source: issm/trunk-jpl/src/c/analyses/EnthalpyAnalysis.cpp@ 21721

Last change on this file since 21721 was 21721, checked in by jbondzio, 8 years ago

CHG: more consistent treatment of englacial water content drainage

File size: 63.3 KB
Line 
1#include "./EnthalpyAnalysis.h"
2#include "../toolkits/toolkits.h"
3#include "../classes/classes.h"
4#include "../shared/shared.h"
5#include "../modules/modules.h"
6#include "../solutionsequences/solutionsequences.h"
7#include "../cores/cores.h"
8
9/*Model processing*/
10void EnthalpyAnalysis::CreateConstraints(Constraints* constraints,IoModel* iomodel){/*{{{*/
11
12 /*Intermediary*/
13 int count;
14 int M,N;
15 bool spcpresent = false;
16 int finiteelement;
17 IssmDouble heatcapacity;
18 IssmDouble referencetemperature;
19
20 /*Output*/
21 IssmDouble *spcvector = NULL;
22 IssmDouble* times=NULL;
23 IssmDouble* values=NULL;
24
25 /*Fetch parameters: */
26 iomodel->FindConstant(&heatcapacity,"md.materials.heatcapacity");
27 iomodel->FindConstant(&referencetemperature,"md.constants.referencetemperature");
28 iomodel->FindConstant(&finiteelement,"md.thermal.fe");
29
30 /*return if 2d mesh*/
31 if(iomodel->domaintype==Domain2DhorizontalEnum) return;
32
33 /*Fetch data: */
34 iomodel->FetchData(&spcvector,&M,&N,"md.thermal.spctemperature");
35
36 /*Convert spcs from temperatures to enthalpy*/
37 _assert_(N>0); _assert_(M>=iomodel->numberofvertices);
38 for(int i=0;i<iomodel->numberofvertices;i++){
39 for(int j=0;j<N;j++){
40 spcvector[i*N+j] = heatcapacity*(spcvector[i*N+j]-referencetemperature);
41 }
42 }
43
44 /*Specific case for PDD, we want the constaints to be updated by the PDD scheme itself*/
45 bool isdynamic = false;
46 if (iomodel->solution_enum==TransientSolutionEnum){
47 int smb_model;
48 iomodel->FindConstant(&smb_model,"md.smb.model");
49 if(smb_model==SMBpddEnum) isdynamic=true;
50 if(smb_model==SMBd18opddEnum) isdynamic=true;
51 }
52
53 if(isdynamic){
54 IoModelToDynamicConstraintsx(constraints,iomodel,spcvector,M,N,EnthalpyAnalysisEnum,finiteelement);
55 }
56 else{
57 IoModelToConstraintsx(constraints,iomodel,spcvector,M,N,EnthalpyAnalysisEnum,finiteelement);
58 }
59
60 /*Free ressources:*/
61 iomodel->DeleteData(spcvector,"md.thermal.spctemperature");
62 xDelete<IssmDouble>(times);
63 xDelete<IssmDouble>(values);
64}/*}}}*/
65void EnthalpyAnalysis::CreateLoads(Loads* loads, IoModel* iomodel){/*{{{*/
66
67 /*No loads */
68}/*}}}*/
69void EnthalpyAnalysis::CreateNodes(Nodes* nodes,IoModel* iomodel){/*{{{*/
70
71 int finiteelement;
72 iomodel->FindConstant(&finiteelement,"md.thermal.fe");
73
74 if(iomodel->domaintype==Domain3DEnum) iomodel->FetchData(2,"md.mesh.vertexonbase","md.mesh.vertexonsurface");
75 ::CreateNodes(nodes,iomodel,EnthalpyAnalysisEnum,finiteelement);
76 iomodel->DeleteData(2,"md.mesh.vertexonbase","md.mesh.vertexonsurface");
77}/*}}}*/
78int EnthalpyAnalysis::DofsPerNode(int** doflist,int domaintype,int approximation){/*{{{*/
79 return 1;
80}/*}}}*/
81void EnthalpyAnalysis::UpdateElements(Elements* elements,IoModel* iomodel,int analysis_counter,int analysis_type){/*{{{*/
82
83 bool dakota_analysis,ismovingfront,isenthalpy;
84 int frictionlaw,basalforcing_model,materialstype;
85 int FrictionCoupling;
86
87 /*Now, is the model 3d? otherwise, do nothing: */
88 if(iomodel->domaintype==Domain2DhorizontalEnum)return;
89
90 /*Is enthalpy requested?*/
91 iomodel->FindConstant(&isenthalpy,"md.thermal.isenthalpy");
92 if(!isenthalpy) return;
93
94 /*Fetch data needed: */
95 iomodel->FetchData(3,"md.initialization.temperature","md.initialization.waterfraction","md.initialization.pressure");
96
97 /*Finite element type*/
98 int finiteelement;
99 iomodel->FindConstant(&finiteelement,"md.thermal.fe");
100
101 /*Update elements: */
102 int counter=0;
103 for(int i=0;i<iomodel->numberofelements;i++){
104 if(iomodel->my_elements[i]){
105 Element* element=(Element*)elements->GetObjectByOffset(counter);
106 element->Update(i,iomodel,analysis_counter,analysis_type,finiteelement);
107 counter++;
108 }
109 }
110
111 iomodel->FindConstant(&dakota_analysis,"md.qmu.isdakota");
112 iomodel->FindConstant(&ismovingfront,"md.transient.ismovingfront");
113 iomodel->FindConstant(&frictionlaw,"md.friction.law");
114 iomodel->FindConstant(&materialstype,"md.materials.type");
115
116 iomodel->FetchDataToInput(elements,"md.geometry.thickness",ThicknessEnum);
117 iomodel->FetchDataToInput(elements,"md.geometry.surface",SurfaceEnum);
118 iomodel->FetchDataToInput(elements,"md.slr.sealevel",SealevelEnum,0);
119 iomodel->FetchDataToInput(elements,"md.geometry.base",BaseEnum);
120 iomodel->FetchDataToInput(elements,"md.mask.ice_levelset",MaskIceLevelsetEnum);
121 iomodel->FetchDataToInput(elements,"md.mask.groundedice_levelset",MaskGroundediceLevelsetEnum);
122 if(iomodel->domaintype!=Domain2DhorizontalEnum){
123 iomodel->FetchDataToInput(elements,"md.mesh.vertexonbase",MeshVertexonbaseEnum);
124 iomodel->FetchDataToInput(elements,"md.mesh.vertexonsurface",MeshVertexonsurfaceEnum);
125 }
126 iomodel->FetchDataToInput(elements,"md.initialization.pressure",PressureEnum);
127 iomodel->FetchDataToInput(elements,"md.initialization.temperature",TemperatureEnum);
128 iomodel->FetchDataToInput(elements,"md.initialization.waterfraction",WaterfractionEnum);
129 iomodel->FetchDataToInput(elements,"md.initialization.enthalpy",EnthalpyEnum);
130 iomodel->FetchDataToInput(elements,"md.initialization.watercolumn",WatercolumnEnum);
131 iomodel->FetchDataToInput(elements,"md.basalforcings.groundedice_melting_rate",BasalforcingsGroundediceMeltingRateEnum);
132 iomodel->FetchDataToInput(elements,"md.initialization.vx",VxEnum);
133 iomodel->FetchDataToInput(elements,"md.initialization.vy",VyEnum);
134 iomodel->FetchDataToInput(elements,"md.initialization.vz",VzEnum);
135 InputUpdateFromConstantx(elements,0.,VxMeshEnum);
136 InputUpdateFromConstantx(elements,0.,VyMeshEnum);
137 InputUpdateFromConstantx(elements,0.,VzMeshEnum);
138 if(ismovingfront){
139 iomodel->FetchDataToInput(elements,"md.mesh.vertexonbase",MeshVertexonbaseEnum); // required for updating active nodes
140 }
141
142 /*Basal forcings variables*/
143 iomodel->FindConstant(&basalforcing_model,"md.basalforcings.model");
144 switch(basalforcing_model){
145 case MantlePlumeGeothermalFluxEnum:
146 break;
147 default:
148 iomodel->FetchDataToInput(elements,"md.basalforcings.geothermalflux",BasalforcingsGeothermalfluxEnum);
149 break;
150 }
151
152 /*Rheology type*/
153 iomodel->FetchDataToInput(elements,"md.materials.rheology_B",MaterialsRheologyBEnum);
154 switch(materialstype){
155 case MatenhancediceEnum:
156 iomodel->FetchDataToInput(elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
157 iomodel->FetchDataToInput(elements,"md.materials.rheology_E",MaterialsRheologyEEnum);
158 break;
159 case MatdamageiceEnum:
160 iomodel->FetchDataToInput(elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
161 break;
162 case MatestarEnum:
163 iomodel->FetchDataToInput(elements,"md.materials.rheology_Ec",MaterialsRheologyEcEnum);
164 iomodel->FetchDataToInput(elements,"md.materials.rheology_Es",MaterialsRheologyEsEnum);
165 break;
166 case MaticeEnum:
167 iomodel->FetchDataToInput(elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
168 break;
169 default:
170 _error_("not supported");
171 }
172
173 /*Friction law variables*/
174 switch(frictionlaw){
175 case 1:
176 iomodel->FetchDataToInput(elements,"md.friction.coefficient",FrictionCoefficientEnum);
177 iomodel->FetchDataToInput(elements,"md.friction.p",FrictionPEnum);
178 iomodel->FetchDataToInput(elements,"md.friction.q",FrictionQEnum);
179 break;
180 case 2:
181 iomodel->FetchDataToInput(elements,"md.friction.C",FrictionCEnum);
182 iomodel->FetchDataToInput(elements,"md.friction.m",FrictionMEnum);
183 break;
184 case 3:
185 iomodel->FindConstant(&FrictionCoupling,"md.friction.coupling");
186 iomodel->FetchDataToInput(elements,"md.friction.C",FrictionCEnum);
187 iomodel->FetchDataToInput(elements,"md.friction.As",FrictionAsEnum);
188 iomodel->FetchDataToInput(elements,"md.friction.q",FrictionQEnum);
189 if (FrictionCoupling==0){
190 iomodel->FetchDataToInput(elements,"md.friction.effective_pressure",FrictionEffectivePressureEnum);
191 }
192 break;
193 case 4:
194 iomodel->FetchDataToInput(elements,"md.friction.coefficient",FrictionCoefficientEnum);
195 iomodel->FetchDataToInput(elements,"md.friction.p",FrictionPEnum);
196 iomodel->FetchDataToInput(elements,"md.friction.q",FrictionQEnum);
197 iomodel->FetchDataToInput(elements,"md.initialization.pressure",PressureEnum);
198 iomodel->FetchDataToInput(elements,"md.initialization.temperature",TemperatureEnum);
199 break;
200 case 5:
201 iomodel->FetchDataToInput(elements,"md.friction.coefficient",FrictionCoefficientEnum);
202 iomodel->FetchDataToInput(elements,"md.friction.p",FrictionPEnum);
203 iomodel->FetchDataToInput(elements,"md.friction.q",FrictionQEnum);
204 iomodel->FetchDataToInput(elements,"md.friction.water_layer",FrictionWaterLayerEnum);
205 break;
206 case 6:
207 iomodel->FetchDataToInput(elements,"md.friction.C",FrictionCEnum);
208 iomodel->FetchDataToInput(elements,"md.friction.m",FrictionMEnum);
209 iomodel->FetchDataToInput(elements,"md.initialization.pressure",PressureEnum);
210 iomodel->FetchDataToInput(elements,"md.initialization.temperature",TemperatureEnum);
211 break;
212 case 9:
213 iomodel->FetchDataToInput(elements,"md.friction.coefficient",FrictionCoefficientEnum);
214 iomodel->FetchDataToInput(elements,"md.friction.pressure_adjusted_temperature",FrictionPressureAdjustedTemperatureEnum);
215 InputUpdateFromConstantx(elements,1.,FrictionPEnum);
216 InputUpdateFromConstantx(elements,1.,FrictionQEnum);
217 break;
218 default:
219 _error_("not supported");
220 }
221
222 /*Free data: */
223 iomodel->DeleteData(3,"md.initialization.temperature","md.initialization.waterfraction","md.initialization.pressure");
224
225}/*}}}*/
226void EnthalpyAnalysis::UpdateParameters(Parameters* parameters,IoModel* iomodel,int solution_enum,int analysis_enum){/*{{{*/
227
228 int numoutputs;
229 char** requestedoutputs = NULL;
230
231 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.stabilization",ThermalStabilizationEnum));
232 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.maxiter",ThermalMaxiterEnum));
233 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.reltol",ThermalReltolEnum));
234 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.isenthalpy",ThermalIsenthalpyEnum));
235 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.isdynamicbasalspc",ThermalIsdynamicbasalspcEnum));
236 parameters->AddObject(iomodel->CopyConstantObject("md.friction.law",FrictionLawEnum));
237
238 iomodel->FindConstant(&requestedoutputs,&numoutputs,"md.thermal.requested_outputs");
239 parameters->AddObject(new IntParam(ThermalNumRequestedOutputsEnum,numoutputs));
240 if(numoutputs)parameters->AddObject(new StringArrayParam(ThermalRequestedOutputsEnum,requestedoutputs,numoutputs));
241 iomodel->DeleteData(&requestedoutputs,numoutputs,"md.thermal.requested_outputs");
242
243 /*Deal with friction parameters*/
244 int frictionlaw;
245 iomodel->FindConstant(&frictionlaw,"md.friction.law");
246 if(frictionlaw==4 || frictionlaw==6) parameters->AddObject(iomodel->CopyConstantObject("md.friction.gamma",FrictionGammaEnum));
247 if(frictionlaw==3) parameters->AddObject(iomodel->CopyConstantObject("md.friction.coupling",FrictionCouplingEnum));
248 if(frictionlaw==9) parameters->AddObject(iomodel->CopyConstantObject("md.friction.gamma",FrictionGammaEnum));
249}/*}}}*/
250
251/*Finite Element Analysis*/
252void EnthalpyAnalysis::ApplyBasalConstraints(IssmDouble* serial_spc,Element* element){/*{{{*/
253
254 /* Do not check if ice in element, this may lead to inconsistencies between cpu partitions */
255 /* Only update constraints at the base. */
256 if(!(element->IsOnBase())) return;
257
258 /*Intermediary*/
259 bool isdynamicbasalspc;
260 int numindices;
261 int *indices = NULL;
262 Node* node = NULL;
263 IssmDouble pressure;
264
265 /*Check wether dynamic basal boundary conditions are activated */
266 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
267 if(!isdynamicbasalspc) return;
268
269 /*Get parameters and inputs: */
270 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
271
272 /*Fetch indices of basal & surface nodes for this finite element*/
273 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
274 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
275
276 GaussPenta* gauss=new GaussPenta();
277 for(int i=0;i<numindices;i++){
278 gauss->GaussNode(element->GetElementType(),indices[i]);
279
280 pressure_input->GetInputValue(&pressure,gauss);
281
282 /*apply or release spc*/
283 node=element->GetNode(indices[i]);
284 if(!node->IsActive()) continue;
285 if(serial_spc[node->Sid()]==1.){
286 pressure_input->GetInputValue(&pressure, gauss);
287 node->ApplyConstraint(0,PureIceEnthalpy(element,pressure));
288 }
289 else {
290 node->DofInFSet(0);
291 }
292 }
293
294 /*Free ressources:*/
295 xDelete<int>(indices);
296 delete gauss;
297}/*}}}*/
298void EnthalpyAnalysis::ComputeBasalMeltingrate(FemModel* femmodel){/*{{{*/
299 /*Compute basal melting rates: */
300 for(int i=0;i<femmodel->elements->Size();i++){
301 Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
302 ComputeBasalMeltingrate(element);
303 }
304}/*}}}*/
305void EnthalpyAnalysis::ComputeBasalMeltingrate(Element* element){/*{{{*/
306 /*Calculate the basal melt rates of the enthalpy model after Aschwanden 2012*/
307 /* melting rate is positive when melting, negative when refreezing*/
308
309 /* Check if ice in element */
310 if(!element->IsIceInElement()) return;
311
312 /* Only compute melt rates at the base of grounded ice*/
313 if(!element->IsOnBase() || element->IsFloating()) return;
314
315 /* Intermediaries */
316 bool converged;
317 const int dim=3;
318 int i,is,state;
319 int nodedown,nodeup,numnodes,numsegments;
320 int enthalpy_enum;
321 IssmDouble vec_heatflux[dim],normal_base[dim],d1enthalpy[dim],d1pressure[dim];
322 IssmDouble basalfriction,alpha2,geothermalflux,heatflux;
323 IssmDouble dt,yts;
324 IssmDouble melting_overshoot,lambda;
325 IssmDouble vx,vy,vz;
326 IssmDouble *xyz_list = NULL;
327 IssmDouble *xyz_list_base = NULL;
328 int *pairindices = NULL;
329
330 /*Fetch parameters*/
331 element->GetVerticesCoordinates(&xyz_list);
332 element->GetVerticesCoordinatesBase(&xyz_list_base);
333 element->GetInputValue(&converged,ConvergedEnum);
334 element->FindParam(&dt,TimesteppingTimeStepEnum);
335 element->FindParam(&yts, ConstantsYtsEnum);
336
337 if(dt==0. && !converged) enthalpy_enum=EnthalpyPicardEnum;
338 else enthalpy_enum=EnthalpyEnum;
339
340 IssmDouble latentheat = element->GetMaterialParameter(MaterialsLatentheatEnum);
341 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
342 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoFreshwaterEnum);
343 IssmDouble beta = element->GetMaterialParameter(MaterialsBetaEnum);
344 IssmDouble kappa = EnthalpyDiffusionParameterVolume(element,enthalpy_enum); _assert_(kappa>=0.);
345 IssmDouble kappa_mix;
346
347 /*retrieve inputs*/
348 Input* enthalpy_input = element->GetInput(enthalpy_enum); _assert_(enthalpy_input);
349 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
350 Input* geothermalflux_input = element->GetInput(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input);
351 Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
352 Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
353 Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
354
355 /*Build friction element, needed later: */
356 Friction* friction=new Friction(element,dim);
357
358 /******** MELTING RATES ************************************//*{{{*/
359 element->NormalBase(&normal_base[0],xyz_list_base);
360 element->VerticalSegmentIndicesBase(&pairindices,&numsegments);
361 IssmDouble* meltingrate_enthalpy = xNew<IssmDouble>(numsegments);
362 IssmDouble* heating = xNew<IssmDouble>(numsegments);
363
364 numnodes=element->GetNumberOfNodes();
365 IssmDouble* enthalpies = xNew<IssmDouble>(numnodes);
366 IssmDouble* pressures = xNew<IssmDouble>(numnodes);
367 IssmDouble* watercolumns = xNew<IssmDouble>(numnodes);
368 IssmDouble* basalmeltingrates = xNew<IssmDouble>(numnodes);
369 element->GetInputListOnNodes(enthalpies,enthalpy_enum);
370 element->GetInputListOnNodes(pressures,PressureEnum);
371 element->GetInputListOnNodes(watercolumns,WatercolumnEnum);
372 element->GetInputListOnNodes(basalmeltingrates,BasalforcingsGroundediceMeltingRateEnum);
373
374 Gauss* gauss=element->NewGauss();
375 for(is=0;is<numsegments;is++){
376 nodedown = pairindices[is*2+0];
377 nodeup = pairindices[is*2+1];
378 gauss->GaussNode(element->GetElementType(),nodedown);
379
380 state=GetThermalBasalCondition(element, enthalpies[nodedown], enthalpies[nodeup], pressures[nodedown], pressures[nodeup], watercolumns[nodedown], basalmeltingrates[nodedown]);
381 switch (state) {
382 case 0:
383 // cold, dry base: apply basal surface forcing
384 for(i=0;i<3;i++) vec_heatflux[i]=0.;
385 break;
386 case 1: case 2: case 3:
387 // case 1 : cold, wet base: keep at pressure melting point
388 // case 2: temperate, thin refreezing base: release spc
389 // case 3: temperate, thin melting base: set spc
390 enthalpy_input->GetInputDerivativeValue(&d1enthalpy[0],xyz_list,gauss);
391 for(i=0;i<3;i++) vec_heatflux[i]=-kappa*d1enthalpy[i];
392 break;
393 case 4:
394 // temperate, thick melting base: set grad H*n=0
395 kappa_mix=GetWetIceConductivity(element, enthalpies[nodedown], pressures[nodedown]);
396 pressure_input->GetInputDerivativeValue(&d1pressure[0],xyz_list,gauss);
397 for(i=0;i<3;i++) vec_heatflux[i]=kappa_mix*beta*d1pressure[i];
398 break;
399 default:
400 _printf0_(" unknown thermal basal state found!");
401 }
402 if(state==0) meltingrate_enthalpy[is]=0.;
403 else{
404 /*heat flux along normal*/
405 heatflux=0.;
406 for(i=0;i<3;i++) heatflux+=(vec_heatflux[i])*normal_base[i];
407
408 /*basal friction*/
409 friction->GetAlpha2(&alpha2,gauss);
410 vx_input->GetInputValue(&vx,gauss); vy_input->GetInputValue(&vy,gauss); vz_input->GetInputValue(&vz,gauss);
411 basalfriction=alpha2*(vx*vx + vy*vy + vz*vz);
412 geothermalflux_input->GetInputValue(&geothermalflux,gauss);
413 /* -Mb= Fb-(q-q_geo)/((1-w)*L*rho), and (1-w)*rho=rho_ice, cf Aschwanden 2012, eqs.1, 2, 66*/
414 heating[is]=(heatflux+basalfriction+geothermalflux);
415 meltingrate_enthalpy[is]=heating[is]/(latentheat*rho_ice); // m/s water equivalent
416 }
417 }/*}}}*/
418
419 /******** UPDATE MELTINGRATES AND WATERCOLUMN **************//*{{{*/
420 for(is=0;is<numsegments;is++){
421 nodedown = pairindices[is*2+0];
422 nodeup = pairindices[is*2+1];
423 if(dt!=0.){
424 if(watercolumns[nodedown]+meltingrate_enthalpy[is]*dt<0.){ // prevent too much freeze on
425 lambda = -watercolumns[nodedown]/(dt*meltingrate_enthalpy[is]); _assert_(lambda>=0.); _assert_(lambda<1.);
426 watercolumns[nodedown]=0.;
427 basalmeltingrates[nodedown]=lambda*meltingrate_enthalpy[is]; // restrict freeze on only to size of watercolumn
428 enthalpies[nodedown]+=(1.-lambda)*dt/yts*meltingrate_enthalpy[is]*latentheat*rho_ice; // use rest of energy to cool down base: dE=L*m, m=(1-lambda)*meltingrate*rho_ice
429 }
430 else{
431 basalmeltingrates[nodedown]=meltingrate_enthalpy[is];
432 watercolumns[nodedown]+=dt*meltingrate_enthalpy[is];
433 }
434 }
435 else{
436 basalmeltingrates[nodedown]=meltingrate_enthalpy[is];
437 if(watercolumns[nodedown]+meltingrate_enthalpy[is]<0.)
438 watercolumns[nodedown]=0.;
439 else
440 watercolumns[nodedown]+=meltingrate_enthalpy[is];
441 }
442 basalmeltingrates[nodedown]*=rho_water/rho_ice; // convert meltingrate from water to ice equivalent
443 _assert_(watercolumns[nodedown]>=0.);
444 }/*}}}*/
445
446 /*feed updated variables back into model*/
447 if(dt!=0.){
448 element->AddInput(enthalpy_enum,enthalpies,element->GetElementType());
449 element->AddInput(WatercolumnEnum,watercolumns,element->GetElementType());
450 }
451 element->AddInput(BasalforcingsGroundediceMeltingRateEnum,basalmeltingrates,element->GetElementType());
452
453 /*Clean up and return*/
454 delete gauss;
455 delete friction;
456 xDelete<int>(pairindices);
457 xDelete<IssmDouble>(enthalpies);
458 xDelete<IssmDouble>(pressures);
459 xDelete<IssmDouble>(watercolumns);
460 xDelete<IssmDouble>(basalmeltingrates);
461 xDelete<IssmDouble>(meltingrate_enthalpy);
462 xDelete<IssmDouble>(heating);
463 xDelete<IssmDouble>(xyz_list);
464 xDelete<IssmDouble>(xyz_list_base);
465}/*}}}*/
466void EnthalpyAnalysis::Core(FemModel* femmodel){/*{{{*/
467
468 IssmDouble dt;
469 bool isdynamicbasalspc;
470
471 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
472 femmodel->parameters->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
473
474 if(VerboseSolution()) _printf0_(" computing enthalpy\n");
475 femmodel->SetCurrentConfiguration(EnthalpyAnalysisEnum);
476 if((dt>0.) && isdynamicbasalspc) UpdateBasalConstraints(femmodel);
477 solutionsequence_thermal_nonlinear(femmodel);
478
479 /*transfer enthalpy to enthalpy picard for the next step: */
480 InputDuplicatex(femmodel,EnthalpyEnum,EnthalpyPicardEnum);
481
482 PostProcessing(femmodel);
483
484}/*}}}*/
485ElementVector* EnthalpyAnalysis::CreateDVector(Element* element){/*{{{*/
486 /*Default, return NULL*/
487 return NULL;
488}/*}}}*/
489ElementMatrix* EnthalpyAnalysis::CreateJacobianMatrix(Element* element){/*{{{*/
490_error_("Not implemented");
491}/*}}}*/
492ElementMatrix* EnthalpyAnalysis::CreateKMatrix(Element* element){/*{{{*/
493
494 /* Check if ice in element */
495 if(!element->IsIceInElement()) return NULL;
496
497 /*compute all stiffness matrices for this element*/
498 ElementMatrix* Ke1=CreateKMatrixVolume(element);
499 ElementMatrix* Ke2=CreateKMatrixShelf(element);
500 ElementMatrix* Ke =new ElementMatrix(Ke1,Ke2);
501
502 /*clean-up and return*/
503 delete Ke1;
504 delete Ke2;
505 return Ke;
506}/*}}}*/
507ElementMatrix* EnthalpyAnalysis::CreateKMatrixVolume(Element* element){/*{{{*/
508
509 /* Check if ice in element */
510 if(!element->IsIceInElement()) return NULL;
511
512 /*Intermediaries */
513 int stabilization;
514 IssmDouble Jdet,dt,u,v,w,um,vm,wm,vel;
515 IssmDouble h,hx,hy,hz,vx,vy,vz;
516 IssmDouble tau_parameter,diameter;
517 IssmDouble D_scalar;
518 IssmDouble* xyz_list = NULL;
519
520 /*Fetch number of nodes and dof for this finite element*/
521 int numnodes = element->GetNumberOfNodes();
522
523 /*Initialize Element vector and other vectors*/
524 ElementMatrix* Ke = element->NewElementMatrix();
525 IssmDouble* basis = xNew<IssmDouble>(numnodes);
526 IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
527 IssmDouble* B = xNew<IssmDouble>(3*numnodes);
528 IssmDouble* Bprime = xNew<IssmDouble>(3*numnodes);
529 IssmDouble D[3][3] = {0.};
530 IssmDouble K[3][3];
531
532 /*Retrieve all inputs and parameters*/
533 element->GetVerticesCoordinates(&xyz_list);
534 element->FindParam(&dt,TimesteppingTimeStepEnum);
535 element->FindParam(&stabilization,ThermalStabilizationEnum);
536 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
537 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
538 IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
539 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
540 IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
541 Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
542 Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
543 Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
544 Input* vxm_input = element->GetInput(VxMeshEnum); _assert_(vxm_input);
545 Input* vym_input = element->GetInput(VyMeshEnum); _assert_(vym_input);
546 Input* vzm_input = element->GetInput(VzMeshEnum); _assert_(vzm_input);
547 if(stabilization==2) diameter=element->MinEdgeLength(xyz_list);
548
549 /*Enthalpy diffusion parameter*/
550 IssmDouble kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
551
552 /* Start looping on the number of gaussian points: */
553 Gauss* gauss=element->NewGauss(4);
554 for(int ig=gauss->begin();ig<gauss->end();ig++){
555 gauss->GaussPoint(ig);
556
557 element->JacobianDeterminant(&Jdet,xyz_list,gauss);
558 D_scalar=gauss->weight*Jdet;
559 if(dt!=0.) D_scalar=D_scalar*dt;
560
561 /*Conduction: */
562 GetBConduct(B,element,xyz_list,gauss);
563 D[0][0]=D_scalar*kappa/rho_ice;
564 D[1][1]=D_scalar*kappa/rho_ice;
565 D[2][2]=D_scalar*kappa/rho_ice;
566 TripleMultiply(B,3,numnodes,1,
567 &D[0][0],3,3,0,
568 B,3,numnodes,0,
569 &Ke->values[0],1);
570
571 /*Advection: */
572 GetBAdvec(B,element,xyz_list,gauss);
573 GetBAdvecprime(Bprime,element,xyz_list,gauss);
574 vx_input->GetInputValue(&u,gauss); vxm_input->GetInputValue(&um,gauss); vx=u-um;
575 vy_input->GetInputValue(&v,gauss); vym_input->GetInputValue(&vm,gauss); vy=v-vm;
576 vz_input->GetInputValue(&w,gauss); vzm_input->GetInputValue(&wm,gauss); vz=w-wm;
577 D[0][0]=D_scalar*vx;
578 D[1][1]=D_scalar*vy;
579 D[2][2]=D_scalar*vz;
580 TripleMultiply(B,3,numnodes,1,
581 &D[0][0],3,3,0,
582 Bprime,3,numnodes,0,
583 &Ke->values[0],1);
584
585 /*Transient: */
586 if(dt!=0.){
587 D_scalar=gauss->weight*Jdet;
588 element->NodalFunctions(basis,gauss);
589 TripleMultiply(basis,numnodes,1,0,
590 &D_scalar,1,1,0,
591 basis,1,numnodes,0,
592 &Ke->values[0],1);
593 D_scalar=D_scalar*dt;
594 }
595
596 /*Artificial diffusivity*/
597 if(stabilization==1){
598 element->ElementSizes(&hx,&hy,&hz);
599 vel=sqrt(vx*vx + vy*vy + vz*vz)+1.e-14;
600 h=sqrt( pow(hx*vx/vel,2) + pow(hy*vy/vel,2) + pow(hz*vz/vel,2));
601 K[0][0]=h/(2.*vel)*fabs(vx*vx); K[0][1]=h/(2.*vel)*fabs(vx*vy); K[0][2]=h/(2.*vel)*fabs(vx*vz);
602 K[1][0]=h/(2.*vel)*fabs(vy*vx); K[1][1]=h/(2.*vel)*fabs(vy*vy); K[1][2]=h/(2.*vel)*fabs(vy*vz);
603 K[2][0]=h/(2.*vel)*fabs(vz*vx); K[2][1]=h/(2.*vel)*fabs(vz*vy); K[2][2]=h/(2.*vel)*fabs(vz*vz);
604 for(int i=0;i<3;i++) for(int j=0;j<3;j++) K[i][j] = D_scalar*K[i][j];
605
606 GetBAdvecprime(Bprime,element,xyz_list,gauss);
607 TripleMultiply(Bprime,3,numnodes,1,
608 &K[0][0],3,3,0,
609 Bprime,3,numnodes,0,
610 &Ke->values[0],1);
611 }
612 else if(stabilization==2){
613 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
614 tau_parameter=element->StabilizationParameter(u-um,v-vm,w-wm,diameter,kappa/rho_ice);
615 for(int i=0;i<numnodes;i++){
616 for(int j=0;j<numnodes;j++){
617 Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*
618 ((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i])*((u-um)*dbasis[0*numnodes+j]+(v-vm)*dbasis[1*numnodes+j]+(w-wm)*dbasis[2*numnodes+j]);
619 }
620 }
621 if(dt!=0.){
622 D_scalar=gauss->weight*Jdet;
623 for(int i=0;i<numnodes;i++){
624 for(int j=0;j<numnodes;j++){
625 Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*basis[j]*((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i]);
626 }
627 }
628 }
629 }
630 }
631
632 /*Clean up and return*/
633 xDelete<IssmDouble>(xyz_list);
634 xDelete<IssmDouble>(basis);
635 xDelete<IssmDouble>(dbasis);
636 xDelete<IssmDouble>(B);
637 xDelete<IssmDouble>(Bprime);
638 delete gauss;
639 return Ke;
640}/*}}}*/
641ElementMatrix* EnthalpyAnalysis::CreateKMatrixShelf(Element* element){/*{{{*/
642
643 /* Check if ice in element */
644 if(!element->IsIceInElement()) return NULL;
645
646 /*Initialize Element matrix and return if necessary*/
647 if(!element->IsOnBase() || !element->IsFloating()) return NULL;
648
649 /*Intermediaries*/
650 IssmDouble dt,Jdet,D;
651 IssmDouble *xyz_list_base = NULL;
652
653 /*Fetch number of nodes for this finite element*/
654 int numnodes = element->GetNumberOfNodes();
655
656 /*Initialize vectors*/
657 ElementMatrix* Ke = element->NewElementMatrix();
658 IssmDouble* basis = xNew<IssmDouble>(numnodes);
659
660 /*Retrieve all inputs and parameters*/
661 element->GetVerticesCoordinatesBase(&xyz_list_base);
662 element->FindParam(&dt,TimesteppingTimeStepEnum);
663 IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
664 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
665 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
666 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
667 IssmDouble mixed_layer_capacity= element->GetMaterialParameter(MaterialsMixedLayerCapacityEnum);
668 IssmDouble thermal_exchange_vel= element->GetMaterialParameter(MaterialsThermalExchangeVelocityEnum);
669
670 /* Start looping on the number of gaussian points: */
671 Gauss* gauss=element->NewGaussBase(4);
672 for(int ig=gauss->begin();ig<gauss->end();ig++){
673 gauss->GaussPoint(ig);
674
675 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
676 element->NodalFunctions(basis,gauss);
677
678 D=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel/(heatcapacity*rho_ice);
679 if(reCast<bool,IssmDouble>(dt)) D=dt*D;
680 TripleMultiply(basis,numnodes,1,0,
681 &D,1,1,0,
682 basis,1,numnodes,0,
683 &Ke->values[0],1);
684
685 }
686
687 /*Clean up and return*/
688 delete gauss;
689 xDelete<IssmDouble>(basis);
690 xDelete<IssmDouble>(xyz_list_base);
691 return Ke;
692}/*}}}*/
693ElementVector* EnthalpyAnalysis::CreatePVector(Element* element){/*{{{*/
694
695 /* Check if ice in element */
696 if(!element->IsIceInElement()) return NULL;
697
698 /*compute all load vectors for this element*/
699 ElementVector* pe1=CreatePVectorVolume(element);
700 ElementVector* pe2=CreatePVectorSheet(element);
701 ElementVector* pe3=CreatePVectorShelf(element);
702 ElementVector* pe =new ElementVector(pe1,pe2,pe3);
703
704 /*clean-up and return*/
705 delete pe1;
706 delete pe2;
707 delete pe3;
708 return pe;
709}/*}}}*/
710ElementVector* EnthalpyAnalysis::CreatePVectorVolume(Element* element){/*{{{*/
711
712 /* Check if ice in element */
713 if(!element->IsIceInElement()) return NULL;
714
715 /*Intermediaries*/
716 int i, stabilization;
717 IssmDouble Jdet,phi,dt;
718 IssmDouble enthalpy, Hpmp;
719 IssmDouble enthalpypicard, d1enthalpypicard[3];
720 IssmDouble pressure, d1pressure[3], d2pressure;
721 IssmDouble waterfractionpicard;
722 IssmDouble kappa,tau_parameter,diameter,kappa_w;
723 IssmDouble u,v,w;
724 IssmDouble scalar_def, scalar_sens ,scalar_transient;
725 IssmDouble* xyz_list = NULL;
726 IssmDouble d1H_d1P, d1P2;
727
728 /*Fetch number of nodes and dof for this finite element*/
729 int numnodes = element->GetNumberOfNodes();
730 int numvertices = element->GetNumberOfVertices();
731
732 /*Initialize Element vector*/
733 ElementVector* pe = element->NewElementVector();
734 IssmDouble* basis = xNew<IssmDouble>(numnodes);
735 IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
736
737 /*Retrieve all inputs and parameters*/
738 element->GetVerticesCoordinates(&xyz_list);
739 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
740 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
741 IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
742 IssmDouble temperateiceconductivity = element->GetMaterialParameter(MaterialsTemperateiceconductivityEnum);
743 IssmDouble beta = element->GetMaterialParameter(MaterialsBetaEnum);
744 IssmDouble latentheat = element->GetMaterialParameter(MaterialsLatentheatEnum);
745 element->FindParam(&dt,TimesteppingTimeStepEnum);
746 element->FindParam(&stabilization,ThermalStabilizationEnum);
747 Input* vx_input=element->GetInput(VxEnum); _assert_(vx_input);
748 Input* vy_input=element->GetInput(VyEnum); _assert_(vy_input);
749 Input* vz_input=element->GetInput(VzEnum); _assert_(vz_input);
750 Input* enthalpypicard_input=element->GetInput(EnthalpyPicardEnum); _assert_(enthalpypicard_input);
751 Input* pressure_input=element->GetInput(PressureEnum); _assert_(pressure_input);
752 Input* enthalpy_input=NULL;
753 if(reCast<bool,IssmDouble>(dt)){enthalpy_input = element->GetInput(EnthalpyEnum); _assert_(enthalpy_input);}
754 if(stabilization==2){
755 diameter=element->MinEdgeLength(xyz_list);
756 kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
757 }
758
759 /* Start looping on the number of gaussian points: */
760 Gauss* gauss=element->NewGauss(4);
761 for(int ig=gauss->begin();ig<gauss->end();ig++){
762 gauss->GaussPoint(ig);
763
764 element->JacobianDeterminant(&Jdet,xyz_list,gauss);
765 element->NodalFunctions(basis,gauss);
766
767 /*viscous dissipation*/
768 element->ViscousHeating(&phi,xyz_list,gauss,vx_input,vy_input,vz_input);
769
770 scalar_def=phi/rho_ice*Jdet*gauss->weight;
771 if(dt!=0.) scalar_def=scalar_def*dt;
772
773 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_def*basis[i];
774
775 /*sensible heat flux in temperate ice*/
776 enthalpypicard_input->GetInputValue(&enthalpypicard,gauss);
777 pressure_input->GetInputValue(&pressure,gauss);
778 Hpmp=this->PureIceEnthalpy(element, pressure);
779
780 if(enthalpypicard>=Hpmp){
781 enthalpypicard_input->GetInputDerivativeValue(&d1enthalpypicard[0],xyz_list,gauss);
782 pressure_input->GetInputDerivativeValue(&d1pressure[0],xyz_list,gauss);
783 d2pressure=0.; // for linear elements, 2nd derivative is zero
784
785 d1H_d1P=0.;
786 for(i=0;i<3;i++) d1H_d1P+=d1enthalpypicard[i]*d1pressure[i];
787 d1P2=0.;
788 for(i=0;i<3;i++) d1P2+=pow(d1pressure[i],2.);
789
790 scalar_sens=-beta*((temperateiceconductivity - thermalconductivity)/latentheat*(d1H_d1P + beta*heatcapacity*d1P2))/rho_ice;
791 if(dt!=0.) scalar_sens=scalar_sens*dt;
792 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_sens*basis[i];
793 }
794
795 /* Build transient now */
796 if(reCast<bool,IssmDouble>(dt)){
797 enthalpy_input->GetInputValue(&enthalpy, gauss);
798 scalar_transient=enthalpy*Jdet*gauss->weight;
799 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_transient*basis[i];
800 }
801
802 if(stabilization==2){
803 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
804
805 vx_input->GetInputValue(&u,gauss);
806 vy_input->GetInputValue(&v,gauss);
807 vz_input->GetInputValue(&w,gauss);
808 tau_parameter=element->StabilizationParameter(u,v,w,diameter,kappa/rho_ice);
809
810 for(i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_def*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]);
811
812 if(dt!=0.){
813 for(i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_transient*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]);
814 }
815 }
816 }
817
818 /*Clean up and return*/
819 xDelete<IssmDouble>(basis);
820 xDelete<IssmDouble>(dbasis);
821 xDelete<IssmDouble>(xyz_list);
822 delete gauss;
823 return pe;
824
825}/*}}}*/
826ElementVector* EnthalpyAnalysis::CreatePVectorSheet(Element* element){/*{{{*/
827
828 /* Check if ice in element */
829 if(!element->IsIceInElement()) return NULL;
830
831 /* implementation of the basal condition decision chart of Aschwanden 2012, Fig.5 */
832 if(!element->IsOnBase() || element->IsFloating()) return NULL;
833
834 bool converged, isdynamicbasalspc;
835 int i, state;
836 int enthalpy_enum;
837 IssmDouble dt,Jdet,scalar;
838 IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
839 IssmDouble vx,vy,vz;
840 IssmDouble alpha2,basalfriction,geothermalflux,heatflux;
841 IssmDouble *xyz_list_base = NULL;
842
843 /*Fetch number of nodes for this finite element*/
844 int numnodes = element->GetNumberOfNodes();
845
846 /*Initialize vectors*/
847 ElementVector* pe = element->NewElementVector();
848 IssmDouble* basis = xNew<IssmDouble>(numnodes);
849
850 /*Retrieve all inputs and parameters*/
851 element->GetVerticesCoordinatesBase(&xyz_list_base);
852 element->FindParam(&dt,TimesteppingTimeStepEnum);
853 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
854 element->GetInputValue(&converged,ConvergedEnum);
855 if(dt==0. && !converged) enthalpy_enum=EnthalpyPicardEnum; // use enthalpy from last iteration
856 else enthalpy_enum=EnthalpyEnum; // use enthalpy from last time step
857 Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
858 Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
859 Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
860 Input* enthalpy_input = element->GetInput(enthalpy_enum); _assert_(enthalpy_input);
861 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
862 Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
863 Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
864 Input* geothermalflux_input = element->GetInput(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input);
865 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
866
867 /*Build friction element, needed later: */
868 Friction* friction=new Friction(element,3);
869
870 /* Start looping on the number of gaussian points: */
871 Gauss* gauss=element->NewGaussBase(4);
872 Gauss* gaussup=element->NewGaussTop(4);
873 for(int ig=gauss->begin();ig<gauss->end();ig++){
874 gauss->GaussPoint(ig);
875 gaussup->GaussPoint(ig);
876
877 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
878 element->NodalFunctions(basis,gauss);
879
880 if(isdynamicbasalspc){
881 enthalpy_input->GetInputValue(&enthalpy,gauss);
882 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
883 pressure_input->GetInputValue(&pressure,gauss);
884 pressure_input->GetInputValue(&pressureup,gaussup);
885 watercolumn_input->GetInputValue(&watercolumn,gauss);
886 meltingrate_input->GetInputValue(&meltingrate,gauss);
887 state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
888 }
889 else
890 state=0;
891
892 switch (state) {
893 case 0: case 1: case 2: case 3:
894 // cold, dry base; cold, wet base; refreezing temperate base; thin temperate base:
895 // Apply basal surface forcing.
896 // Interpolated values of enthalpy on gauss nodes may indicate cold base,
897 // although one node might have become temperate. So keep heat flux switched on.
898 geothermalflux_input->GetInputValue(&geothermalflux,gauss);
899 friction->GetAlpha2(&alpha2,gauss);
900 vx_input->GetInputValue(&vx,gauss);
901 vy_input->GetInputValue(&vy,gauss);
902 vz_input->GetInputValue(&vz,gauss);
903 basalfriction=alpha2*(vx*vx+vy*vy+vz*vz);
904 heatflux=(basalfriction+geothermalflux)/(rho_ice);
905 scalar=gauss->weight*Jdet*heatflux;
906 if(dt!=0.) scalar=dt*scalar;
907 for(i=0;i<numnodes;i++)
908 pe->values[i]+=scalar*basis[i];
909 break;
910 case 4:
911 // temperate, thick melting base: set grad H*n=0
912 for(i=0;i<numnodes;i++)
913 pe->values[i]+=0.;
914 break;
915 default:
916 _printf0_(" unknown thermal basal state found!");
917 }
918 }
919
920 /*Clean up and return*/
921 delete gauss;
922 delete gaussup;
923 delete friction;
924 xDelete<IssmDouble>(basis);
925 xDelete<IssmDouble>(xyz_list_base);
926 return pe;
927
928}/*}}}*/
929ElementVector* EnthalpyAnalysis::CreatePVectorShelf(Element* element){/*{{{*/
930
931 /* Check if ice in element */
932 if(!element->IsIceInElement()) return NULL;
933
934 /*Get basal element*/
935 if(!element->IsOnBase() || !element->IsFloating()) return NULL;
936
937 IssmDouble Hpmp,dt,Jdet,scalar_ocean,pressure;
938 IssmDouble *xyz_list_base = NULL;
939
940 /*Fetch number of nodes for this finite element*/
941 int numnodes = element->GetNumberOfNodes();
942
943 /*Initialize vectors*/
944 ElementVector* pe = element->NewElementVector();
945 IssmDouble* basis = xNew<IssmDouble>(numnodes);
946
947 /*Retrieve all inputs and parameters*/
948 element->GetVerticesCoordinatesBase(&xyz_list_base);
949 element->FindParam(&dt,TimesteppingTimeStepEnum);
950 Input* pressure_input=element->GetInput(PressureEnum); _assert_(pressure_input);
951 IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
952 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
953 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
954 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
955 IssmDouble mixed_layer_capacity= element->GetMaterialParameter(MaterialsMixedLayerCapacityEnum);
956 IssmDouble thermal_exchange_vel= element->GetMaterialParameter(MaterialsThermalExchangeVelocityEnum);
957
958 /* Start looping on the number of gaussian points: */
959 Gauss* gauss=element->NewGaussBase(4);
960 for(int ig=gauss->begin();ig<gauss->end();ig++){
961 gauss->GaussPoint(ig);
962
963 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
964 element->NodalFunctions(basis,gauss);
965
966 pressure_input->GetInputValue(&pressure,gauss);
967 Hpmp=element->PureIceEnthalpy(pressure);
968
969 scalar_ocean=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel*Hpmp/(heatcapacity*rho_ice);
970 if(reCast<bool,IssmDouble>(dt)) scalar_ocean=dt*scalar_ocean;
971
972 for(int i=0;i<numnodes;i++) pe->values[i]+=scalar_ocean*basis[i];
973 }
974
975 /*Clean up and return*/
976 delete gauss;
977 xDelete<IssmDouble>(basis);
978 xDelete<IssmDouble>(xyz_list_base);
979 return pe;
980}/*}}}*/
981void EnthalpyAnalysis::DrainWaterfraction(FemModel* femmodel){/*{{{*/
982 /*Drain excess water fraction in ice column: */
983 ComputeWaterfractionDrainage(femmodel);
984 DrainageUpdateWatercolumn(femmodel);
985 DrainageUpdateEnthalpy(femmodel);
986}/*}}}*/
987void EnthalpyAnalysis::ComputeWaterfractionDrainage(FemModel* femmodel){/*{{{*/
988
989 int i,k,numnodes;
990 IssmDouble dt;
991 Element* element= NULL;
992
993 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
994
995 for(i=0;i<femmodel->elements->Size();i++){
996 element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
997 numnodes=element->GetNumberOfNodes();
998 IssmDouble* waterfractions= xNew<IssmDouble>(numnodes);
999 IssmDouble* drainage= xNew<IssmDouble>(numnodes);
1000
1001 element->GetInputListOnNodes(waterfractions,WaterfractionEnum);
1002 for(k=0; k<numnodes;k++){
1003 drainage[k]=DrainageFunctionWaterfraction(waterfractions[k], dt);
1004 }
1005 element->AddInput(WaterfractionDrainageEnum,drainage,element->GetElementType());
1006
1007 xDelete<IssmDouble>(waterfractions);
1008 xDelete<IssmDouble>(drainage);
1009 }
1010}/*}}}*/
1011void EnthalpyAnalysis::DrainageUpdateWatercolumn(FemModel* femmodel){/*{{{*/
1012
1013 int i,k,numnodes, numbasalnodes;
1014 IssmDouble dt;
1015 int* basalnodeindices=NULL;
1016 Element* element= NULL;
1017
1018 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
1019
1020 /*depth-integrate the drained water fraction */
1021 femmodel->parameters->SetParam(WaterfractionDrainageEnum,InputToDepthaverageInEnum);
1022 femmodel->parameters->SetParam(WaterfractionDrainageIntegratedEnum,InputToDepthaverageOutEnum);
1023 depthaverage_core(femmodel);
1024 femmodel->parameters->SetParam(WaterfractionDrainageIntegratedEnum,InputToExtrudeEnum);
1025 extrudefrombase_core(femmodel);
1026 /*multiply depth-average by ice thickness*/
1027 for(i=0;i<femmodel->elements->Size();i++){
1028 element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1029 numnodes=element->GetNumberOfNodes();
1030 IssmDouble* drainage_int= xNew<IssmDouble>(numnodes);
1031 IssmDouble* thicknesses= xNew<IssmDouble>(numnodes);
1032
1033 element->GetInputListOnNodes(drainage_int,WaterfractionDrainageIntegratedEnum);
1034 element->GetInputListOnNodes(thicknesses,ThicknessEnum);
1035 for(k=0;k<numnodes;k++){
1036 drainage_int[k]*=thicknesses[k];
1037 }
1038 element->AddInput(WaterfractionDrainageIntegratedEnum, drainage_int, element->GetElementType());
1039
1040 xDelete<IssmDouble>(drainage_int);
1041 xDelete<IssmDouble>(thicknesses);
1042 }
1043
1044 /*update water column*/
1045 for(i=0;i<femmodel->elements->Size();i++){
1046 element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1047 /* Check if ice in element */
1048 if(!element->IsIceInElement()) continue;
1049 if(!element->IsOnBase()) continue;
1050
1051 numnodes=element->GetNumberOfNodes();
1052 IssmDouble* watercolumn= xNew<IssmDouble>(numnodes);
1053 IssmDouble* drainage_int= xNew<IssmDouble>(numnodes);
1054 element->GetInputListOnNodes(watercolumn,WatercolumnEnum);
1055 element->GetInputListOnNodes(drainage_int,WaterfractionDrainageIntegratedEnum);
1056
1057 element->BasalNodeIndices(&numbasalnodes,&basalnodeindices,element->GetElementType());
1058 for(k=0;k<numbasalnodes;k++){
1059 watercolumn[basalnodeindices[k]]+=dt*drainage_int[basalnodeindices[k]];
1060 }
1061 element->AddInput(WatercolumnEnum, watercolumn, element->GetElementType());
1062
1063 xDelete<IssmDouble>(watercolumn);
1064 xDelete<IssmDouble>(drainage_int);
1065 }
1066 xDelete<int>(basalnodeindices);
1067}/*}}}*/
1068void EnthalpyAnalysis::DrainageUpdateEnthalpy(FemModel* femmodel){/*{{{*/
1069
1070 int i,k,numnodes;
1071 IssmDouble dt;
1072 Element* element= NULL;
1073 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
1074
1075 for(i=0;i<femmodel->elements->Size();i++){
1076 element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1077 numnodes=element->GetNumberOfNodes();
1078 IssmDouble* enthalpies= xNew<IssmDouble>(numnodes);
1079 IssmDouble* pressures= xNew<IssmDouble>(numnodes);
1080 IssmDouble* temperatures= xNew<IssmDouble>(numnodes);
1081 IssmDouble* waterfractions= xNew<IssmDouble>(numnodes);
1082 IssmDouble* drainage= xNew<IssmDouble>(numnodes);
1083
1084 element->GetInputListOnNodes(enthalpies,EnthalpyEnum);
1085 element->GetInputListOnNodes(pressures,PressureEnum);
1086 element->GetInputListOnNodes(temperatures,TemperatureEnum);
1087 element->GetInputListOnNodes(waterfractions,WaterfractionEnum);
1088 element->GetInputListOnNodes(drainage,WaterfractionDrainageEnum);
1089
1090 for(k=0;k<numnodes;k++){
1091 waterfractions[k]-=dt*drainage[k];
1092 element->ThermalToEnthalpy(&enthalpies[k], temperatures[k], waterfractions[k], pressures[k]);
1093 }
1094 element->AddInput(WaterfractionEnum,waterfractions,element->GetElementType());
1095 element->AddInput(EnthalpyEnum,enthalpies,element->GetElementType());
1096
1097 xDelete<IssmDouble>(enthalpies);
1098 xDelete<IssmDouble>(pressures);
1099 xDelete<IssmDouble>(temperatures);
1100 xDelete<IssmDouble>(waterfractions);
1101 xDelete<IssmDouble>(drainage);
1102 }
1103}/*}}}*/
1104IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameter(Element* element,IssmDouble enthalpy,IssmDouble pressure){/*{{{*/
1105
1106 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
1107 IssmDouble temperateiceconductivity = element->GetMaterialParameter(MaterialsTemperateiceconductivityEnum);
1108 IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
1109
1110 if(enthalpy < PureIceEnthalpy(element,pressure)){
1111 return thermalconductivity/heatcapacity;
1112 }
1113 else{
1114 return temperateiceconductivity/heatcapacity;
1115 }
1116}/*}}}*/
1117IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameterVolume(Element* element,int enthalpy_enum){/*{{{*/
1118
1119 int iv;
1120 IssmDouble lambda; /* fraction of cold ice */
1121 IssmDouble kappa,kappa_c,kappa_t; /* enthalpy conductivities */
1122 IssmDouble Hc,Ht;
1123
1124 /*Get pressures and enthalpies on vertices*/
1125 int numvertices = element->GetNumberOfVertices();
1126 IssmDouble* pressures = xNew<IssmDouble>(numvertices);
1127 IssmDouble* enthalpies = xNew<IssmDouble>(numvertices);
1128 IssmDouble* PIE = xNew<IssmDouble>(numvertices);
1129 IssmDouble* dHpmp = xNew<IssmDouble>(numvertices);
1130 element->GetInputListOnVertices(pressures,PressureEnum);
1131 element->GetInputListOnVertices(enthalpies,enthalpy_enum);
1132 for(iv=0;iv<numvertices;iv++){
1133 PIE[iv] = PureIceEnthalpy(element,pressures[iv]);
1134 dHpmp[iv] = enthalpies[iv]-PIE[iv];
1135 }
1136
1137 bool allequalsign = true;
1138 if(dHpmp[0]<0.){
1139 for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]<0.));
1140 }
1141 else{
1142 for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]>=0.));
1143 }
1144
1145 if(allequalsign){
1146 kappa = EnthalpyDiffusionParameter(element,enthalpies[0],pressures[0]);
1147 }
1148 else{
1149 /* return harmonic mean of thermal conductivities, weighted by fraction of cold/temperate ice,
1150 cf Patankar 1980, pp44 */
1151 kappa_c = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)-1.,0.);
1152 kappa_t = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)+1.,0.);
1153 Hc=0.; Ht=0.;
1154 for(iv=0; iv<numvertices;iv++){
1155 if(enthalpies[iv]<PIE[iv])
1156 Hc+=(PIE[iv]-enthalpies[iv]);
1157 else
1158 Ht+=(enthalpies[iv]-PIE[iv]);
1159 }
1160 _assert_((Hc+Ht)>0.);
1161 lambda = Hc/(Hc+Ht);
1162 kappa = kappa_c*kappa_t/(lambda*kappa_t+(1.-lambda)*kappa_c); // ==(lambda/kappa_c + (1.-lambda)/kappa_t)^-1
1163 }
1164
1165 /*Clean up and return*/
1166 xDelete<IssmDouble>(PIE);
1167 xDelete<IssmDouble>(dHpmp);
1168 xDelete<IssmDouble>(pressures);
1169 xDelete<IssmDouble>(enthalpies);
1170 return kappa;
1171}/*}}}*/
1172void EnthalpyAnalysis::GetBAdvec(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
1173 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
1174 * For node i, Bi' can be expressed in the actual coordinate system
1175 * by:
1176 * Bi_advec =[ h ]
1177 * [ h ]
1178 * [ h ]
1179 * where h is the interpolation function for node i.
1180 *
1181 * We assume B has been allocated already, of size: 3x(NDOF1*NUMNODESP1)
1182 */
1183
1184 /*Fetch number of nodes for this finite element*/
1185 int numnodes = element->GetNumberOfNodes();
1186
1187 /*Get nodal functions*/
1188 IssmDouble* basis=xNew<IssmDouble>(numnodes);
1189 element->NodalFunctions(basis,gauss);
1190
1191 /*Build B: */
1192 for(int i=0;i<numnodes;i++){
1193 B[numnodes*0+i] = basis[i];
1194 B[numnodes*1+i] = basis[i];
1195 B[numnodes*2+i] = basis[i];
1196 }
1197
1198 /*Clean-up*/
1199 xDelete<IssmDouble>(basis);
1200}/*}}}*/
1201void EnthalpyAnalysis::GetBAdvecprime(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
1202 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
1203 * For node i, Bi' can be expressed in the actual coordinate system
1204 * by:
1205 * Biprime_advec=[ dh/dx ]
1206 * [ dh/dy ]
1207 * [ dh/dz ]
1208 * where h is the interpolation function for node i.
1209 *
1210 * We assume B has been allocated already, of size: 3x(NDOF1*numnodes)
1211 */
1212
1213 /*Fetch number of nodes for this finite element*/
1214 int numnodes = element->GetNumberOfNodes();
1215
1216 /*Get nodal functions derivatives*/
1217 IssmDouble* dbasis=xNew<IssmDouble>(3*numnodes);
1218 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
1219
1220 /*Build B: */
1221 for(int i=0;i<numnodes;i++){
1222 B[numnodes*0+i] = dbasis[0*numnodes+i];
1223 B[numnodes*1+i] = dbasis[1*numnodes+i];
1224 B[numnodes*2+i] = dbasis[2*numnodes+i];
1225 }
1226
1227 /*Clean-up*/
1228 xDelete<IssmDouble>(dbasis);
1229}/*}}}*/
1230void EnthalpyAnalysis::GetBasalConstraints(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
1231
1232 /*Intermediary*/
1233 bool isdynamicbasalspc;
1234 IssmDouble dt;
1235
1236 /*Check wether dynamic basal boundary conditions are activated */
1237 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
1238 if(!isdynamicbasalspc) return;
1239
1240 element->FindParam(&dt,TimesteppingTimeStepEnum);
1241 if(dt==0.){
1242 GetBasalConstraintsSteadystate(vec_spc,element);
1243 }
1244 else{
1245 GetBasalConstraintsTransient(vec_spc,element);
1246 }
1247}/*}}}*/
1248void EnthalpyAnalysis::GetBasalConstraintsSteadystate(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
1249
1250 /* Check if ice in element */
1251 if(!element->IsIceInElement()) return;
1252
1253 /* Only update constraints at the base.
1254 * Floating ice is not affected by basal BC decision chart. */
1255 if(!(element->IsOnBase()) || element->IsFloating()) return;
1256
1257 /*Intermediary*/
1258 int numindices, numindicesup, state;
1259 int *indices = NULL, *indicesup = NULL;
1260 IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
1261
1262 /*Get parameters and inputs: */
1263 Input* enthalpy_input = element->GetInput(EnthalpyPicardEnum); _assert_(enthalpy_input);
1264 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
1265 Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
1266 Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
1267
1268 /*Fetch indices of basal & surface nodes for this finite element*/
1269 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
1270 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
1271 penta->SurfaceNodeIndices(&numindicesup,&indicesup,element->GetElementType()); _assert_(numindices==numindicesup);
1272
1273 GaussPenta* gauss=new GaussPenta();
1274 GaussPenta* gaussup=new GaussPenta();
1275 for(int i=0;i<numindices;i++){
1276 gauss->GaussNode(element->GetElementType(),indices[i]);
1277 gaussup->GaussNode(element->GetElementType(),indicesup[i]);
1278
1279 enthalpy_input->GetInputValue(&enthalpy,gauss);
1280 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
1281 pressure_input->GetInputValue(&pressure,gauss);
1282 pressure_input->GetInputValue(&pressureup,gaussup);
1283 watercolumn_input->GetInputValue(&watercolumn,gauss);
1284 meltingrate_input->GetInputValue(&meltingrate,gauss);
1285
1286 state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
1287 switch (state) {
1288 case 0:
1289 // cold, dry base: apply basal surface forcing
1290 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
1291 break;
1292 case 1:
1293 // cold, wet base: keep at pressure melting point
1294 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1295 break;
1296 case 2:
1297 // temperate, thin refreezing base:
1298 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1299 break;
1300 case 3:
1301 // temperate, thin melting base: set spc
1302 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1303 break;
1304 case 4:
1305 // temperate, thick melting base:
1306 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1307 break;
1308 default:
1309 _printf0_(" unknown thermal basal state found!");
1310 }
1311 }
1312
1313 /*Free ressources:*/
1314 xDelete<int>(indices);
1315 xDelete<int>(indicesup);
1316 delete gauss;
1317 delete gaussup;
1318}/*}}}*/
1319void EnthalpyAnalysis::GetBasalConstraintsTransient(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
1320
1321 /* Check if ice in element */
1322 if(!element->IsIceInElement()) return;
1323
1324 /* Only update constraints at the base.
1325 * Floating ice is not affected by basal BC decision chart.*/
1326 if(!(element->IsOnBase()) || element->IsFloating()) return;
1327
1328 /*Intermediary*/
1329 int numindices, numindicesup, state;
1330 int *indices = NULL, *indicesup = NULL;
1331 IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
1332
1333 /*Get parameters and inputs: */
1334 Input* enthalpy_input = element->GetInput(EnthalpyEnum); _assert_(enthalpy_input); //TODO: check EnthalpyPicard?
1335 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
1336 Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
1337 Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
1338
1339 /*Fetch indices of basal & surface nodes for this finite element*/
1340 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
1341 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
1342 penta->SurfaceNodeIndices(&numindicesup,&indicesup,element->GetElementType()); _assert_(numindices==numindicesup);
1343
1344 GaussPenta* gauss=new GaussPenta();
1345 GaussPenta* gaussup=new GaussPenta();
1346
1347 for(int i=0;i<numindices;i++){
1348 gauss->GaussNode(element->GetElementType(),indices[i]);
1349 gaussup->GaussNode(element->GetElementType(),indicesup[i]);
1350
1351 enthalpy_input->GetInputValue(&enthalpy,gauss);
1352 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
1353 pressure_input->GetInputValue(&pressure,gauss);
1354 pressure_input->GetInputValue(&pressureup,gaussup);
1355 watercolumn_input->GetInputValue(&watercolumn,gauss);
1356 meltingrate_input->GetInputValue(&meltingrate,gauss);
1357
1358 state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
1359
1360 switch (state) {
1361 case 0:
1362 // cold, dry base: apply basal surface forcing
1363 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
1364 break;
1365 case 1:
1366 // cold, wet base: keep at pressure melting point
1367 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1368 break;
1369 case 2:
1370 // temperate, thin refreezing base: release spc
1371 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
1372 break;
1373 case 3:
1374 // temperate, thin melting base: set spc
1375 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1376 break;
1377 case 4:
1378 // temperate, thick melting base: set grad H*n=0
1379 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
1380 break;
1381 default:
1382 _printf0_(" unknown thermal basal state found!");
1383 }
1384
1385 }
1386
1387 /*Free ressources:*/
1388 xDelete<int>(indices);
1389 xDelete<int>(indicesup);
1390 delete gauss;
1391 delete gaussup;
1392}/*}}}*/
1393void EnthalpyAnalysis::GetBConduct(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
1394 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
1395 * For node i, Bi' can be expressed in the actual coordinate system
1396 * by:
1397 * Bi_conduct=[ dh/dx ]
1398 * [ dh/dy ]
1399 * [ dh/dz ]
1400 * where h is the interpolation function for node i.
1401 *
1402 * We assume B has been allocated already, of size: 3x(NDOF1*numnodes)
1403 */
1404
1405 /*Fetch number of nodes for this finite element*/
1406 int numnodes = element->GetNumberOfNodes();
1407
1408 /*Get nodal functions derivatives*/
1409 IssmDouble* dbasis=xNew<IssmDouble>(3*numnodes);
1410 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
1411
1412 /*Build B: */
1413 for(int i=0;i<numnodes;i++){
1414 B[numnodes*0+i] = dbasis[0*numnodes+i];
1415 B[numnodes*1+i] = dbasis[1*numnodes+i];
1416 B[numnodes*2+i] = dbasis[2*numnodes+i];
1417 }
1418
1419 /*Clean-up*/
1420 xDelete<IssmDouble>(dbasis);
1421}/*}}}*/
1422void EnthalpyAnalysis::GetSolutionFromInputs(Vector<IssmDouble>* solution,Element* element){/*{{{*/
1423 element->GetSolutionFromInputsOneDof(solution,EnthalpyEnum);
1424}/*}}}*/
1425int EnthalpyAnalysis::GetThermalBasalCondition(Element* element, IssmDouble enthalpy, IssmDouble enthalpyup, IssmDouble pressure, IssmDouble pressureup, IssmDouble watercolumn, IssmDouble meltingrate){/*{{{*/
1426
1427 /* Check if ice in element */
1428 if(!element->IsIceInElement()) return -1;
1429
1430 /* Only update Constraints at the base of grounded ice*/
1431 if(!(element->IsOnBase())) return -1;
1432
1433 /*Intermediary*/
1434 int state=-1;
1435 IssmDouble dt;
1436
1437 /*Get parameters and inputs: */
1438 element->FindParam(&dt,TimesteppingTimeStepEnum);
1439
1440 if(enthalpy<PureIceEnthalpy(element,pressure)){
1441 if(watercolumn<=0.) state=0; // cold, dry base
1442 else state=1; // cold, wet base (refreezing)
1443 }
1444 else{
1445 if(enthalpyup<PureIceEnthalpy(element,pressureup)){
1446 if((dt==0.) && (meltingrate<0.)) state=2; // refreezing temperate base (non-physical, only for steadystate solver)
1447 else state=3; // temperate base, but no temperate layer
1448 }
1449 else state=4; // temperate layer with positive thickness
1450 }
1451
1452 _assert_(state>=0);
1453 return state;
1454}/*}}}*/
1455IssmDouble EnthalpyAnalysis::GetWetIceConductivity(Element* element, IssmDouble enthalpy, IssmDouble pressure){/*{{{*/
1456
1457 IssmDouble temperature, waterfraction;
1458 IssmDouble kappa_w = 0.6; // thermal conductivity of water (in W/m/K)
1459 IssmDouble kappa_i = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
1460 element->EnthalpyToThermal(&temperature, &waterfraction, enthalpy, pressure);
1461
1462 return (1.-waterfraction)*kappa_i + waterfraction*kappa_w;
1463}/*}}}*/
1464void EnthalpyAnalysis::GradientJ(Vector<IssmDouble>* gradient,Element* element,int control_type,int control_index){/*{{{*/
1465 _error_("Not implemented yet");
1466}/*}}}*/
1467void EnthalpyAnalysis::InputUpdateFromSolution(IssmDouble* solution,Element* element){/*{{{*/
1468
1469 bool converged;
1470 int i,rheology_law;
1471 IssmDouble B_average,s_average,T_average=0.,P_average=0.;
1472 IssmDouble n=3.0;
1473 int *doflist = NULL;
1474 IssmDouble *xyz_list = NULL;
1475
1476 /*Fetch number of nodes and dof for this finite element*/
1477 int numnodes = element->GetNumberOfNodes();
1478
1479 /*Fetch dof list and allocate solution vector*/
1480 element->GetDofList(&doflist,NoneApproximationEnum,GsetEnum);
1481 IssmDouble* values = xNew<IssmDouble>(numnodes);
1482 IssmDouble* pressure = xNew<IssmDouble>(numnodes);
1483 IssmDouble* surface = xNew<IssmDouble>(numnodes);
1484 IssmDouble* B = xNew<IssmDouble>(numnodes);
1485 IssmDouble* temperature = xNew<IssmDouble>(numnodes);
1486 IssmDouble* waterfraction = xNew<IssmDouble>(numnodes);
1487
1488 /*Use the dof list to index into the solution vector: */
1489 for(i=0;i<numnodes;i++){
1490 values[i]=solution[doflist[i]];
1491
1492 /*Check solution*/
1493 if(xIsNan<IssmDouble>(values[i])) _error_("NaN found in solution vector");
1494 if(xIsInf<IssmDouble>(values[i])) _error_("Inf found in solution vector");
1495 }
1496
1497 /*Get all inputs and parameters*/
1498 if(element->material->ObjectEnum()!=MatestarEnum) n=element->GetMaterialParameter(MaterialsRheologyNEnum);
1499 element->GetInputValue(&converged,ConvergedEnum);
1500 element->GetInputListOnNodes(&pressure[0],PressureEnum);
1501 if(converged){
1502 for(i=0;i<numnodes;i++){
1503 element->EnthalpyToThermal(&temperature[i],&waterfraction[i],values[i],pressure[i]);
1504 if(waterfraction[i]<0.) _error_("Negative water fraction found in solution vector");
1505 //if(waterfraction[i]>1.) _error_("Water fraction >1 found in solution vector");
1506 }
1507 element->AddInput(EnthalpyEnum,values,element->GetElementType());
1508 element->AddInput(WaterfractionEnum,waterfraction,element->GetElementType());
1509 element->AddInput(TemperatureEnum,temperature,element->GetElementType());
1510
1511 /*Update Rheology only if converged (we must make sure that the temperature is below melting point
1512 * otherwise the rheology could be negative*/
1513 element->FindParam(&rheology_law,MaterialsRheologyLawEnum);
1514 element->GetInputListOnNodes(&surface[0],SurfaceEnum);
1515 switch(rheology_law){
1516 case NoneEnum:
1517 /*Do nothing: B is not temperature dependent*/
1518 break;
1519 case BuddJackaEnum:
1520 for(i=0;i<numnodes;i++) B[i]=BuddJacka(temperature[i]);
1521 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1522 break;
1523 case CuffeyEnum:
1524 for(i=0;i<numnodes;i++) B[i]=Cuffey(temperature[i]);
1525 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1526 break;
1527 case CuffeyTemperateEnum:
1528 for(i=0;i<numnodes;i++) B[i]=CuffeyTemperate(temperature[i], waterfraction[i],n);
1529 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1530 break;
1531 case PatersonEnum:
1532 for(i=0;i<numnodes;i++) B[i]=Paterson(temperature[i]);
1533 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1534 break;
1535 case ArrheniusEnum:
1536 element->GetVerticesCoordinates(&xyz_list);
1537 for(i=0;i<numnodes;i++) B[i]=Arrhenius(temperature[i],surface[i]-xyz_list[i*3+2],n);
1538 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1539 break;
1540 case LliboutryDuvalEnum:
1541 for(i=0;i<numnodes;i++) B[i]=LliboutryDuval(values[i],pressure[i],n,element->GetMaterialParameter(MaterialsBetaEnum),element->GetMaterialParameter(ConstantsReferencetemperatureEnum),element->GetMaterialParameter(MaterialsHeatcapacityEnum),element->GetMaterialParameter(MaterialsLatentheatEnum));
1542 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1543 break;
1544 default: _error_("Rheology law " << EnumToStringx(rheology_law) << " not supported yet");
1545 }
1546 }
1547 else{
1548 element->AddInput(EnthalpyPicardEnum,values,element->GetElementType());
1549 }
1550
1551 /*Free ressources:*/
1552 xDelete<IssmDouble>(values);
1553 xDelete<IssmDouble>(pressure);
1554 xDelete<IssmDouble>(surface);
1555 xDelete<IssmDouble>(B);
1556 xDelete<IssmDouble>(temperature);
1557 xDelete<IssmDouble>(waterfraction);
1558 xDelete<IssmDouble>(xyz_list);
1559 xDelete<int>(doflist);
1560}/*}}}*/
1561void EnthalpyAnalysis::PostProcessing(FemModel* femmodel){/*{{{*/
1562
1563 /*Intermediaries*/
1564 bool computebasalmeltingrates=true;
1565 bool drainicecolumn=true;
1566 IssmDouble dt;
1567
1568 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
1569
1570 if(drainicecolumn && (dt>0.)) DrainWaterfraction(femmodel);
1571 if(computebasalmeltingrates) ComputeBasalMeltingrate(femmodel);
1572
1573}/*}}}*/
1574IssmDouble EnthalpyAnalysis::PureIceEnthalpy(Element* element,IssmDouble pressure){/*{{{*/
1575
1576 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
1577 IssmDouble referencetemperature = element->GetMaterialParameter(ConstantsReferencetemperatureEnum);
1578
1579 return heatcapacity*(TMeltingPoint(element,pressure)-referencetemperature);
1580}/*}}}*/
1581IssmDouble EnthalpyAnalysis::TMeltingPoint(Element* element,IssmDouble pressure){/*{{{*/
1582
1583 IssmDouble meltingpoint = element->GetMaterialParameter(MaterialsMeltingpointEnum);
1584 IssmDouble beta = element->GetMaterialParameter(MaterialsBetaEnum);
1585
1586 return meltingpoint-beta*pressure;
1587}/*}}}*/
1588void EnthalpyAnalysis::UpdateBasalConstraints(FemModel* femmodel){/*{{{*/
1589
1590 /*Update basal dirichlet BCs for enthalpy: */
1591 Vector<IssmDouble>* spc = NULL;
1592 IssmDouble* serial_spc = NULL;
1593
1594 spc=new Vector<IssmDouble>(femmodel->nodes->NumberOfNodes(EnthalpyAnalysisEnum));
1595 /*First create a vector to figure out what elements should be constrained*/
1596 for(int i=0;i<femmodel->elements->Size();i++){
1597 Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1598 GetBasalConstraints(spc,element);
1599 }
1600
1601 /*Assemble and serialize*/
1602 spc->Assemble();
1603 serial_spc=spc->ToMPISerial();
1604 delete spc;
1605
1606 /*Then update basal constraints nodes accordingly*/
1607 for(int i=0;i<femmodel->elements->Size();i++){
1608 Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1609 ApplyBasalConstraints(serial_spc,element);
1610 }
1611
1612 femmodel->UpdateConstraintsx();
1613
1614 /*Delete*/
1615 xDelete<IssmDouble>(serial_spc);
1616}/*}}}*/
1617void EnthalpyAnalysis::UpdateConstraints(FemModel* femmodel){/*{{{*/
1618 SetActiveNodesLSMx(femmodel);
1619}/*}}}*/
Note: See TracBrowser for help on using the repository browser.