnodes,0,
596 &Ke->values[0],1);
597 D_scalar=D_scalar*dt;
598 }
599
600 /*Artificial diffusivity*/
601 if(stabilization==1){
602 element->ElementSizes(&hx,&hy,&hz);
603 vel=sqrt(vx*vx + vy*vy + vz*vz)+1.e-14;
604 h=sqrt( pow(hx*vx/vel,2) + pow(hy*vy/vel,2) + pow(hz*vz/vel,2));
605 K[0][0]=h/(2.*vel)*fabs(vx*vx); K[0][1]=h/(2.*vel)*fabs(vx*vy); K[0][2]=h/(2.*vel)*fabs(vx*vz);
606 K[1][0]=h/(2.*vel)*fabs(vy*vx); K[1][1]=h/(2.*vel)*fabs(vy*vy); K[1][2]=h/(2.*vel)*fabs(vy*vz);
607 K[2][0]=h/(2.*vel)*fabs(vz*vx); K[2][1]=h/(2.*vel)*fabs(vz*vy); K[2][2]=h/(2.*vel)*fabs(vz*vz);
608 for(int i=0;i<3;i++) for(int j=0;j<3;j++) K[i][j] = D_scalar*K[i][j];
609
610 GetBAdvecprime(Bprime,element,xyz_list,gauss);
611 TripleMultiply(Bprime,3,numnodes,1,
612 &K[0][0],3,3,0,
613 Bprime,3,numnodes,0,
614 &Ke->values[0],1);
615 }
616 else if(stabilization==2){
617 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
618 tau_parameter=element->StabilizationParameter(u-um,v-vm,w-wm,diameter,kappa/rho_ice);
619 for(int i=0;i<numnodes;i++){
620 for(int j=0;j<numnodes;j++){
621 Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*
622 ((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i])*((u-um)*dbasis[0*numnodes+j]+(v-vm)*dbasis[1*numnodes+j]+(w-wm)*dbasis[2*numnodes+j]);
623 }
624 }
625 if(dt!=0.){
626 D_scalar=gauss->weight*Jdet;
627 for(int i=0;i<numnodes;i++){
628 for(int j=0;j<numnodes;j++){
629 Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*basis[j]*((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i]);
630 }
631 }
632 }
633 }
634 }
635
636 /*Clean up and return*/
637 xDelete<IssmDouble>(xyz_list);
638 xDelete<IssmDouble>(basis);
639 xDelete<IssmDouble>(dbasis);
640 xDelete<IssmDouble>(B);
641 xDelete<IssmDouble>(Bprime);
642 delete gauss;
643 return Ke;
644}/*}}}*/
645ElementMatrix* EnthalpyAnalysis::CreateKMatrixShelf(Element* element){/*{{{*/
646
647 /* Check if ice in element */
648 if(!element->IsIceInElement()) return NULL;
649
650 /*Initialize Element matrix and return if necessary*/
651 if(!element->IsOnBase() || !element->IsFloating()) return NULL;
652
653 /*Intermediaries*/
654 IssmDouble dt,Jdet,D;
655 IssmDouble *xyz_list_base = NULL;
656
657 /*Fetch number of nodes for this finite element*/
658 int numnodes = element->GetNumberOfNodes();
659
660 /*Initialize vectors*/
661 ElementMatrix* Ke = element->NewElementMatrix();
662 IssmDouble* basis = xNew<IssmDouble>(numnodes);
663
664 /*Retrieve all inputs and parameters*/
665 element->GetVerticesCoordinatesBase(&xyz_list_base);
666 element->FindParam(&dt,TimesteppingTimeStepEnum);
667 IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
668 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
669 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
670 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
671 IssmDouble mixed_layer_capacity= element->GetMaterialParameter(MaterialsMixedLayerCapacityEnum);
672 IssmDouble thermal_exchange_vel= element->GetMaterialParameter(MaterialsThermalExchangeVelocityEnum);
673
674 /* Start looping on the number of gaussian points: */
675 Gauss* gauss=element->NewGaussBase(4);
676 for(int ig=gauss->begin();ig<gauss->end();ig++){
677 gauss->GaussPoint(ig);
678
679 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
680 element->NodalFunctions(basis,gauss);
681
682 D=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel/(heatcapacity*rho_ice);
683 if(reCast<bool,IssmDouble>(dt)) D=dt*D;
684 TripleMultiply(basis,numnodes,1,0,
685 &D,1,1,0,
686 basis,1,numnodes,0,
687 &Ke->values[0],1);
688
689 }
690
691 /*Clean up and return*/
692 delete gauss;
693 xDelete<IssmDouble>(basis);
694 xDelete<IssmDouble>(xyz_list_base);
695 return Ke;
696}/*}}}*/
697ElementVector* EnthalpyAnalysis::CreatePVector(Element* element){/*{{{*/
698
699 /* Check if ice in element */
700 if(!element->IsIceInElement()) return NULL;
701
702 /*compute all load vectors for this element*/
703 ElementVector* pe1=CreatePVectorVolume(element);
704 ElementVector* pe2=CreatePVectorSheet(element);
705 ElementVector* pe3=CreatePVectorShelf(element);
706 ElementVector* pe =new ElementVector(pe1,pe2,pe3);
707
708 /*clean-up and return*/
709 delete pe1;
710 delete pe2;
711 delete pe3;
712 return pe;
713}/*}}}*/
714ElementVector* EnthalpyAnalysis::CreatePVectorVolume(Element* element){/*{{{*/
715
716 /* Check if ice in element */
717 if(!element->IsIceInElement()) return NULL;
718
719 /*Intermediaries*/
720 int i, stabilization;
721 IssmDouble Jdet,phi,dt;
722 IssmDouble enthalpy, Hpmp;
723 IssmDouble enthalpypicard, d1enthalpypicard[3];
724 IssmDouble pressure, d1pressure[3], d2pressure;
725 IssmDouble waterfractionpicard;
726 IssmDouble kappa,tau_parameter,diameter,kappa_w;
727 IssmDouble u,v,w;
728 IssmDouble scalar_def, scalar_sens ,scalar_transient;
729 IssmDouble* xyz_list = NULL;
730 IssmDouble d1H_d1P, d1P2;
731
732 /*Fetch number of nodes and dof for this finite element*/
733 int numnodes = element->GetNumberOfNodes();
734 int numvertices = element->GetNumberOfVertices();
735
736 /*Initialize Element vector*/
737 ElementVector* pe = element->NewElementVector();
738 IssmDouble* basis = xNew<IssmDouble>(numnodes);
739 IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
740
741 /*Retrieve all inputs and parameters*/
742 element->GetVerticesCoordinates(&xyz_list);
743 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
744 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
745 IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
746 IssmDouble temperateiceconductivity = element->GetMaterialParameter(MaterialsTemperateiceconductivityEnum);
747 IssmDouble beta = element->GetMaterialParameter(MaterialsBetaEnum);
748 IssmDouble latentheat = element->GetMaterialParameter(MaterialsLatentheatEnum);
749 element->FindParam(&dt,TimesteppingTimeStepEnum);
750 element->FindParam(&stabilization,ThermalStabilizationEnum);
751 Input* vx_input=element->GetInput(VxEnum); _assert_(vx_input);
752 Input* vy_input=element->GetInput(VyEnum); _assert_(vy_input);
753 Input* vz_input=element->GetInput(VzEnum); _assert_(vz_input);
754 Input* enthalpypicard_input=element->GetInput(EnthalpyPicardEnum); _assert_(enthalpypicard_input);
755 Input* pressure_input=element->GetInput(PressureEnum); _assert_(pressure_input);
756 Input* enthalpy_input=NULL;
757 if(reCast<bool,IssmDouble>(dt)){enthalpy_input = element->GetInput(EnthalpyEnum); _assert_(enthalpy_input);}
758 if(stabilization==2){
759 diameter=element->MinEdgeLength(xyz_list);
760 kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
761 }
762
763 /* Start looping on the number of gaussian points: */
764 Gauss* gauss=element->NewGauss(4);
765 for(int ig=gauss->begin();ig<gauss->end();ig++){
766 gauss->GaussPoint(ig);
767
768 element->JacobianDeterminant(&Jdet,xyz_list,gauss);
769 element->NodalFunctions(basis,gauss);
770
771 /*viscous dissipation*/
772 element->ViscousHeating(&phi,xyz_list,gauss,vx_input,vy_input,vz_input);
773
774 scalar_def=phi/rho_ice*Jdet*gauss->weight;
775 if(dt!=0.) scalar_def=scalar_def*dt;
776
777 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_def*basis[i];
778
779 /*sensible heat flux in temperate ice*/
780 enthalpypicard_input->GetInputValue(&enthalpypicard,gauss);
781 pressure_input->GetInputValue(&pressure,gauss);
782 Hpmp=this->PureIceEnthalpy(element, pressure);
783
784 if(enthalpypicard>=Hpmp){
785 enthalpypicard_input->GetInputDerivativeValue(&d1enthalpypicard[0],xyz_list,gauss);
786 pressure_input->GetInputDerivativeValue(&d1pressure[0],xyz_list,gauss);
787 d2pressure=0.; // for linear elements, 2nd derivative is zero
788
789 d1H_d1P=0.;
790 for(i=0;i<3;i++) d1H_d1P+=d1enthalpypicard[i]*d1pressure[i];
791 d1P2=0.;
792 for(i=0;i<3;i++) d1P2+=pow(d1pressure[i],2.);
793
794 scalar_sens=-beta*((temperateiceconductivity - thermalconductivity)/latentheat*(d1H_d1P + beta*heatcapacity*d1P2))/rho_ice;
795 if(dt!=0.) scalar_sens=scalar_sens*dt;
796 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_sens*basis[i];
797 }
798
799 /* Build transient now */
800 if(reCast<bool,IssmDouble>(dt)){
801 enthalpy_input->GetInputValue(&enthalpy, gauss);
802 scalar_transient=enthalpy*Jdet*gauss->weight;
803 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_transient*basis[i];
804 }
805
806 if(stabilization==2){
807 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
808
809 vx_input->GetInputValue(&u,gauss);
810 vy_input->GetInputValue(&v,gauss);
811 vz_input->GetInputValue(&w,gauss);
812 tau_parameter=element->StabilizationParameter(u,v,w,diameter,kappa/rho_ice);
813
814 for(i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_def*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]);
815
816 if(dt!=0.){
817 for(i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_transient*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]);
818 }
819 }
820 }
821
822 /*Clean up and return*/
823 xDelete<IssmDouble>(basis);
824 xDelete<IssmDouble>(dbasis);
825 xDelete<IssmDouble>(xyz_list);
826 delete gauss;
827 return pe;
828
829}/*}}}*/
830ElementVector* EnthalpyAnalysis::CreatePVectorSheet(Element* element){/*{{{*/
831
832 /* Check if ice in element */
833 if(!element->IsIceInElement()) return NULL;
834
835 /* implementation of the basal condition decision chart of Aschwanden 2012, Fig.5 */
836 if(!element->IsOnBase() || element->IsFloating()) return NULL;
837
838 bool converged, isdynamicbasalspc;
839 int i, state;
840 int enthalpy_enum;
841 IssmDouble dt,Jdet,scalar;
842 IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
843 IssmDouble vx,vy,vz;
844 IssmDouble alpha2,basalfriction,geothermalflux,heatflux;
845 IssmDouble *xyz_list_base = NULL;
846
847 /*Fetch number of nodes for this finite element*/
848 int numnodes = element->GetNumberOfNodes();
849
850 /*Initialize vectors*/
851 ElementVector* pe = element->NewElementVector();
852 IssmDouble* basis = xNew<IssmDouble>(numnodes);
853
854 /*Retrieve all inputs and parameters*/
855 element->GetVerticesCoordinatesBase(&xyz_list_base);
856 element->FindParam(&dt,TimesteppingTimeStepEnum);
857 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
858 element->GetInputValue(&converged,ConvergedEnum);
859 if(dt==0. && !converged) enthalpy_enum=EnthalpyPicardEnum; // use enthalpy from last iteration
860 else enthalpy_enum=EnthalpyEnum; // use enthalpy from last time step
861 Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
862 Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
863 Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
864 Input* enthalpy_input = element->GetInput(enthalpy_enum); _assert_(enthalpy_input);
865 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
866 Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
867 Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
868 Input* geothermalflux_input = element->GetInput(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input);
869 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
870
871 /*Build friction element, needed later: */
872 Friction* friction=new Friction(element,3);
873
874 /* Start looping on the number of gaussian points: */
875 Gauss* gauss=element->NewGaussBase(4);
876 Gauss* gaussup=element->NewGaussTop(4);
877 for(int ig=gauss->begin();ig<gauss->end();ig++){
878 gauss->GaussPoint(ig);
879 gaussup->GaussPoint(ig);
880
881 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
882 element->NodalFunctions(basis,gauss);
883
884 if(isdynamicbasalspc){
885 enthalpy_input->GetInputValue(&enthalpy,gauss);
886 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
887 pressure_input->GetInputValue(&pressure,gauss);
888 pressure_input->GetInputValue(&pressureup,gaussup);
889 watercolumn_input->GetInputValue(&watercolumn,gauss);
890 meltingrate_input->GetInputValue(&meltingrate,gauss);
891 state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
892 }
893 else
894 state=0;
895
896 switch (state) {
897 case 0: case 1: case 2: case 3:
898 // cold, dry base; cold, wet base; refreezing temperate base; thin temperate base:
899 // Apply basal surface forcing.
900 // Interpolated values of enthalpy on gauss nodes may indicate cold base,
901 // although one node might have become temperate. So keep heat flux switched on.
902 geothermalflux_input->GetInputValue(&geothermalflux,gauss);
903 friction->GetAlpha2(&alpha2,gauss);
904 vx_input->GetInputValue(&vx,gauss);
905 vy_input->GetInputValue(&vy,gauss);
906 vz_input->GetInputValue(&vz,gauss);
907 basalfriction=alpha2*(vx*vx+vy*vy+vz*vz);
908 heatflux=(basalfriction+geothermalflux)/(rho_ice);
909 scalar=gauss->weight*Jdet*heatflux;
910 if(dt!=0.) scalar=dt*scalar;
911 for(i=0;i<numnodes;i++)
912 pe->values[i]+=scalar*basis[i];
913 break;
914 case 4:
915 // temperate, thick melting base: set grad H*n=0
916 for(i=0;i<numnodes;i++)
917 pe->values[i]+=0.;
918 break;
919 default:
920 _printf0_(" unknown thermal basal state found!");
921 }
922 }
923
924 /*Clean up and return*/
925 delete gauss;
926 delete gaussup;
927 delete friction;
928 xDelete<IssmDouble>(basis);
929 xDelete<IssmDouble>(xyz_list_base);
930 return pe;
931
932}/*}}}*/
933ElementVector* EnthalpyAnalysis::CreatePVectorShelf(Element* element){/*{{{*/
934
935 /* Check if ice in element */
936 if(!element->IsIceInElement()) return NULL;
937
938 /*Get basal element*/
939 if(!element->IsOnBase() || !element->IsFloating()) return NULL;
940
941 IssmDouble Hpmp,dt,Jdet,scalar_ocean,pressure;
942 IssmDouble *xyz_list_base = NULL;
943
944 /*Fetch number of nodes for this finite element*/
945 int numnodes = element->GetNumberOfNodes();
946
947 /*Initialize vectors*/
948 ElementVector* pe = element->NewElementVector();
949 IssmDouble* basis = xNew<IssmDouble>(numnodes);
950
951 /*Retrieve all inputs and parameters*/
952 element->GetVerticesCoordinatesBase(&xyz_list_base);
953 element->FindParam(&dt,TimesteppingTimeStepEnum);
954 Input* pressure_input=element->GetInput(PressureEnum); _assert_(pressure_input);
955 IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
956 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
957 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
958 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
959 IssmDouble mixed_layer_capacity= element->GetMaterialParameter(MaterialsMixedLayerCapacityEnum);
960 IssmDouble thermal_exchange_vel= element->GetMaterialParameter(MaterialsThermalExchangeVelocityEnum);
961
962 /* Start looping on the number of gaussian points: */
963 Gauss* gauss=element->NewGaussBase(4);
964 for(int ig=gauss->begin();ig<gauss->end();ig++){
965 gauss->GaussPoint(ig);
966
967 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
968 element->NodalFunctions(basis,gauss);
969
970 pressure_input->GetInputValue(&pressure,gauss);
971 Hpmp=element->PureIceEnthalpy(pressure);
972
973 scalar_ocean=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel*Hpmp/(heatcapacity*rho_ice);
974 if(reCast<bool,IssmDouble>(dt)) scalar_ocean=dt*scalar_ocean;
975
976 for(int i=0;i<numnodes;i++) pe->values[i]+=scalar_ocean*basis[i];
977 }
978
979 /*Clean up and return*/
980 delete gauss;
981 xDelete<IssmDouble>(basis);
982 xDelete<IssmDouble>(xyz_list_base);
983 return pe;
984}/*}}}*/
985void EnthalpyAnalysis::DrainWaterfraction(FemModel* femmodel){/*{{{*/
986 /*Drain excess water fraction in ice column: */
987 ComputeWaterfractionDrainage(femmodel);
988 DrainageUpdateWatercolumn(femmodel);
989 DrainageUpdateEnthalpy(femmodel);
990}/*}}}*/
991void EnthalpyAnalysis::ComputeWaterfractionDrainage(FemModel* femmodel){/*{{{*/
992
993 int i,k,numnodes;
994 IssmDouble dt;
995 Element* element= NULL;
996
997 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
998
999 for(i=0;i<femmodel->elements->Size();i++){
1000 element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1001 numnodes=element->GetNumberOfNodes();
1002 IssmDouble* waterfractions= xNew<IssmDouble>(numnodes);
1003 IssmDouble* drainage= xNew<IssmDouble>(numnodes);
1004
1005 element->GetInputListOnNodes(waterfractions,WaterfractionEnum);
1006 for(k=0; k<numnodes;k++){
1007 drainage[k]=DrainageFunctionWaterfraction(waterfractions[k], dt);
1008 }
1009 element->AddInput(WaterfractionDrainageEnum,drainage,element->GetElementType());
1010
1011 xDelete<IssmDouble>(waterfractions);
1012 xDelete<IssmDouble>(drainage);
1013 }
1014}/*}}}*/
1015void EnthalpyAnalysis::DrainageUpdateWatercolumn(FemModel* femmodel){/*{{{*/
1016
1017 int i,k,numnodes, numbasalnodes;
1018 IssmDouble dt;
1019 int* basalnodeindices=NULL;
1020 Element* element= NULL;
1021
1022 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
1023
1024 /*depth-integrate the drained water fraction */
1025 femmodel->parameters->SetParam(WaterfractionDrainageEnum,InputToDepthaverageInEnum);
1026 femmodel->parameters->SetParam(WaterfractionDrainageIntegratedEnum,InputToDepthaverageOutEnum);
1027 depthaverage_core(femmodel);
1028 femmodel->parameters->SetParam(WaterfractionDrainageIntegratedEnum,InputToExtrudeEnum);
1029 extrudefrombase_core(femmodel);
1030 /*multiply depth-average by ice thickness*/
1031 for(i=0;i<femmodel->elements->Size();i++){
1032 element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1033 numnodes=element->GetNumberOfNodes();
1034 IssmDouble* drainage_int= xNew<IssmDouble>(numnodes);
1035 IssmDouble* thicknesses= xNew<IssmDouble>(numnodes);
1036
1037 element->GetInputListOnNodes(drainage_int,WaterfractionDrainageIntegratedEnum);
1038 element->GetInputListOnNodes(thicknesses,ThicknessEnum);
1039 for(k=0;k<numnodes;k++){
1040 drainage_int[k]*=thicknesses[k];
1041 }
1042 element->AddInput(WaterfractionDrainageIntegratedEnum, drainage_int, element->GetElementType());
1043
1044 xDelete<IssmDouble>(drainage_int);
1045 xDelete<IssmDouble>(thicknesses);
1046 }
1047
1048 /*update water column*/
1049 for(i=0;i<femmodel->elements->Size();i++){
1050 element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1051 /* Check if ice in element */
1052 if(!element->IsIceInElement()) continue;
1053 if(!element->IsOnBase()) continue;
1054
1055 numnodes=element->GetNumberOfNodes();
1056 IssmDouble* watercolumn= xNew<IssmDouble>(numnodes);
1057 IssmDouble* drainage_int= xNew<IssmDouble>(numnodes);
1058 element->GetInputListOnNodes(watercolumn,WatercolumnEnum);
1059 element->GetInputListOnNodes(drainage_int,WaterfractionDrainageIntegratedEnum);
1060
1061 element->BasalNodeIndices(&numbasalnodes,&basalnodeindices,element->GetElementType());
1062 for(k=0;k<numbasalnodes;k++){
1063 watercolumn[basalnodeindices[k]]+=dt*drainage_int[basalnodeindices[k]];
1064 }
1065 element->AddInput(WatercolumnEnum, watercolumn, element->GetElementType());
1066
1067 xDelete<IssmDouble>(watercolumn);
1068 xDelete<IssmDouble>(drainage_int);
1069 }
1070 xDelete<int>(basalnodeindices);
1071}/*}}}*/
1072void EnthalpyAnalysis::DrainageUpdateEnthalpy(FemModel* femmodel){/*{{{*/
1073
1074 int i,k,numnodes;
1075 IssmDouble dt;
1076 Element* element= NULL;
1077 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
1078
1079 for(i=0;i<femmodel->elements->Size();i++){
1080 element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1081 numnodes=element->GetNumberOfNodes();
1082 IssmDouble* enthalpies= xNew<IssmDouble>(numnodes);
1083 IssmDouble* pressures= xNew<IssmDouble>(numnodes);
1084 IssmDouble* temperatures= xNew<IssmDouble>(numnodes);
1085 IssmDouble* waterfractions= xNew<IssmDouble>(numnodes);
1086 IssmDouble* drainage= xNew<IssmDouble>(numnodes);
1087
1088 element->GetInputListOnNodes(pressures,PressureEnum);
1089 element->GetInputListOnNodes(temperatures,TemperatureEnum);
1090 element->GetInputListOnNodes(waterfractions,WaterfractionEnum);
1091 element->GetInputListOnNodes(drainage,WaterfractionDrainageEnum);
1092
1093 for(k=0;k<numnodes;k++){
1094 waterfractions[k]-=dt*drainage[k];
1095 element->ThermalToEnthalpy(&enthalpies[k], temperatures[k], waterfractions[k], pressures[k]);
1096 }
1097 element->AddInput(WaterfractionEnum,waterfractions,element->GetElementType());
1098 element->AddInput(EnthalpyEnum,enthalpies,element->GetElementType());
1099
1100 xDelete<IssmDouble>(enthalpies);
1101 xDelete<IssmDouble>(pressures);
1102 xDelete<IssmDouble>(temperatures);
1103 xDelete<IssmDouble>(waterfractions);
1104 xDelete<IssmDouble>(drainage);
1105 }
1106}/*}}}*/
1107IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameter(Element* element,IssmDouble enthalpy,IssmDouble pressure){/*{{{*/
1108
1109 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
1110 IssmDouble temperateiceconductivity = element->GetMaterialParameter(MaterialsTemperateiceconductivityEnum);
1111 IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
1112
1113 if(enthalpy < PureIceEnthalpy(element,pressure)){
1114 return thermalconductivity/heatcapacity;
1115 }
1116 else{
1117 return temperateiceconductivity/heatcapacity;
1118 }
1119}/*}}}*/
1120IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameterVolume(Element* element,int enthalpy_enum){/*{{{*/
1121
1122 int iv;
1123 IssmDouble lambda; /* fraction of cold ice */
1124 IssmDouble kappa,kappa_c,kappa_t; /* enthalpy conductivities */
1125 IssmDouble Hc,Ht;
1126
1127 /*Get pressures and enthalpies on vertices*/
1128 int numvertices = element->GetNumberOfVertices();
1129 IssmDouble* pressures = xNew<IssmDouble>(numvertices);
1130 IssmDouble* enthalpies = xNew<IssmDouble>(numvertices);
1131 IssmDouble* PIE = xNew<IssmDouble>(numvertices);
1132 IssmDouble* dHpmp = xNew<IssmDouble>(numvertices);
1133 element->GetInputListOnVertices(pressures,PressureEnum);
1134 element->GetInputListOnVertices(enthalpies,enthalpy_enum);
1135 for(iv=0;iv<numvertices;iv++){
1136 PIE[iv] = PureIceEnthalpy(element,pressures[iv]);
1137 dHpmp[iv] = enthalpies[iv]-PIE[iv];
1138 }
1139
1140 bool allequalsign = true;
1141 if(dHpmp[0]<0.){
1142 for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]<0.));
1143 }
1144 else{
1145 for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]>=0.));
1146 }
1147
1148 if(allequalsign){
1149 kappa = EnthalpyDiffusionParameter(element,enthalpies[0],pressures[0]);
1150 }
1151 else{
1152 /* return harmonic mean of thermal conductivities, weighted by fraction of cold/temperate ice,
1153 cf Patankar 1980, pp44 */
1154 kappa_c = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)-1.,0.);
1155 kappa_t = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)+1.,0.);
1156 Hc=0.; Ht=0.;
1157 for(iv=0; iv<numvertices;iv++){
1158 if(enthalpies[iv]<PIE[iv])
1159 Hc+=(PIE[iv]-enthalpies[iv]);
1160 else
1161 Ht+=(enthalpies[iv]-PIE[iv]);
1162 }
1163 _assert_((Hc+Ht)>0.);
1164 lambda = Hc/(Hc+Ht);
1165 kappa = kappa_c*kappa_t/(lambda*kappa_t+(1.-lambda)*kappa_c); // ==(lambda/kappa_c + (1.-lambda)/kappa_t)^-1
1166 }
1167
1168 /*Clean up and return*/
1169 xDelete<IssmDouble>(PIE);
1170 xDelete<IssmDouble>(dHpmp);
1171 xDelete<IssmDouble>(pressures);
1172 xDelete<IssmDouble>(enthalpies);
1173 return kappa;
1174}/*}}}*/
1175void EnthalpyAnalysis::GetBAdvec(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
1176 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
1177 * For node i, Bi' can be expressed in the actual coordinate system
1178 * by:
1179 * Bi_advec =[ h ]
1180 * [ h ]
1181 * [ h ]
1182 * where h is the interpolation function for node i.
1183 *
1184 * We assume B has been allocated already, of size: 3x(NDOF1*NUMNODESP1)
1185 */
1186
1187 /*Fetch number of nodes for this finite element*/
1188 int numnodes = element->GetNumberOfNodes();
1189
1190 /*Get nodal functions*/
1191 IssmDouble* basis=xNew<IssmDouble>(numnodes);
1192 element->NodalFunctions(basis,gauss);
1193
1194 /*Build B: */
1195 for(int i=0;i<numnodes;i++){
1196 B[numnodes*0+i] = basis[i];
1197 B[numnodes*1+i] = basis[i];
1198 B[numnodes*2+i] = basis[i];
1199 }
1200
1201 /*Clean-up*/
1202 xDelete<IssmDouble>(basis);
1203}/*}}}*/
1204void EnthalpyAnalysis::GetBAdvecprime(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
1205 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
1206 * For node i, Bi' can be expressed in the actual coordinate system
1207 * by:
1208 * Biprime_advec=[ dh/dx ]
1209 * [ dh/dy ]
1210 * [ dh/dz ]
1211 * where h is the interpolation function for node i.
1212 *
1213 * We assume B has been allocated already, of size: 3x(NDOF1*numnodes)
1214 */
1215
1216 /*Fetch number of nodes for this finite element*/
1217 int numnodes = element->GetNumberOfNodes();
1218
1219 /*Get nodal functions derivatives*/
1220 IssmDouble* dbasis=xNew<IssmDouble>(3*numnodes);
1221 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
1222
1223 /*Build B: */
1224 for(int i=0;i<numnodes;i++){
1225 B[numnodes*0+i] = dbasis[0*numnodes+i];
1226 B[numnodes*1+i] = dbasis[1*numnodes+i];
1227 B[numnodes*2+i] = dbasis[2*numnodes+i];
1228 }
1229
1230 /*Clean-up*/
1231 xDelete<IssmDouble>(dbasis);
1232}/*}}}*/
1233void EnthalpyAnalysis::GetBasalConstraints(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
1234
1235 /*Intermediary*/
1236 bool isdynamicbasalspc;
1237 IssmDouble dt;
1238
1239 /*Check wether dynamic basal boundary conditions are activated */
1240 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
1241 if(!isdynamicbasalspc) return;
1242
1243 element->FindParam(&dt,TimesteppingTimeStepEnum);
1244 if(dt==0.){
1245 GetBasalConstraintsSteadystate(vec_spc,element);
1246 }
1247 else{
1248 GetBasalConstraintsTransient(vec_spc,element);
1249 }
1250}/*}}}*/
1251void EnthalpyAnalysis::GetBasalConstraintsSteadystate(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
1252
1253 /* Check if ice in element */
1254 if(!element->IsIceInElement()) return;
1255
1256 /* Only update constraints at the base.
1257 * Floating ice is not affected by basal BC decision chart. */
1258 if(!(element->IsOnBase()) || element->IsFloating()) return;
1259
1260 /*Intermediary*/
1261 int numindices, numindicesup, state;
1262 int *indices = NULL, *indicesup = NULL;
1263 IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
1264
1265 /*Get parameters and inputs: */
1266 Input* enthalpy_input = element->GetInput(EnthalpyPicardEnum); _assert_(enthalpy_input);
1267 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
1268 Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
1269 Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
1270
1271 /*Fetch indices of basal & surface nodes for this finite element*/
1272 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
1273 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
1274 penta->SurfaceNodeIndices(&numindicesup,&indicesup,element->GetElementType()); _assert_(numindices==numindicesup);
1275
1276 GaussPenta* gauss=new GaussPenta();
1277 GaussPenta* gaussup=new GaussPenta();
1278 for(int i=0;i<numindices;i++){
1279 gauss->GaussNode(element->GetElementType(),indices[i]);
1280 gaussup->GaussNode(element->GetElementType(),indicesup[i]);
1281
1282 enthalpy_input->GetInputValue(&enthalpy,gauss);
1283 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
1284 pressure_input->GetInputValue(&pressure,gauss);
1285 pressure_input->GetInputValue(&pressureup,gaussup);
1286 watercolumn_input->GetInputValue(&watercolumn,gauss);
1287 meltingrate_input->GetInputValue(&meltingrate,gauss);
1288
1289 state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
1290 switch (state) {
1291 case 0:
1292 // cold, dry base: apply basal surface forcing
1293 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
1294 break;
1295 case 1:
1296 // cold, wet base: keep at pressure melting point
1297 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1298 break;
1299 case 2:
1300 // temperate, thin refreezing base:
1301 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1302 break;
1303 case 3:
1304 // temperate, thin melting base: set spc
1305 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1306 break;
1307 case 4:
1308 // temperate, thick melting base:
1309 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1310 break;
1311 default:
1312 _printf0_(" unknown thermal basal state found!");
1313 }
1314 }
1315
1316 /*Free ressources:*/
1317 xDelete<int>(indices);
1318 xDelete<int>(indicesup);
1319 delete gauss;
1320 delete gaussup;
1321}/*}}}*/
1322void EnthalpyAnalysis::GetBasalConstraintsTransient(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
1323
1324 /* Check if ice in element */
1325 if(!element->IsIceInElement()) return;
1326
1327 /* Only update constraints at the base.
1328 * Floating ice is not affected by basal BC decision chart.*/
1329 if(!(element->IsOnBase()) || element->IsFloating()) return;
1330
1331 /*Intermediary*/
1332 int numindices, numindicesup, state;
1333 int *indices = NULL, *indicesup = NULL;
1334 IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
1335
1336 /*Get parameters and inputs: */
1337 Input* enthalpy_input = element->GetInput(EnthalpyEnum); _assert_(enthalpy_input); //TODO: check EnthalpyPicard?
1338 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
1339 Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
1340 Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
1341
1342 /*Fetch indices of basal & surface nodes for this finite element*/
1343 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
1344 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
1345 penta->SurfaceNodeIndices(&numindicesup,&indicesup,element->GetElementType()); _assert_(numindices==numindicesup);
1346
1347 GaussPenta* gauss=new GaussPenta();
1348 GaussPenta* gaussup=new GaussPenta();
1349
1350 for(int i=0;i<numindices;i++){
1351 gauss->GaussNode(element->GetElementType(),indices[i]);
1352 gaussup->GaussNode(element->GetElementType(),indicesup[i]);
1353
1354 enthalpy_input->GetInputValue(&enthalpy,gauss);
1355 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
1356 pressure_input->GetInputValue(&pressure,gauss);
1357 pressure_input->GetInputValue(&pressureup,gaussup);
1358 watercolumn_input->GetInputValue(&watercolumn,gauss);
1359 meltingrate_input->GetInputValue(&meltingrate,gauss);
1360
1361 state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
1362
1363 switch (state) {
1364 case 0:
1365 // cold, dry base: apply basal surface forcing
1366 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
1367 break;
1368 case 1:
1369 // cold, wet base: keep at pressure melting point
1370 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1371 break;
1372 case 2:
1373 // temperate, thin refreezing base: release spc
1374 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
1375 break;
1376 case 3:
1377 // temperate, thin melting base: set spc
1378 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1379 break;
1380 case 4:
1381 // temperate, thick melting base: set grad H*n=0
1382 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
1383 break;
1384 default:
1385 _printf0_(" unknown thermal basal state found!");
1386 }
1387
1388 }
1389
1390 /*Free ressources:*/
1391 xDelete<int>(indices);
1392 xDelete<int>(indicesup);
1393 delete gauss;
1394 delete gaussup;
1395}/*}}}*/
1396void EnthalpyAnalysis::GetBConduct(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
1397 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
1398 * For node i, Bi' can be expressed in the actual coordinate system
1399 * by:
1400 * Bi_conduct=[ dh/dx ]
1401 * [ dh/dy ]
1402 * [ dh/dz ]
1403 * where h is the interpolation function for node i.
1404 *
1405 * We assume B has been allocated already, of size: 3x(NDOF1*numnodes)
1406 */
1407
1408 /*Fetch number of nodes for this finite element*/
1409 int numnodes = element->GetNumberOfNodes();
1410
1411 /*Get nodal functions derivatives*/
1412 IssmDouble* dbasis=xNew<IssmDouble>(3*numnodes);
1413 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
1414
1415 /*Build B: */
1416 for(int i=0;i<numnodes;i++){
1417 B[numnodes*0+i] = dbasis[0*numnodes+i];
1418 B[numnodes*1+i] = dbasis[1*numnodes+i];
1419 B[numnodes*2+i] = dbasis[2*numnodes+i];
1420 }
1421
1422 /*Clean-up*/
1423 xDelete<IssmDouble>(dbasis);
1424}/*}}}*/
1425void EnthalpyAnalysis::GetSolutionFromInputs(Vector<IssmDouble>* solution,Element* element){/*{{{*/
1426 element->GetSolutionFromInputsOneDof(solution,EnthalpyEnum);
1427}/*}}}*/
1428int EnthalpyAnalysis::GetThermalBasalCondition(Element* element, IssmDouble enthalpy, IssmDouble enthalpyup, IssmDouble pressure, IssmDouble pressureup, IssmDouble watercolumn, IssmDouble meltingrate){/*{{{*/
1429
1430 /* Check if ice in element */
1431 if(!element->IsIceInElement()) return -1;
1432
1433 /* Only update Constraints at the base of grounded ice*/
1434 if(!(element->IsOnBase())) return -1;
1435
1436 /*Intermediary*/
1437 int state=-1;
1438 IssmDouble dt;
1439
1440 /*Get parameters and inputs: */
1441 element->FindParam(&dt,TimesteppingTimeStepEnum);
1442
1443 if(enthalpy<PureIceEnthalpy(element,pressure)){
1444 if(watercolumn<=0.) state=0; // cold, dry base
1445 else state=1; // cold, wet base (refreezing)
1446 }
1447 else{
1448 if(enthalpyup<PureIceEnthalpy(element,pressureup)){
1449 if((dt==0.) && (meltingrate<0.)) state=2; // refreezing temperate base (non-physical, only for steadystate solver)
1450 else state=3; // temperate base, but no temperate layer
1451 }
1452 else state=4; // temperate layer with positive thickness
1453 }
1454
1455 _assert_(state>=0);
1456 return state;
1457}/*}}}*/
1458IssmDouble EnthalpyAnalysis::GetWetIceConductivity(Element* element, IssmDouble enthalpy, IssmDouble pressure){/*{{{*/
1459
1460 IssmDouble temperature, waterfraction;
1461 IssmDouble kappa_w = 0.6; // thermal conductivity of water (in W/m/K)
1462 IssmDouble kappa_i = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
1463 element->EnthalpyToThermal(&temperature, &waterfraction, enthalpy, pressure);
1464
1465 return (1.-waterfraction)*kappa_i + waterfraction*kappa_w;
1466}/*}}}*/
1467void EnthalpyAnalysis::GradientJ(Vector<IssmDouble>* gradient,Element* element,int control_type,int control_index){/*{{{*/
1468 _error_("Not implemented yet");
1469}/*}}}*/
1470void EnthalpyAnalysis::InputUpdateFromSolution(IssmDouble* solution,Element* element){/*{{{*/
1471
1472 bool converged;
1473 int i,rheology_law;
1474 IssmDouble B_average,s_average,T_average=0.,P_average=0.;
1475 IssmDouble n=3.0;
1476 int *doflist = NULL;
1477 IssmDouble *xyz_list = NULL;
1478
1479 /*Fetch number of nodes and dof for this finite element*/
1480 int numnodes = element->GetNumberOfNodes();
1481
1482 /*Fetch dof list and allocate solution vector*/
1483 element->GetDofList(&doflist,NoneApproximationEnum,GsetEnum);
1484 IssmDouble* values = xNew<IssmDouble>(numnodes);
1485 IssmDouble* pressure = xNew<IssmDouble>(numnodes);
1486 IssmDouble* surface = xNew<IssmDouble>(numnodes);
1487 IssmDouble* B = xNew<IssmDouble>(numnodes);
1488 IssmDouble* temperature = xNew<IssmDouble>(numnodes);
1489 IssmDouble* waterfraction = xNew<IssmDouble>(numnodes);
1490
1491 /*Use the dof list to index into the solution vector: */
1492 for(i=0;i<numnodes;i++){
1493 values[i]=solution[doflist[i]];
1494
1495 /*Check solution*/
1496 if(xIsNan<IssmDouble>(values[i])) _error_("NaN found in solution vector");
1497 if(xIsInf<IssmDouble>(values[i])) _error_("Inf found in solution vector");
1498 }
1499
1500 /*Get all inputs and parameters*/
1501 if(element->material->ObjectEnum()!=MatestarEnum) n=element->GetMaterialParameter(MaterialsRheologyNEnum);
1502 element->GetInputValue(&converged,ConvergedEnum);
1503 element->GetInputListOnNodes(&pressure[0],PressureEnum);
1504 if(converged){
1505 for(i=0;i<numnodes;i++){
1506 element->EnthalpyToThermal(&temperature[i],&waterfraction[i],values[i],pressure[i]);
1507 if(waterfraction[i]<0.) _error_("Negative water fraction found in solution vector");
1508 //if(waterfraction[i]>1.) _error_("Water fraction >1 found in solution vector");
1509 }
1510 element->AddInput(EnthalpyEnum,values,element->GetElementType());
1511 element->AddInput(WaterfractionEnum,waterfraction,element->GetElementType());
1512 element->AddInput(TemperatureEnum,temperature,element->GetElementType());
1513
1514 /*Update Rheology only if converged (we must make sure that the temperature is below melting point
1515 * otherwise the rheology could be negative*/
1516 element->FindParam(&rheology_law,MaterialsRheologyLawEnum);
1517 element->GetInputListOnNodes(&surface[0],SurfaceEnum);
1518 switch(rheology_law){
1519 case NoneEnum:
1520 /*Do nothing: B is not temperature dependent*/
1521 break;
1522 case BuddJackaEnum:
1523 for(i=0;i<numnodes;i++) B[i]=BuddJacka(temperature[i]);
1524 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1525 break;
1526 case CuffeyEnum:
1527 for(i=0;i<numnodes;i++) B[i]=Cuffey(temperature[i]);
1528 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1529 break;
1530 case CuffeyTemperateEnum:
1531 for(i=0;i<numnodes;i++) B[i]=CuffeyTemperate(temperature[i], waterfraction[i],n);
1532 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1533 break;
1534 case PatersonEnum:
1535 for(i=0;i<numnodes;i++) B[i]=Paterson(temperature[i]);
1536 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1537 break;
1538 case ArrheniusEnum:
1539 element->GetVerticesCoordinates(&xyz_list);
1540 for(i=0;i<numnodes;i++) B[i]=Arrhenius(temperature[i],surface[i]-xyz_list[i*3+2],n);
1541 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1542 break;
1543 case LliboutryDuvalEnum:
1544 for(i=0;i<numnodes;i++) B[i]=LliboutryDuval(values[i],pressure[i],n,element->GetMaterialParameter(MaterialsBetaEnum),element->GetMaterialParameter(ConstantsReferencetemperatureEnum),element->GetMaterialParameter(MaterialsHeatcapacityEnum),element->GetMaterialParameter(MaterialsLatentheatEnum));
1545 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1546 break;
1547 default: _error_("Rheology law " << EnumToStringx(rheology_law) << " not supported yet");
1548 }
1549 }
1550 else{
1551 element->AddInput(EnthalpyPicardEnum,values,element->GetElementType());
1552 }
1553
1554 /*Free ressources:*/
1555 xDelete<IssmDouble>(values);
1556 xDelete<IssmDouble>(pressure);
1557 xDelete<IssmDouble>(surface);
1558 xDelete<IssmDouble>(B);
1559 xDelete<IssmDouble>(temperature);
1560 xDelete<IssmDouble>(waterfraction);
1561 xDelete<IssmDouble>(xyz_list);
1562 xDelete<int>(doflist);
1563}/*}}}*/
1564void EnthalpyAnalysis::PostProcessing(FemModel* femmodel){/*{{{*/
1565
1566 /*Intermediaries*/
1567 bool computebasalmeltingrates=true;
1568 bool drainicecolumn=true;
1569 IssmDouble dt;
1570
1571 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
1572
1573 if(drainicecolumn && (dt>0.)) DrainWaterfraction(femmodel);
1574 if(computebasalmeltingrates) ComputeBasalMeltingrate(femmodel);
1575
1576}/*}}}*/
1577IssmDouble EnthalpyAnalysis::PureIceEnthalpy(Element* element,IssmDouble pressure){/*{{{*/
1578
1579 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
1580 IssmDouble referencetemperature = element->GetMaterialParameter(ConstantsReferencetemperatureEnum);
1581
1582 return heatcapacity*(TMeltingPoint(element,pressure)-referencetemperature);
1583}/*}}}*/
1584IssmDouble EnthalpyAnalysis::TMeltingPoint(Element* element,IssmDouble pressure){/*{{{*/
1585
1586 IssmDouble meltingpoint = element->GetMaterialParameter(MaterialsMeltingpointEnum);
1587 IssmDouble beta = element->GetMaterialParameter(MaterialsBetaEnum);
1588
1589 return meltingpoint-beta*pressure;
1590}/*}}}*/
1591void EnthalpyAnalysis::UpdateBasalConstraints(FemModel* femmodel){/*{{{*/
1592
1593 /*Update basal dirichlet BCs for enthalpy: */
1594 Vector<IssmDouble>* spc = NULL;
1595 IssmDouble* serial_spc = NULL;
1596
1597 spc=new Vector<IssmDouble>(femmodel->nodes->NumberOfNodes(EnthalpyAnalysisEnum));
1598 /*First create a vector to figure out what elements should be constrained*/
1599 for(int i=0;i<femmodel->elements->Size();i++){
1600 Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1601 GetBasalConstraints(spc,element);
1602 }
1603
1604 /*Assemble and serialize*/
1605 spc->Assemble();
1606 serial_spc=spc->ToMPISerial();
1607 delete spc;
1608
1609 /*Then update basal constraints nodes accordingly*/
1610 for(int i=0;i<femmodel->elements->Size();i++){
1611 Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1612 ApplyBasalConstraints(serial_spc,element);
1613 }
1614
1615 femmodel->UpdateConstraintsx();
1616
1617 /*Delete*/
1618 xDelete<IssmDouble>(serial_spc);
1619}/*}}}*/
1620void EnthalpyAnalysis::UpdateConstraints(FemModel* femmodel){/*{{{*/
1621 SetActiveNodesLSMx(femmodel);
1622}/*}}}*/
Note: See TracBrowser for help on using the repository browser.