source: issm/trunk-jpl/src/c/analyses/EnthalpyAnalysis.cpp@ 20459

Last change on this file since 20459 was 20459, checked in by seroussi, 9 years ago

CHG: remove md.transient.islevelset field

File size: 60.4 KB
Line 
1#include "./EnthalpyAnalysis.h"
2#include "../toolkits/toolkits.h"
3#include "../classes/classes.h"
4#include "../shared/shared.h"
5#include "../modules/modules.h"
6#include "../solutionsequences/solutionsequences.h"
7
8/*Model processing*/
9void EnthalpyAnalysis::CreateConstraints(Constraints* constraints,IoModel* iomodel){/*{{{*/
10
11 /*Intermediary*/
12 int count;
13 int M,N;
14 bool spcpresent = false;
15 IssmDouble heatcapacity;
16 IssmDouble referencetemperature;
17
18 /*Output*/
19 IssmDouble *spcvector = NULL;
20 IssmDouble* times=NULL;
21 IssmDouble* values=NULL;
22
23 /*Fetch parameters: */
24 iomodel->Constant(&heatcapacity,MaterialsHeatcapacityEnum);
25 iomodel->Constant(&referencetemperature,ConstantsReferencetemperatureEnum);
26
27 /*return if 2d mesh*/
28 if(iomodel->domaintype==Domain2DhorizontalEnum) return;
29
30 /*Fetch data: */
31 iomodel->FetchData(&spcvector,&M,&N,ThermalSpctemperatureEnum);
32
33 //FIX ME: SHOULD USE IOMODELCREATECONSTRAINTS
34 /*Transient or static?:*/
35 if(M==iomodel->numberofvertices){
36 /*static: just create Constraints objects*/
37 count=0;
38
39 for(int i=0;i<iomodel->numberofvertices;i++){
40 /*keep only this partition's nodes:*/
41 if((iomodel->my_vertices[i])){
42
43 if (!xIsNan<IssmDouble>(spcvector[i])){
44
45 constraints->AddObject(new SpcStatic(iomodel->constraintcounter+count+1,iomodel->nodecounter+i+1,0,heatcapacity*(spcvector[i]-referencetemperature),EnthalpyAnalysisEnum));
46 count++;
47
48 }
49 }
50 }
51 }
52 else if (M==(iomodel->numberofvertices+1)){
53 /*transient: create transient SpcTransient objects. Same logic, except we need to retrieve
54 * various times and values to initialize an SpcTransient object: */
55 count=0;
56
57 /*figure out times: */
58 times=xNew<IssmDouble>(N);
59 for(int j=0;j<N;j++){
60 times[j]=spcvector[(M-1)*N+j];
61 }
62
63 /*Create constraints from x,y,z: */
64 for(int i=0;i<iomodel->numberofvertices;i++){
65
66 /*keep only this partition's nodes:*/
67 if((iomodel->my_vertices[i])){
68
69 /*figure out times and values: */
70 values=xNew<IssmDouble>(N);
71 spcpresent=false;
72 for(int j=0;j<N;j++){
73 values[j]=heatcapacity*(spcvector[i*N+j]-referencetemperature);
74 if(!xIsNan<IssmDouble>(values[j]))spcpresent=true; //NaN means no spc by default
75 }
76
77 if(spcpresent){
78 constraints->AddObject(new SpcTransient(iomodel->constraintcounter+count+1,iomodel->nodecounter+i+1,0,N,times,values,EnthalpyAnalysisEnum));
79 count++;
80 }
81 xDelete<IssmDouble>(values);
82 }
83 }
84 }
85 else{
86 _error_("Size of field " << EnumToStringx(ThermalSpctemperatureEnum) << " not supported");
87 }
88
89 /*Free ressources:*/
90 iomodel->DeleteData(spcvector,ThermalSpctemperatureEnum);
91 xDelete<IssmDouble>(times);
92 xDelete<IssmDouble>(values);
93}/*}}}*/
94void EnthalpyAnalysis::CreateLoads(Loads* loads, IoModel* iomodel){/*{{{*/
95
96 /*No loads */
97}/*}}}*/
98void EnthalpyAnalysis::CreateNodes(Nodes* nodes,IoModel* iomodel){/*{{{*/
99
100 if(iomodel->domaintype==Domain3DEnum) iomodel->FetchData(2,MeshVertexonbaseEnum,MeshVertexonsurfaceEnum);
101 ::CreateNodes(nodes,iomodel,EnthalpyAnalysisEnum,P1Enum);
102 iomodel->DeleteData(2,MeshVertexonbaseEnum,MeshVertexonsurfaceEnum);
103}/*}}}*/
104int EnthalpyAnalysis::DofsPerNode(int** doflist,int domaintype,int approximation){/*{{{*/
105 return 1;
106}/*}}}*/
107void EnthalpyAnalysis::UpdateElements(Elements* elements,IoModel* iomodel,int analysis_counter,int analysis_type){/*{{{*/
108
109 bool dakota_analysis,ismovingfront,isenthalpy;
110 int frictionlaw,basalforcing_model;
111 int FrictionCoupling;
112
113 /*Now, is the model 3d? otherwise, do nothing: */
114 if(iomodel->domaintype==Domain2DhorizontalEnum)return;
115
116 /*Is enthalpy requested?*/
117 iomodel->Constant(&isenthalpy,ThermalIsenthalpyEnum);
118 if(!isenthalpy) return;
119
120 /*Fetch data needed: */
121 iomodel->FetchData(3,TemperatureEnum,WaterfractionEnum,PressureEnum);
122
123 /*Update elements: */
124 int counter=0;
125 for(int i=0;i<iomodel->numberofelements;i++){
126 if(iomodel->my_elements[i]){
127 Element* element=(Element*)elements->GetObjectByOffset(counter);
128 element->Update(i,iomodel,analysis_counter,analysis_type,P1Enum);
129 counter++;
130 }
131 }
132
133 iomodel->Constant(&dakota_analysis,QmuIsdakotaEnum);
134 iomodel->Constant(&ismovingfront,TransientIsmovingfrontEnum);
135 iomodel->Constant(&frictionlaw,FrictionLawEnum);
136
137 iomodel->FetchDataToInput(elements,ThicknessEnum);
138 iomodel->FetchDataToInput(elements,SurfaceEnum);
139 iomodel->FetchDataToInput(elements,SealevelEnum,0);
140 iomodel->FetchDataToInput(elements,BaseEnum);
141 iomodel->FetchDataToInput(elements,MaskIceLevelsetEnum);
142 iomodel->FetchDataToInput(elements,MaskGroundediceLevelsetEnum);
143 if(iomodel->domaintype!=Domain2DhorizontalEnum){
144 iomodel->FetchDataToInput(elements,MeshVertexonbaseEnum);
145 iomodel->FetchDataToInput(elements,MeshVertexonsurfaceEnum);
146 }
147 iomodel->FetchDataToInput(elements,MaterialsRheologyBEnum);
148 iomodel->FetchDataToInput(elements,MaterialsRheologyNEnum);
149 iomodel->FetchDataToInput(elements,PressureEnum);
150 iomodel->FetchDataToInput(elements,TemperatureEnum);
151 iomodel->FetchDataToInput(elements,WaterfractionEnum);
152 iomodel->FetchDataToInput(elements,EnthalpyEnum);
153 iomodel->FetchDataToInput(elements,WatercolumnEnum);
154 iomodel->FetchDataToInput(elements,BasalforcingsGroundediceMeltingRateEnum);
155 iomodel->FetchDataToInput(elements,VxEnum);
156 iomodel->FetchDataToInput(elements,VyEnum);
157 iomodel->FetchDataToInput(elements,VzEnum);
158 InputUpdateFromConstantx(elements,0.,VxMeshEnum);
159 InputUpdateFromConstantx(elements,0.,VyMeshEnum);
160 InputUpdateFromConstantx(elements,0.,VzMeshEnum);
161 if(ismovingfront){
162 iomodel->FetchDataToInput(elements,MeshVertexonbaseEnum); // required for updating active nodes
163 }
164
165 /*Basal forcings variables*/
166 iomodel->Constant(&basalforcing_model,BasalforcingsEnum);
167 switch(basalforcing_model){
168 case MantlePlumeGeothermalFluxEnum:
169 break;
170 default:
171 iomodel->FetchDataToInput(elements,BasalforcingsGeothermalfluxEnum);
172 break;
173 }
174
175 /*Friction law variables*/
176 switch(frictionlaw){
177 case 1:
178 iomodel->FetchDataToInput(elements,FrictionCoefficientEnum);
179 iomodel->FetchDataToInput(elements,FrictionPEnum);
180 iomodel->FetchDataToInput(elements,FrictionQEnum);
181 break;
182 case 2:
183 iomodel->FetchDataToInput(elements,FrictionCEnum);
184 iomodel->FetchDataToInput(elements,FrictionMEnum);
185 break;
186 case 3:
187 iomodel->Constant(&FrictionCoupling,FrictionCouplingEnum);
188 iomodel->FetchDataToInput(elements,FrictionCEnum);
189 iomodel->FetchDataToInput(elements,FrictionAsEnum);
190 iomodel->FetchDataToInput(elements,FrictionQEnum);
191 if (FrictionCoupling==0){
192 iomodel->FetchDataToInput(elements,FrictionEffectivePressureEnum);
193 }
194 break;
195 case 4:
196 iomodel->FetchDataToInput(elements,FrictionCoefficientEnum);
197 iomodel->FetchDataToInput(elements,FrictionPEnum);
198 iomodel->FetchDataToInput(elements,FrictionQEnum);
199 iomodel->FetchDataToInput(elements,PressureEnum);
200 iomodel->FetchDataToInput(elements,TemperatureEnum);
201 break;
202 case 5:
203 iomodel->FetchDataToInput(elements,FrictionCoefficientEnum);
204 iomodel->FetchDataToInput(elements,FrictionPEnum);
205 iomodel->FetchDataToInput(elements,FrictionQEnum);
206 iomodel->FetchDataToInput(elements,FrictionWaterLayerEnum);
207 break;
208 case 6:
209 iomodel->FetchDataToInput(elements,FrictionCEnum);
210 iomodel->FetchDataToInput(elements,FrictionMEnum);
211 iomodel->FetchDataToInput(elements,PressureEnum);
212 iomodel->FetchDataToInput(elements,TemperatureEnum);
213 break;
214 default:
215 _error_("not supported");
216 }
217 /*Free data: */
218 iomodel->DeleteData(3,TemperatureEnum,WaterfractionEnum,PressureEnum);
219}/*}}}*/
220void EnthalpyAnalysis::UpdateParameters(Parameters* parameters,IoModel* iomodel,int solution_enum,int analysis_enum){/*{{{*/
221
222 int numoutputs;
223 char** requestedoutputs = NULL;
224
225 parameters->AddObject(iomodel->CopyConstantObject(ThermalStabilizationEnum));
226 parameters->AddObject(iomodel->CopyConstantObject(ThermalMaxiterEnum));
227 parameters->AddObject(iomodel->CopyConstantObject(ThermalReltolEnum));
228 parameters->AddObject(iomodel->CopyConstantObject(ThermalIsenthalpyEnum));
229 parameters->AddObject(iomodel->CopyConstantObject(ThermalIsdynamicbasalspcEnum));
230 parameters->AddObject(iomodel->CopyConstantObject(FrictionLawEnum));
231
232 iomodel->FetchData(&requestedoutputs,&numoutputs,ThermalRequestedOutputsEnum);
233 parameters->AddObject(new IntParam(ThermalNumRequestedOutputsEnum,numoutputs));
234 if(numoutputs)parameters->AddObject(new StringArrayParam(ThermalRequestedOutputsEnum,requestedoutputs,numoutputs));
235 iomodel->DeleteData(&requestedoutputs,numoutputs,ThermalRequestedOutputsEnum);
236
237 /*Deal with friction parameters*/
238 int frictionlaw;
239 iomodel->Constant(&frictionlaw,FrictionLawEnum);
240 if(frictionlaw==4 || frictionlaw==6) parameters->AddObject(iomodel->CopyConstantObject(FrictionGammaEnum));
241 if(frictionlaw==3) parameters->AddObject(iomodel->CopyConstantObject(FrictionCouplingEnum));
242}/*}}}*/
243
244/*Finite Element Analysis*/
245void EnthalpyAnalysis::ApplyBasalConstraints(IssmDouble* serial_spc,Element* element){/*{{{*/
246
247 /* Check if ice in element */
248 if(!element->IsIceInElement()) return;
249
250 /* Only update constraints at the base. */
251 if(!(element->IsOnBase())) return;
252
253 /*Intermediary*/
254 bool isdynamicbasalspc;
255 int numindices;
256 int *indices = NULL;
257 Node* node = NULL;
258 IssmDouble pressure;
259
260 /*Check wether dynamic basal boundary conditions are activated */
261 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
262 if(!isdynamicbasalspc) return;
263
264 /*Get parameters and inputs: */
265 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
266
267 /*Fetch indices of basal & surface nodes for this finite element*/
268 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
269 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
270
271 GaussPenta* gauss=new GaussPenta();
272 for(int i=0;i<numindices;i++){
273 gauss->GaussNode(element->GetElementType(),indices[i]);
274
275 pressure_input->GetInputValue(&pressure,gauss);
276
277 /*apply or release spc*/
278 node=element->GetNode(indices[i]);
279 if(serial_spc[node->Sid()]==1.){
280 pressure_input->GetInputValue(&pressure, gauss);
281 node->ApplyConstraint(0,PureIceEnthalpy(element,pressure));
282 }
283 else
284 node->DofInFSet(0);
285 }
286
287 /*Free ressources:*/
288 xDelete<int>(indices);
289 delete gauss;
290}/*}}}*/
291void EnthalpyAnalysis::ComputeBasalMeltingrate(FemModel* femmodel){/*{{{*/
292 /*Compute basal melting rates: */
293 for(int i=0;i<femmodel->elements->Size();i++){
294 Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
295 ComputeBasalMeltingrate(element);
296 }
297}/*}}}*/
298void EnthalpyAnalysis::ComputeBasalMeltingrate(Element* element){/*{{{*/
299 /*Calculate the basal melt rates of the enthalpy model after Aschwanden 2012*/
300 /* melting rate is positive when melting, negative when refreezing*/
301
302 /* Check if ice in element */
303 if(!element->IsIceInElement()) return;
304
305 /* Only compute melt rates at the base of grounded ice*/
306 if(!element->IsOnBase() || element->IsFloating()) return;
307
308 /* Intermediaries */
309 bool converged;
310 const int dim=3;
311 int i,is,state;
312 int vertexdown,vertexup,numvertices,numsegments;
313 int enthalpy_enum;
314 IssmDouble vec_heatflux[dim],normal_base[dim],d1enthalpy[dim],d1pressure[dim];
315 IssmDouble basalfriction,alpha2,geothermalflux,heatflux;
316 IssmDouble dt,yts;
317 IssmDouble melting_overshoot,lambda;
318 IssmDouble vx,vy,vz;
319 IssmDouble *xyz_list = NULL;
320 IssmDouble *xyz_list_base = NULL;
321 int *pairindices = NULL;
322
323 /*Fetch parameters*/
324 element->GetVerticesCoordinates(&xyz_list);
325 element->GetVerticesCoordinatesBase(&xyz_list_base);
326 element->GetInputValue(&converged,ConvergedEnum);
327 element->FindParam(&dt,TimesteppingTimeStepEnum);
328 element->FindParam(&yts, ConstantsYtsEnum);
329
330 if(dt==0. && !converged) enthalpy_enum=EnthalpyPicardEnum;
331 else enthalpy_enum=EnthalpyEnum;
332
333 IssmDouble latentheat = element->GetMaterialParameter(MaterialsLatentheatEnum);
334 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
335 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoFreshwaterEnum);
336 IssmDouble beta = element->GetMaterialParameter(MaterialsBetaEnum);
337 IssmDouble kappa = EnthalpyDiffusionParameterVolume(element,enthalpy_enum); _assert_(kappa>=0.);
338 IssmDouble kappa_mix;
339
340 /*retrieve inputs*/
341 Input* enthalpy_input = element->GetInput(enthalpy_enum); _assert_(enthalpy_input);
342 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
343 Input* geothermalflux_input = element->GetInput(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input);
344 Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
345 Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
346 Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
347
348 /*Build friction element, needed later: */
349 Friction* friction=new Friction(element,dim);
350
351 /******** MELTING RATES ************************************//*{{{*/
352 element->NormalBase(&normal_base[0],xyz_list_base);
353 element->VerticalSegmentIndices(&pairindices,&numsegments);
354 IssmDouble* meltingrate_enthalpy = xNew<IssmDouble>(numsegments);
355 IssmDouble* heating = xNew<IssmDouble>(numsegments);
356
357 numvertices=element->GetNumberOfVertices();
358 IssmDouble* enthalpies = xNew<IssmDouble>(numvertices);
359 IssmDouble* pressures = xNew<IssmDouble>(numvertices);
360 IssmDouble* watercolumns = xNew<IssmDouble>(numvertices);
361 IssmDouble* basalmeltingrates = xNew<IssmDouble>(numvertices);
362 element->GetInputListOnVertices(enthalpies,enthalpy_enum);
363 element->GetInputListOnVertices(pressures,PressureEnum);
364 element->GetInputListOnVertices(watercolumns,WatercolumnEnum);
365 element->GetInputListOnVertices(basalmeltingrates,BasalforcingsGroundediceMeltingRateEnum);
366
367 Gauss* gauss=element->NewGauss();
368 for(is=0;is<numsegments;is++){
369 vertexdown = pairindices[is*2+0];
370 vertexup = pairindices[is*2+1];
371 gauss->GaussVertex(vertexdown);
372
373 state=GetThermalBasalCondition(element, enthalpies[vertexdown], enthalpies[vertexup], pressures[vertexdown], pressures[vertexup], watercolumns[vertexdown], basalmeltingrates[vertexdown]);
374 switch (state) {
375 case 0:
376 // cold, dry base: apply basal surface forcing
377 for(i=0;i<3;i++) vec_heatflux[i]=0.;
378 break;
379 case 1: case 2: case 3:
380 // case 1 : cold, wet base: keep at pressure melting point
381 // case 2: temperate, thin refreezing base: release spc
382 // case 3: temperate, thin melting base: set spc
383 enthalpy_input->GetInputDerivativeValue(&d1enthalpy[0],xyz_list,gauss);
384 for(i=0;i<3;i++) vec_heatflux[i]=-kappa*d1enthalpy[i];
385 break;
386 case 4:
387 // temperate, thick melting base: set grad H*n=0
388 kappa_mix=GetWetIceConductivity(element, enthalpies[vertexdown], pressures[vertexdown]);
389 pressure_input->GetInputDerivativeValue(&d1pressure[0],xyz_list,gauss);
390 for(i=0;i<3;i++) vec_heatflux[i]=kappa_mix*beta*d1pressure[i];
391 break;
392 default:
393 _printf0_(" unknown thermal basal state found!");
394 }
395 if(state==0) meltingrate_enthalpy[is]=0.;
396 else{
397 /*heat flux along normal*/
398 heatflux=0.;
399 for(i=0;i<3;i++) heatflux+=(vec_heatflux[i])*normal_base[i];
400
401 /*basal friction*/
402 friction->GetAlpha2(&alpha2,gauss);
403 vx_input->GetInputValue(&vx,gauss); vy_input->GetInputValue(&vy,gauss); vz_input->GetInputValue(&vz,gauss);
404 basalfriction=alpha2*(vx*vx + vy*vy + vz*vz);
405 geothermalflux_input->GetInputValue(&geothermalflux,gauss);
406 /* -Mb= Fb-(q-q_geo)/((1-w)*L*rho), and (1-w)*rho=rho_ice, cf Aschwanden 2012, eqs.1, 2, 66*/
407 heating[is]=(heatflux+basalfriction+geothermalflux);
408 meltingrate_enthalpy[is]=heating[is]/(latentheat*rho_ice); // m/s water equivalent
409 }
410 }/*}}}*/
411
412 /******** UPDATE MELTINGRATES AND WATERCOLUMN **************//*{{{*/
413 for(is=0;is<numsegments;is++){
414 vertexdown = pairindices[is*2+0];
415 vertexup = pairindices[is*2+1];
416 if(dt!=0.){
417 if(watercolumns[vertexdown]+meltingrate_enthalpy[is]*dt<0.){ // prevent too much freeze on
418 lambda = -watercolumns[vertexdown]/(dt*meltingrate_enthalpy[is]); _assert_(lambda>=0.); _assert_(lambda<1.);
419 watercolumns[vertexdown]=0.;
420 basalmeltingrates[vertexdown]=lambda*meltingrate_enthalpy[is]; // restrict freeze on only to size of watercolumn
421 enthalpies[vertexdown]+=(1.-lambda)*dt/yts*meltingrate_enthalpy[is]*latentheat*rho_ice; // use rest of energy to cool down base: dE=L*m, m=(1-lambda)*meltingrate*rho_ice
422 }
423 else{
424 basalmeltingrates[vertexdown]=meltingrate_enthalpy[is];
425 watercolumns[vertexdown]+=dt*meltingrate_enthalpy[is];
426 }
427 }
428 else{
429 basalmeltingrates[vertexdown]=meltingrate_enthalpy[is];
430 if(watercolumns[vertexdown]+meltingrate_enthalpy[is]<0.)
431 watercolumns[vertexdown]=0.;
432 else
433 watercolumns[vertexdown]+=meltingrate_enthalpy[is];
434 }
435 basalmeltingrates[vertexdown]*=rho_water/rho_ice; // convert meltingrate from water to ice equivalent
436 _assert_(watercolumns[vertexdown]>=0.);
437 }/*}}}*/
438
439 /*feed updated variables back into model*/
440 if(dt!=0.){
441 element->AddInput(enthalpy_enum,enthalpies,P1Enum); //TODO: distinguis for steadystate and transient run
442 element->AddInput(WatercolumnEnum,watercolumns,P1Enum);
443 }
444 element->AddInput(BasalforcingsGroundediceMeltingRateEnum,basalmeltingrates,P1Enum);
445
446 /*Clean up and return*/
447 delete gauss;
448 delete friction;
449 xDelete<int>(pairindices);
450 xDelete<IssmDouble>(enthalpies);
451 xDelete<IssmDouble>(pressures);
452 xDelete<IssmDouble>(watercolumns);
453 xDelete<IssmDouble>(basalmeltingrates);
454 xDelete<IssmDouble>(meltingrate_enthalpy);
455 xDelete<IssmDouble>(heating);
456 xDelete<IssmDouble>(xyz_list);
457 xDelete<IssmDouble>(xyz_list_base);
458}/*}}}*/
459void EnthalpyAnalysis::Core(FemModel* femmodel){/*{{{*/
460 if(VerboseSolution()) _printf0_(" computing enthalpy\n");
461 femmodel->SetCurrentConfiguration(EnthalpyAnalysisEnum);
462 solutionsequence_thermal_nonlinear(femmodel);
463
464 /*transfer enthalpy to enthalpy picard for the next step: */
465 InputDuplicatex(femmodel,EnthalpyEnum,EnthalpyPicardEnum);
466
467 IssmDouble dt;
468 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
469 if(dt==0.) ComputeBasalMeltingrate(femmodel);
470 else PostProcessing(femmodel);
471
472}/*}}}*/
473ElementVector* EnthalpyAnalysis::CreateDVector(Element* element){/*{{{*/
474 /*Default, return NULL*/
475 return NULL;
476}/*}}}*/
477ElementMatrix* EnthalpyAnalysis::CreateJacobianMatrix(Element* element){/*{{{*/
478_error_("Not implemented");
479}/*}}}*/
480ElementMatrix* EnthalpyAnalysis::CreateKMatrix(Element* element){/*{{{*/
481
482 /* Check if ice in element */
483 if(!element->IsIceInElement()) return NULL;
484
485 /*compute all stiffness matrices for this element*/
486 ElementMatrix* Ke1=CreateKMatrixVolume(element);
487 ElementMatrix* Ke2=CreateKMatrixShelf(element);
488 ElementMatrix* Ke =new ElementMatrix(Ke1,Ke2);
489
490 /*clean-up and return*/
491 delete Ke1;
492 delete Ke2;
493 return Ke;
494}/*}}}*/
495ElementMatrix* EnthalpyAnalysis::CreateKMatrixVolume(Element* element){/*{{{*/
496
497 /* Check if ice in element */
498 if(!element->IsIceInElement()) return NULL;
499
500 /*Intermediaries */
501 int stabilization;
502 IssmDouble Jdet,dt,u,v,w,um,vm,wm,vel;
503 IssmDouble h,hx,hy,hz,vx,vy,vz;
504 IssmDouble tau_parameter,diameter;
505 IssmDouble D_scalar;
506 IssmDouble* xyz_list = NULL;
507
508 /*Fetch number of nodes and dof for this finite element*/
509 int numnodes = element->GetNumberOfNodes();
510
511 /*Initialize Element vector and other vectors*/
512 ElementMatrix* Ke = element->NewElementMatrix();
513 IssmDouble* basis = xNew<IssmDouble>(numnodes);
514 IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
515 IssmDouble* B = xNew<IssmDouble>(3*numnodes);
516 IssmDouble* Bprime = xNew<IssmDouble>(3*numnodes);
517 IssmDouble D[3][3] = {0.};
518 IssmDouble K[3][3];
519
520 /*Retrieve all inputs and parameters*/
521 element->GetVerticesCoordinates(&xyz_list);
522 element->FindParam(&dt,TimesteppingTimeStepEnum);
523 element->FindParam(&stabilization,ThermalStabilizationEnum);
524 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
525 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
526 IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
527 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
528 IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
529 Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
530 Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
531 Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
532 Input* vxm_input = element->GetInput(VxMeshEnum); _assert_(vxm_input);
533 Input* vym_input = element->GetInput(VyMeshEnum); _assert_(vym_input);
534 Input* vzm_input = element->GetInput(VzMeshEnum); _assert_(vzm_input);
535 if(stabilization==2) diameter=element->MinEdgeLength(xyz_list);
536
537 /*Enthalpy diffusion parameter*/
538 IssmDouble kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
539
540 /* Start looping on the number of gaussian points: */
541 Gauss* gauss=element->NewGauss(4);
542 for(int ig=gauss->begin();ig<gauss->end();ig++){
543 gauss->GaussPoint(ig);
544
545 element->JacobianDeterminant(&Jdet,xyz_list,gauss);
546 D_scalar=gauss->weight*Jdet;
547 if(dt!=0.) D_scalar=D_scalar*dt;
548
549 /*Conduction: */
550 GetBConduct(B,element,xyz_list,gauss);
551 D[0][0]=D_scalar*kappa/rho_ice;
552 D[1][1]=D_scalar*kappa/rho_ice;
553 D[2][2]=D_scalar*kappa/rho_ice;
554 TripleMultiply(B,3,numnodes,1,
555 &D[0][0],3,3,0,
556 B,3,numnodes,0,
557 &Ke->values[0],1);
558
559 /*Advection: */
560 GetBAdvec(B,element,xyz_list,gauss);
561 GetBAdvecprime(Bprime,element,xyz_list,gauss);
562 vx_input->GetInputValue(&u,gauss); vxm_input->GetInputValue(&um,gauss); vx=u-um;
563 vy_input->GetInputValue(&v,gauss); vym_input->GetInputValue(&vm,gauss); vy=v-vm;
564 vz_input->GetInputValue(&w,gauss); vzm_input->GetInputValue(&wm,gauss); vz=w-wm;
565 D[0][0]=D_scalar*vx;
566 D[1][1]=D_scalar*vy;
567 D[2][2]=D_scalar*vz;
568 TripleMultiply(B,3,numnodes,1,
569 &D[0][0],3,3,0,
570 Bprime,3,numnodes,0,
571 &Ke->values[0],1);
572
573 /*Transient: */
574 if(dt!=0.){
575 D_scalar=gauss->weight*Jdet;
576 element->NodalFunctions(basis,gauss);
577 TripleMultiply(basis,numnodes,1,0,
578 &D_scalar,1,1,0,
579 basis,1,numnodes,0,
580 &Ke->values[0],1);
581 D_scalar=D_scalar*dt;
582 }
583
584 /*Artifficial diffusivity*/
585 if(stabilization==1){
586 element->ElementSizes(&hx,&hy,&hz);
587 vel=sqrt(vx*vx + vy*vy + vz*vz)+1.e-14;
588 h=sqrt( pow(hx*vx/vel,2) + pow(hy*vy/vel,2) + pow(hz*vz/vel,2));
589 K[0][0]=h/(2.*vel)*fabs(vx*vx); K[0][1]=h/(2.*vel)*fabs(vx*vy); K[0][2]=h/(2.*vel)*fabs(vx*vz);
590 K[1][0]=h/(2.*vel)*fabs(vy*vx); K[1][1]=h/(2.*vel)*fabs(vy*vy); K[1][2]=h/(2.*vel)*fabs(vy*vz);
591 K[2][0]=h/(2.*vel)*fabs(vz*vx); K[2][1]=h/(2.*vel)*fabs(vz*vy); K[2][2]=h/(2.*vel)*fabs(vz*vz);
592 for(int i=0;i<3;i++) for(int j=0;j<3;j++) K[i][j] = D_scalar*K[i][j];
593
594 GetBAdvecprime(Bprime,element,xyz_list,gauss);
595 TripleMultiply(Bprime,3,numnodes,1,
596 &K[0][0],3,3,0,
597 Bprime,3,numnodes,0,
598 &Ke->values[0],1);
599 }
600 else if(stabilization==2){
601 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
602 tau_parameter=element->StabilizationParameter(u-um,v-vm,w-wm,diameter,kappa/rho_ice);
603 for(int i=0;i<numnodes;i++){
604 for(int j=0;j<numnodes;j++){
605 Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*
606 ((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i])*((u-um)*dbasis[0*numnodes+j]+(v-vm)*dbasis[1*numnodes+j]+(w-wm)*dbasis[2*numnodes+j]);
607 }
608 }
609 if(dt!=0.){
610 D_scalar=gauss->weight*Jdet;
611 for(int i=0;i<numnodes;i++){
612 for(int j=0;j<numnodes;j++){
613 Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*basis[j]*((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i]);
614 }
615 }
616 }
617 }
618 }
619
620 /*Clean up and return*/
621 xDelete<IssmDouble>(xyz_list);
622 xDelete<IssmDouble>(basis);
623 xDelete<IssmDouble>(dbasis);
624 xDelete<IssmDouble>(B);
625 xDelete<IssmDouble>(Bprime);
626 delete gauss;
627 return Ke;
628}/*}}}*/
629ElementMatrix* EnthalpyAnalysis::CreateKMatrixShelf(Element* element){/*{{{*/
630
631 /* Check if ice in element */
632 if(!element->IsIceInElement()) return NULL;
633
634 /*Initialize Element matrix and return if necessary*/
635 if(!element->IsOnBase() || !element->IsFloating()) return NULL;
636
637 /*Intermediaries*/
638 IssmDouble dt,Jdet,D;
639 IssmDouble *xyz_list_base = NULL;
640
641 /*Fetch number of nodes for this finite element*/
642 int numnodes = element->GetNumberOfNodes();
643
644 /*Initialize vectors*/
645 ElementMatrix* Ke = element->NewElementMatrix();
646 IssmDouble* basis = xNew<IssmDouble>(numnodes);
647
648 /*Retrieve all inputs and parameters*/
649 element->GetVerticesCoordinatesBase(&xyz_list_base);
650 element->FindParam(&dt,TimesteppingTimeStepEnum);
651 IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
652 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
653 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
654 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
655 IssmDouble mixed_layer_capacity= element->GetMaterialParameter(MaterialsMixedLayerCapacityEnum);
656 IssmDouble thermal_exchange_vel= element->GetMaterialParameter(MaterialsThermalExchangeVelocityEnum);
657
658 /* Start looping on the number of gaussian points: */
659 Gauss* gauss=element->NewGaussBase(4);
660 for(int ig=gauss->begin();ig<gauss->end();ig++){
661 gauss->GaussPoint(ig);
662
663 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
664 element->NodalFunctions(basis,gauss);
665
666 D=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel/(heatcapacity*rho_ice);
667 if(reCast<bool,IssmDouble>(dt)) D=dt*D;
668 TripleMultiply(basis,numnodes,1,0,
669 &D,1,1,0,
670 basis,1,numnodes,0,
671 &Ke->values[0],1);
672
673 }
674
675 /*Clean up and return*/
676 delete gauss;
677 xDelete<IssmDouble>(basis);
678 xDelete<IssmDouble>(xyz_list_base);
679 return Ke;
680}/*}}}*/
681ElementVector* EnthalpyAnalysis::CreatePVector(Element* element){/*{{{*/
682
683 /* Check if ice in element */
684 if(!element->IsIceInElement()) return NULL;
685
686 /*compute all load vectors for this element*/
687 ElementVector* pe1=CreatePVectorVolume(element);
688 ElementVector* pe2=CreatePVectorSheet(element);
689 ElementVector* pe3=CreatePVectorShelf(element);
690 ElementVector* pe =new ElementVector(pe1,pe2,pe3);
691
692 /*clean-up and return*/
693 delete pe1;
694 delete pe2;
695 delete pe3;
696 return pe;
697}/*}}}*/
698ElementVector* EnthalpyAnalysis::CreatePVectorVolume(Element* element){/*{{{*/
699
700 /* Check if ice in element */
701 if(!element->IsIceInElement()) return NULL;
702
703 /*Intermediaries*/
704 int i, stabilization;
705 IssmDouble Jdet,phi,dt;
706 IssmDouble enthalpy, Hpmp;
707 IssmDouble enthalpypicard, d1enthalpypicard[3];
708 IssmDouble pressure, d1pressure[3], d2pressure;
709 IssmDouble waterfractionpicard;
710 IssmDouble kappa,tau_parameter,diameter,kappa_w;
711 IssmDouble u,v,w;
712 IssmDouble scalar_def, scalar_sens ,scalar_transient;
713 IssmDouble* xyz_list = NULL;
714 IssmDouble d1H_d1P, d1P2;
715
716 /*Fetch number of nodes and dof for this finite element*/
717 int numnodes = element->GetNumberOfNodes();
718 int numvertices = element->GetNumberOfVertices();
719
720 /*Initialize Element vector*/
721 ElementVector* pe = element->NewElementVector();
722 IssmDouble* basis = xNew<IssmDouble>(numnodes);
723 IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
724
725 /*Retrieve all inputs and parameters*/
726 element->GetVerticesCoordinates(&xyz_list);
727 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
728 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
729 IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
730 IssmDouble temperateiceconductivity = element->GetMaterialParameter(MaterialsTemperateiceconductivityEnum);
731 IssmDouble beta = element->GetMaterialParameter(MaterialsBetaEnum);
732 IssmDouble latentheat = element->GetMaterialParameter(MaterialsLatentheatEnum);
733 element->FindParam(&dt,TimesteppingTimeStepEnum);
734 element->FindParam(&stabilization,ThermalStabilizationEnum);
735 Input* vx_input=element->GetInput(VxEnum); _assert_(vx_input);
736 Input* vy_input=element->GetInput(VyEnum); _assert_(vy_input);
737 Input* vz_input=element->GetInput(VzEnum); _assert_(vz_input);
738 Input* enthalpypicard_input=element->GetInput(EnthalpyPicardEnum); _assert_(enthalpypicard_input);
739 Input* pressure_input=element->GetInput(PressureEnum); _assert_(pressure_input);
740 Input* enthalpy_input=NULL;
741 if(reCast<bool,IssmDouble>(dt)){enthalpy_input = element->GetInput(EnthalpyEnum); _assert_(enthalpy_input);}
742 if(stabilization==2){
743 diameter=element->MinEdgeLength(xyz_list);
744 kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
745 }
746
747 /* Start looping on the number of gaussian points: */
748 Gauss* gauss=element->NewGauss(4);
749 for(int ig=gauss->begin();ig<gauss->end();ig++){
750 gauss->GaussPoint(ig);
751
752 element->JacobianDeterminant(&Jdet,xyz_list,gauss);
753 element->NodalFunctions(basis,gauss);
754
755 /*viscous dissipation*/
756 element->ViscousHeating(&phi,xyz_list,gauss,vx_input,vy_input,vz_input);
757
758 scalar_def=phi/rho_ice*Jdet*gauss->weight;
759 if(dt!=0.) scalar_def=scalar_def*dt;
760
761 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_def*basis[i];
762
763 /*sensible heat flux in temperate ice*/
764 enthalpypicard_input->GetInputValue(&enthalpypicard,gauss);
765 pressure_input->GetInputValue(&pressure,gauss);
766 Hpmp=this->PureIceEnthalpy(element, pressure);
767
768 if(enthalpypicard>=Hpmp){
769 enthalpypicard_input->GetInputDerivativeValue(&d1enthalpypicard[0],xyz_list,gauss);
770 pressure_input->GetInputDerivativeValue(&d1pressure[0],xyz_list,gauss);
771 d2pressure=0.; // for linear elements, 2nd derivative is zero
772
773 d1H_d1P=0.;
774 for(i=0;i<3;i++) d1H_d1P+=d1enthalpypicard[i]*d1pressure[i];
775 d1P2=0.;
776 for(i=0;i<3;i++) d1P2+=pow(d1pressure[i],2.);
777
778 scalar_sens=-beta*((temperateiceconductivity - thermalconductivity)/latentheat*(d1H_d1P + beta*heatcapacity*d1P2))/rho_ice;
779 if(dt!=0.) scalar_sens=scalar_sens*dt;
780 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_sens*basis[i];
781 }
782
783 /* Build transient now */
784 if(reCast<bool,IssmDouble>(dt)){
785 enthalpy_input->GetInputValue(&enthalpy, gauss);
786 scalar_transient=enthalpy*Jdet*gauss->weight;
787 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_transient*basis[i];
788 }
789
790 if(stabilization==2){
791 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
792
793 vx_input->GetInputValue(&u,gauss);
794 vy_input->GetInputValue(&v,gauss);
795 vz_input->GetInputValue(&w,gauss);
796 tau_parameter=element->StabilizationParameter(u,v,w,diameter,kappa/rho_ice);
797
798 for(i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_def*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]);
799
800 if(dt!=0.){
801 for(i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_transient*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]);
802 }
803 }
804 }
805
806 /*Clean up and return*/
807 xDelete<IssmDouble>(basis);
808 xDelete<IssmDouble>(dbasis);
809 xDelete<IssmDouble>(xyz_list);
810 delete gauss;
811 return pe;
812
813}/*}}}*/
814ElementVector* EnthalpyAnalysis::CreatePVectorSheet(Element* element){/*{{{*/
815
816 /* Check if ice in element */
817 if(!element->IsIceInElement()) return NULL;
818
819 /* implementation of the basal condition decision chart of Aschwanden 2012, Fig.5 */
820 if(!element->IsOnBase() || element->IsFloating()) return NULL;
821
822 bool converged, isdynamicbasalspc;
823 int i, state;
824 int enthalpy_enum;
825 IssmDouble dt,Jdet,scalar;
826 IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
827 IssmDouble vx,vy,vz;
828 IssmDouble alpha2,basalfriction,geothermalflux,heatflux;
829 IssmDouble *xyz_list_base = NULL;
830
831 /*Fetch number of nodes for this finite element*/
832 int numnodes = element->GetNumberOfNodes();
833
834 /*Initialize vectors*/
835 ElementVector* pe = element->NewElementVector();
836 IssmDouble* basis = xNew<IssmDouble>(numnodes);
837
838 /*Retrieve all inputs and parameters*/
839 element->GetVerticesCoordinatesBase(&xyz_list_base);
840 element->FindParam(&dt,TimesteppingTimeStepEnum);
841 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
842 element->GetInputValue(&converged,ConvergedEnum);
843 if(dt==0. && !converged) enthalpy_enum=EnthalpyPicardEnum; // use enthalpy from last iteration
844 else enthalpy_enum=EnthalpyEnum; // use enthalpy from last time step
845 Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
846 Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
847 Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
848 Input* enthalpy_input = element->GetInput(enthalpy_enum); _assert_(enthalpy_input);
849 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
850 Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
851 Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
852 Input* geothermalflux_input = element->GetInput(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input);
853 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
854
855 /*Build friction element, needed later: */
856 Friction* friction=new Friction(element,3);
857
858 /* Start looping on the number of gaussian points: */
859 Gauss* gauss=element->NewGaussBase(4);
860 Gauss* gaussup=element->NewGaussTop(4);
861 for(int ig=gauss->begin();ig<gauss->end();ig++){
862 gauss->GaussPoint(ig);
863 gaussup->GaussPoint(ig);
864
865 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
866 element->NodalFunctions(basis,gauss);
867
868 if(isdynamicbasalspc){
869 enthalpy_input->GetInputValue(&enthalpy,gauss);
870 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
871 pressure_input->GetInputValue(&pressure,gauss);
872 pressure_input->GetInputValue(&pressureup,gaussup);
873 watercolumn_input->GetInputValue(&watercolumn,gauss);
874 meltingrate_input->GetInputValue(&meltingrate,gauss);
875 state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
876 }
877 else
878 state=0;
879
880 switch (state) {
881 case 0: case 1: case 2: case 3:
882 // cold, dry base; cold, wet base; refreezing temperate base; thin temperate base:
883 // Apply basal surface forcing.
884 // Interpolated values of enthalpy on gauss nodes may indicate cold base,
885 // although one node might have become temperate. So keep heat flux switched on.
886 geothermalflux_input->GetInputValue(&geothermalflux,gauss);
887 friction->GetAlpha2(&alpha2,gauss);
888 vx_input->GetInputValue(&vx,gauss);
889 vy_input->GetInputValue(&vy,gauss);
890 vz_input->GetInputValue(&vz,gauss);
891 basalfriction=alpha2*(vx*vx+vy*vy+vz*vz);
892 heatflux=(basalfriction+geothermalflux)/(rho_ice);
893 scalar=gauss->weight*Jdet*heatflux;
894 if(dt!=0.) scalar=dt*scalar;
895 for(i=0;i<numnodes;i++)
896 pe->values[i]+=scalar*basis[i];
897 break;
898 case 4:
899 // temperate, thick melting base: set grad H*n=0
900 for(i=0;i<numnodes;i++)
901 pe->values[i]+=0.;
902 break;
903 default:
904 _printf0_(" unknown thermal basal state found!");
905 }
906 }
907
908 /*Clean up and return*/
909 delete gauss;
910 delete gaussup;
911 delete friction;
912 xDelete<IssmDouble>(basis);
913 xDelete<IssmDouble>(xyz_list_base);
914 return pe;
915
916}/*}}}*/
917ElementVector* EnthalpyAnalysis::CreatePVectorShelf(Element* element){/*{{{*/
918
919 /* Check if ice in element */
920 if(!element->IsIceInElement()) return NULL;
921
922 /*Get basal element*/
923 if(!element->IsOnBase() || !element->IsFloating()) return NULL;
924
925 IssmDouble Hpmp,dt,Jdet,scalar_ocean,pressure;
926 IssmDouble *xyz_list_base = NULL;
927
928 /*Fetch number of nodes for this finite element*/
929 int numnodes = element->GetNumberOfNodes();
930
931 /*Initialize vectors*/
932 ElementVector* pe = element->NewElementVector();
933 IssmDouble* basis = xNew<IssmDouble>(numnodes);
934
935 /*Retrieve all inputs and parameters*/
936 element->GetVerticesCoordinatesBase(&xyz_list_base);
937 element->FindParam(&dt,TimesteppingTimeStepEnum);
938 Input* pressure_input=element->GetInput(PressureEnum); _assert_(pressure_input);
939 IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
940 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
941 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
942 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
943 IssmDouble mixed_layer_capacity= element->GetMaterialParameter(MaterialsMixedLayerCapacityEnum);
944 IssmDouble thermal_exchange_vel= element->GetMaterialParameter(MaterialsThermalExchangeVelocityEnum);
945
946 /* Start looping on the number of gaussian points: */
947 Gauss* gauss=element->NewGaussBase(4);
948 for(int ig=gauss->begin();ig<gauss->end();ig++){
949 gauss->GaussPoint(ig);
950
951 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
952 element->NodalFunctions(basis,gauss);
953
954 pressure_input->GetInputValue(&pressure,gauss);
955 Hpmp=element->PureIceEnthalpy(pressure);
956
957 scalar_ocean=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel*Hpmp/(heatcapacity*rho_ice);
958 if(reCast<bool,IssmDouble>(dt)) scalar_ocean=dt*scalar_ocean;
959
960 for(int i=0;i<numnodes;i++) pe->values[i]+=scalar_ocean*basis[i];
961 }
962
963 /*Clean up and return*/
964 delete gauss;
965 xDelete<IssmDouble>(basis);
966 xDelete<IssmDouble>(xyz_list_base);
967 return pe;
968}/*}}}*/
969void EnthalpyAnalysis::DrainWaterfraction(FemModel* femmodel){/*{{{*/
970 /*Drain excess water fraction in ice column: */
971 for(int i=0;i<femmodel->elements->Size();i++){
972 Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
973 DrainWaterfractionIcecolumn(element);
974 }
975}/*}}}*/
976void EnthalpyAnalysis::DrainWaterfraction(Element* element, IssmDouble* pdrainrate_element){/*{{{*/
977
978 /* Check if ice in element */
979 if(!element->IsIceInElement()) return;
980
981 /*Intermediaries*/
982 int iv,is,vertexdown,vertexup,numsegments;
983 IssmDouble dt, height_element;
984 IssmDouble rho_water, rho_ice;
985 int numvertices = element->GetNumberOfVertices();
986
987 IssmDouble* xyz_list = NULL;
988 IssmDouble* enthalpies = xNew<IssmDouble>(numvertices);
989 IssmDouble* pressures = xNew<IssmDouble>(numvertices);
990 IssmDouble* temperatures = xNew<IssmDouble>(numvertices);
991 IssmDouble* waterfractions = xNew<IssmDouble>(numvertices);
992 IssmDouble* deltawaterfractions = xNew<IssmDouble>(numvertices);
993 int *pairindices = NULL;
994
995 rho_ice=element->GetMaterialParameter(MaterialsRhoIceEnum);
996 rho_water=element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
997
998 element->GetVerticesCoordinates(&xyz_list);
999 element->GetInputListOnVertices(enthalpies,EnthalpyEnum);
1000 element->GetInputListOnVertices(pressures,PressureEnum);
1001
1002 element->FindParam(&dt,TimesteppingTimeStepEnum);
1003 for(iv=0;iv<numvertices;iv++){
1004 element->EnthalpyToThermal(&temperatures[iv],&waterfractions[iv], enthalpies[iv],pressures[iv]);
1005 deltawaterfractions[iv]=DrainageFunctionWaterfraction(waterfractions[iv], dt);
1006 }
1007
1008 /*drain waterfraction, feed updated variables back into model*/
1009 for(iv=0;iv<numvertices;iv++){
1010 if(reCast<bool,IssmDouble>(dt))
1011 waterfractions[iv]-=deltawaterfractions[iv]*dt;
1012 else
1013 waterfractions[iv]-=deltawaterfractions[iv];
1014 element->ThermalToEnthalpy(&enthalpies[iv], temperatures[iv], waterfractions[iv], pressures[iv]);
1015 }
1016 element->AddInput(EnthalpyEnum,enthalpies,P1Enum);
1017 element->AddInput(WaterfractionEnum,waterfractions,P1Enum);
1018
1019 /*return meltwater column equivalent to drained water*/
1020 element->VerticalSegmentIndices(&pairindices,&numsegments);
1021 for(is=0;is<numsegments;is++){
1022 vertexdown = pairindices[is*2+0];
1023 vertexup = pairindices[is*2+1];
1024 height_element=fabs(xyz_list[vertexup*3+2]-xyz_list[vertexdown*3+2]);
1025 pdrainrate_element[is]=(deltawaterfractions[vertexdown]+deltawaterfractions[vertexup])/2.*height_element; // return water equivalent of drainage
1026 _assert_(pdrainrate_element[is]>=0.);
1027 }
1028
1029 /*Clean up and return*/
1030 xDelete<int>(pairindices);
1031 xDelete<IssmDouble>(xyz_list);
1032 xDelete<IssmDouble>(enthalpies);
1033 xDelete<IssmDouble>(pressures);
1034 xDelete<IssmDouble>(temperatures);
1035 xDelete<IssmDouble>(waterfractions);
1036 xDelete<IssmDouble>(deltawaterfractions);
1037}/*}}}*/
1038void EnthalpyAnalysis::DrainWaterfractionIcecolumn(Element* element){/*{{{*/
1039
1040 /* Check if ice in element */
1041 if(!element->IsIceInElement()) return;
1042
1043 /* Only drain waterfraction of ice column from element at base*/
1044 if(!element->IsOnBase()) return; //FIXME: allow freeze on for floating elements
1045
1046 /* Intermediaries*/
1047 int is, numvertices, numsegments;
1048 int *pairindices = NULL;
1049
1050 numvertices=element->GetNumberOfVertices();
1051 element->VerticalSegmentIndices(&pairindices,&numsegments);
1052
1053 IssmDouble* watercolumn = xNew<IssmDouble>(numvertices);
1054 IssmDouble* drainrate_column = xNew<IssmDouble>(numsegments);
1055 IssmDouble* drainrate_element = xNew<IssmDouble>(numsegments);
1056
1057 element->GetInputListOnVertices(watercolumn,WatercolumnEnum);
1058
1059 for(is=0;is<numsegments;is++) drainrate_column[is]=0.;
1060 Element* elementi = element;
1061 for(;;){
1062 for(is=0;is<numsegments;is++) drainrate_element[is]=0.;
1063 DrainWaterfraction(elementi,drainrate_element); // TODO: make sure every vertex is only drained once
1064 for(is=0;is<numsegments;is++) drainrate_column[is]+=drainrate_element[is];
1065
1066 if(elementi->IsOnSurface()) break;
1067 elementi=elementi->GetUpperElement();
1068 }
1069 /* add drained water to water column*/
1070 for(is=0;is<numsegments;is++) watercolumn[is]+=drainrate_column[is];
1071 /* Feed updated water column back into model */
1072 element->AddInput(WatercolumnEnum,watercolumn,P1Enum);
1073
1074 xDelete<int>(pairindices);
1075 xDelete<IssmDouble>(drainrate_column);
1076 xDelete<IssmDouble>(drainrate_element);
1077 xDelete<IssmDouble>(watercolumn);
1078}/*}}}*/
1079IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameter(Element* element,IssmDouble enthalpy,IssmDouble pressure){/*{{{*/
1080
1081 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
1082 IssmDouble temperateiceconductivity = element->GetMaterialParameter(MaterialsTemperateiceconductivityEnum);
1083 IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
1084
1085 if(enthalpy < PureIceEnthalpy(element,pressure)){
1086 return thermalconductivity/heatcapacity;
1087 }
1088 else{
1089 return temperateiceconductivity/heatcapacity;
1090 }
1091}/*}}}*/
1092IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameterVolume(Element* element,int enthalpy_enum){/*{{{*/
1093
1094 int iv;
1095 IssmDouble lambda; /* fraction of cold ice */
1096 IssmDouble kappa,kappa_c,kappa_t; /* enthalpy conductivities */
1097 IssmDouble Hc,Ht;
1098
1099 /*Get pressures and enthalpies on vertices*/
1100 int numvertices = element->GetNumberOfVertices();
1101 IssmDouble* pressures = xNew<IssmDouble>(numvertices);
1102 IssmDouble* enthalpies = xNew<IssmDouble>(numvertices);
1103 IssmDouble* PIE = xNew<IssmDouble>(numvertices);
1104 IssmDouble* dHpmp = xNew<IssmDouble>(numvertices);
1105 element->GetInputListOnVertices(pressures,PressureEnum);
1106 element->GetInputListOnVertices(enthalpies,enthalpy_enum);
1107 for(iv=0;iv<numvertices;iv++){
1108 PIE[iv] = PureIceEnthalpy(element,pressures[iv]);
1109 dHpmp[iv] = enthalpies[iv]-PIE[iv];
1110 }
1111
1112 bool allequalsign = true;
1113 if(dHpmp[0]<0.){
1114 for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]<0.));
1115 }
1116 else{
1117 for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]>=0.));
1118 }
1119
1120 if(allequalsign){
1121 kappa = EnthalpyDiffusionParameter(element,enthalpies[0],pressures[0]);
1122 }
1123 else{
1124 /* return harmonic mean of thermal conductivities, weighted by fraction of cold/temperate ice,
1125 cf Patankar 1980, pp44 */
1126 kappa_c = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)-1.,0.);
1127 kappa_t = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)+1.,0.);
1128 Hc=0.; Ht=0.;
1129 for(iv=0; iv<numvertices;iv++){
1130 if(enthalpies[iv]<PIE[iv])
1131 Hc+=(PIE[iv]-enthalpies[iv]);
1132 else
1133 Ht+=(enthalpies[iv]-PIE[iv]);
1134 }
1135 _assert_((Hc+Ht)>0.);
1136 lambda = Hc/(Hc+Ht);
1137 kappa = kappa_c*kappa_t/(lambda*kappa_t+(1.-lambda)*kappa_c); // ==(lambda/kappa_c + (1.-lambda)/kappa_t)^-1
1138 }
1139
1140 /*Clean up and return*/
1141 xDelete<IssmDouble>(PIE);
1142 xDelete<IssmDouble>(dHpmp);
1143 xDelete<IssmDouble>(pressures);
1144 xDelete<IssmDouble>(enthalpies);
1145 return kappa;
1146}/*}}}*/
1147void EnthalpyAnalysis::GetBAdvec(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
1148 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
1149 * For node i, Bi' can be expressed in the actual coordinate system
1150 * by:
1151 * Bi_advec =[ h ]
1152 * [ h ]
1153 * [ h ]
1154 * where h is the interpolation function for node i.
1155 *
1156 * We assume B has been allocated already, of size: 3x(NDOF1*NUMNODESP1)
1157 */
1158
1159 /*Fetch number of nodes for this finite element*/
1160 int numnodes = element->GetNumberOfNodes();
1161
1162 /*Get nodal functions*/
1163 IssmDouble* basis=xNew<IssmDouble>(numnodes);
1164 element->NodalFunctions(basis,gauss);
1165
1166 /*Build B: */
1167 for(int i=0;i<numnodes;i++){
1168 B[numnodes*0+i] = basis[i];
1169 B[numnodes*1+i] = basis[i];
1170 B[numnodes*2+i] = basis[i];
1171 }
1172
1173 /*Clean-up*/
1174 xDelete<IssmDouble>(basis);
1175}/*}}}*/
1176void EnthalpyAnalysis::GetBAdvecprime(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
1177 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
1178 * For node i, Bi' can be expressed in the actual coordinate system
1179 * by:
1180 * Biprime_advec=[ dh/dx ]
1181 * [ dh/dy ]
1182 * [ dh/dz ]
1183 * where h is the interpolation function for node i.
1184 *
1185 * We assume B has been allocated already, of size: 3x(NDOF1*numnodes)
1186 */
1187
1188 /*Fetch number of nodes for this finite element*/
1189 int numnodes = element->GetNumberOfNodes();
1190
1191 /*Get nodal functions derivatives*/
1192 IssmDouble* dbasis=xNew<IssmDouble>(3*numnodes);
1193 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
1194
1195 /*Build B: */
1196 for(int i=0;i<numnodes;i++){
1197 B[numnodes*0+i] = dbasis[0*numnodes+i];
1198 B[numnodes*1+i] = dbasis[1*numnodes+i];
1199 B[numnodes*2+i] = dbasis[2*numnodes+i];
1200 }
1201
1202 /*Clean-up*/
1203 xDelete<IssmDouble>(dbasis);
1204}/*}}}*/
1205void EnthalpyAnalysis::GetBasalConstraints(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
1206
1207 /*Intermediary*/
1208 bool isdynamicbasalspc;
1209 IssmDouble dt;
1210
1211 /*Check wether dynamic basal boundary conditions are activated */
1212 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
1213 if(!isdynamicbasalspc) return;
1214
1215 element->FindParam(&dt,TimesteppingTimeStepEnum);
1216 if(dt==0.){
1217 GetBasalConstraintsSteadystate(vec_spc,element);
1218 }
1219 else{
1220 GetBasalConstraintsTransient(vec_spc,element);
1221 }
1222}/*}}}*/
1223void EnthalpyAnalysis::GetBasalConstraintsSteadystate(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
1224
1225 /* Check if ice in element */
1226 if(!element->IsIceInElement()) return;
1227
1228 /* Only update constraints at the base.
1229 * Floating ice is not affected by basal BC decision chart. */
1230 if(!(element->IsOnBase()) || element->IsFloating()) return;
1231
1232 /*Intermediary*/
1233 int numindices, numindicesup, state;
1234 int *indices = NULL, *indicesup = NULL;
1235 IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
1236
1237 /*Get parameters and inputs: */
1238 Input* enthalpy_input = element->GetInput(EnthalpyPicardEnum); _assert_(enthalpy_input);
1239 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
1240 Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
1241 Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
1242
1243 /*Fetch indices of basal & surface nodes for this finite element*/
1244 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
1245 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
1246 penta->SurfaceNodeIndices(&numindicesup,&indicesup,element->GetElementType()); _assert_(numindices==numindicesup);
1247
1248 GaussPenta* gauss=new GaussPenta();
1249 GaussPenta* gaussup=new GaussPenta();
1250 for(int i=0;i<numindices;i++){
1251 gauss->GaussNode(element->GetElementType(),indices[i]);
1252 gaussup->GaussNode(element->GetElementType(),indicesup[i]);
1253
1254 enthalpy_input->GetInputValue(&enthalpy,gauss);
1255 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
1256 pressure_input->GetInputValue(&pressure,gauss);
1257 pressure_input->GetInputValue(&pressureup,gaussup);
1258 watercolumn_input->GetInputValue(&watercolumn,gauss);
1259 meltingrate_input->GetInputValue(&meltingrate,gauss);
1260
1261 state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
1262 switch (state) {
1263 case 0:
1264 // cold, dry base: apply basal surface forcing
1265 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
1266 break;
1267 case 1:
1268 // cold, wet base: keep at pressure melting point
1269 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1270 break;
1271 case 2:
1272 // temperate, thin refreezing base:
1273 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1274 break;
1275 case 3:
1276 // temperate, thin melting base: set spc
1277 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1278 break;
1279 case 4:
1280 // temperate, thick melting base:
1281 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1282 break;
1283 default:
1284 _printf0_(" unknown thermal basal state found!");
1285 }
1286 }
1287
1288 /*Free ressources:*/
1289 xDelete<int>(indices);
1290 xDelete<int>(indicesup);
1291 delete gauss;
1292 delete gaussup;
1293}/*}}}*/
1294void EnthalpyAnalysis::GetBasalConstraintsTransient(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
1295
1296 /* Check if ice in element */
1297 if(!element->IsIceInElement()) return;
1298
1299 /* Only update constraints at the base.
1300 * Floating ice is not affected by basal BC decision chart.*/
1301 if(!(element->IsOnBase()) || element->IsFloating()) return;
1302
1303 /*Intermediary*/
1304 int numindices, numindicesup, state;
1305 int *indices = NULL, *indicesup = NULL;
1306 IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
1307
1308 /*Get parameters and inputs: */
1309 Input* enthalpy_input = element->GetInput(EnthalpyEnum); _assert_(enthalpy_input); //TODO: check EnthalpyPicard?
1310 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
1311 Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
1312 Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
1313
1314 /*Fetch indices of basal & surface nodes for this finite element*/
1315 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
1316 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
1317 penta->SurfaceNodeIndices(&numindicesup,&indicesup,element->GetElementType()); _assert_(numindices==numindicesup);
1318
1319 GaussPenta* gauss=new GaussPenta();
1320 GaussPenta* gaussup=new GaussPenta();
1321
1322 for(int i=0;i<numindices;i++){
1323 gauss->GaussNode(element->GetElementType(),indices[i]);
1324 gaussup->GaussNode(element->GetElementType(),indicesup[i]);
1325
1326 enthalpy_input->GetInputValue(&enthalpy,gauss);
1327 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
1328 pressure_input->GetInputValue(&pressure,gauss);
1329 pressure_input->GetInputValue(&pressureup,gaussup);
1330 watercolumn_input->GetInputValue(&watercolumn,gauss);
1331 meltingrate_input->GetInputValue(&meltingrate,gauss);
1332
1333 state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
1334
1335 switch (state) {
1336 case 0:
1337 // cold, dry base: apply basal surface forcing
1338 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
1339 break;
1340 case 1:
1341 // cold, wet base: keep at pressure melting point
1342 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1343 break;
1344 case 2:
1345 // temperate, thin refreezing base: release spc
1346 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
1347 break;
1348 case 3:
1349 // temperate, thin melting base: set spc
1350 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1351 break;
1352 case 4:
1353 // temperate, thick melting base: set grad H*n=0
1354 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
1355 break;
1356 default:
1357 _printf0_(" unknown thermal basal state found!");
1358 }
1359
1360 }
1361
1362 /*Free ressources:*/
1363 xDelete<int>(indices);
1364 xDelete<int>(indicesup);
1365 delete gauss;
1366 delete gaussup;
1367}/*}}}*/
1368void EnthalpyAnalysis::GetBConduct(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
1369 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
1370 * For node i, Bi' can be expressed in the actual coordinate system
1371 * by:
1372 * Bi_conduct=[ dh/dx ]
1373 * [ dh/dy ]
1374 * [ dh/dz ]
1375 * where h is the interpolation function for node i.
1376 *
1377 * We assume B has been allocated already, of size: 3x(NDOF1*numnodes)
1378 */
1379
1380 /*Fetch number of nodes for this finite element*/
1381 int numnodes = element->GetNumberOfNodes();
1382
1383 /*Get nodal functions derivatives*/
1384 IssmDouble* dbasis=xNew<IssmDouble>(3*numnodes);
1385 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
1386
1387 /*Build B: */
1388 for(int i=0;i<numnodes;i++){
1389 B[numnodes*0+i] = dbasis[0*numnodes+i];
1390 B[numnodes*1+i] = dbasis[1*numnodes+i];
1391 B[numnodes*2+i] = dbasis[2*numnodes+i];
1392 }
1393
1394 /*Clean-up*/
1395 xDelete<IssmDouble>(dbasis);
1396}/*}}}*/
1397void EnthalpyAnalysis::GetSolutionFromInputs(Vector<IssmDouble>* solution,Element* element){/*{{{*/
1398 element->GetSolutionFromInputsOneDof(solution,EnthalpyEnum);
1399}/*}}}*/
1400int EnthalpyAnalysis::GetThermalBasalCondition(Element* element, IssmDouble enthalpy, IssmDouble enthalpyup, IssmDouble pressure, IssmDouble pressureup, IssmDouble watercolumn, IssmDouble meltingrate){/*{{{*/
1401
1402 /* Check if ice in element */
1403 if(!element->IsIceInElement()) return -1;
1404
1405 /* Only update Constraints at the base of grounded ice*/
1406 if(!(element->IsOnBase())) return -1;
1407
1408 /*Intermediary*/
1409 int state=-1;
1410 IssmDouble dt;
1411
1412 /*Get parameters and inputs: */
1413 element->FindParam(&dt,TimesteppingTimeStepEnum);
1414
1415 if(enthalpy<PureIceEnthalpy(element,pressure)){
1416 if(watercolumn<=0.) state=0; // cold, dry base
1417 else state=1; // cold, wet base (refreezing)
1418 }
1419 else{
1420 if(enthalpyup<PureIceEnthalpy(element,pressureup)){
1421 if((dt==0.) && (meltingrate<0.)) state=2; // refreezing temperate base (non-physical, only for steadystate solver)
1422 else state=3; // temperate base, but no temperate layer
1423 }
1424 else state=4; // temperate layer with positive thickness
1425 }
1426
1427 _assert_(state>=0);
1428 return state;
1429}/*}}}*/
1430IssmDouble EnthalpyAnalysis::GetWetIceConductivity(Element* element, IssmDouble enthalpy, IssmDouble pressure){/*{{{*/
1431
1432 IssmDouble temperature, waterfraction;
1433 IssmDouble kappa_w = 0.6; // thermal conductivity of water (in W/m/K)
1434 IssmDouble kappa_i = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
1435 element->EnthalpyToThermal(&temperature, &waterfraction, enthalpy, pressure);
1436
1437 return (1.-waterfraction)*kappa_i + waterfraction*kappa_w;
1438}/*}}}*/
1439void EnthalpyAnalysis::GradientJ(Vector<IssmDouble>* gradient,Element* element,int control_type,int control_index){/*{{{*/
1440 _error_("Not implemented yet");
1441}/*}}}*/
1442void EnthalpyAnalysis::InputUpdateFromSolution(IssmDouble* solution,Element* element){/*{{{*/
1443
1444 bool converged;
1445 int i,rheology_law;
1446 IssmDouble B_average,s_average,T_average=0.,P_average=0.;
1447 int *doflist = NULL;
1448 IssmDouble *xyz_list = NULL;
1449
1450 /*Fetch number of nodes and dof for this finite element*/
1451 int numnodes = element->GetNumberOfNodes();
1452
1453 /*Fetch dof list and allocate solution vector*/
1454 element->GetDofList(&doflist,NoneApproximationEnum,GsetEnum);
1455 IssmDouble* values = xNew<IssmDouble>(numnodes);
1456 IssmDouble* pressure = xNew<IssmDouble>(numnodes);
1457 IssmDouble* surface = xNew<IssmDouble>(numnodes);
1458 IssmDouble* B = xNew<IssmDouble>(numnodes);
1459 IssmDouble* temperature = xNew<IssmDouble>(numnodes);
1460 IssmDouble* waterfraction = xNew<IssmDouble>(numnodes);
1461
1462 /*Use the dof list to index into the solution vector: */
1463 for(i=0;i<numnodes;i++){
1464 values[i]=solution[doflist[i]];
1465
1466 /*Check solution*/
1467 if(xIsNan<IssmDouble>(values[i])) _error_("NaN found in solution vector");
1468 }
1469
1470 /*Get all inputs and parameters*/
1471 element->GetInputValue(&converged,ConvergedEnum);
1472 element->GetInputListOnNodes(&pressure[0],PressureEnum);
1473 if(converged){
1474 for(i=0;i<numnodes;i++){
1475 element->EnthalpyToThermal(&temperature[i],&waterfraction[i],values[i],pressure[i]);
1476 if(waterfraction[i]<0.) _error_("Negative water fraction found in solution vector");
1477 //if(waterfraction[i]>1.) _error_("Water fraction >1 found in solution vector");
1478 }
1479 element->AddInput(EnthalpyEnum,values,element->GetElementType());
1480 element->AddInput(WaterfractionEnum,waterfraction,element->GetElementType());
1481 element->AddInput(TemperatureEnum,temperature,element->GetElementType());
1482
1483 /*Update Rheology only if converged (we must make sure that the temperature is below melting point
1484 * otherwise the rheology could be negative*/
1485 element->FindParam(&rheology_law,MaterialsRheologyLawEnum);
1486 element->GetInputListOnNodes(&surface[0],SurfaceEnum);
1487 switch(rheology_law){
1488 case NoneEnum:
1489 /*Do nothing: B is not temperature dependent*/
1490 break;
1491 case CuffeyEnum:
1492 for(i=0;i<numnodes;i++) B[i]=Cuffey(temperature[i]);
1493 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1494 break;
1495 case PatersonEnum:
1496 for(i=0;i<numnodes;i++) B[i]=Paterson(temperature[i]);
1497 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1498 break;
1499 case ArrheniusEnum:
1500 element->GetVerticesCoordinates(&xyz_list);
1501 for(i=0;i<numnodes;i++) B[i]=Arrhenius(temperature[i],surface[i]-xyz_list[i*3+2],element->GetMaterialParameter(MaterialsRheologyNEnum));
1502 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1503 break;
1504 case LliboutryDuvalEnum:
1505 for(i=0;i<numnodes;i++) B[i]=LliboutryDuval(values[i],pressure[i],element->GetMaterialParameter(MaterialsRheologyNEnum),element->GetMaterialParameter(MaterialsBetaEnum),element->GetMaterialParameter(ConstantsReferencetemperatureEnum),element->GetMaterialParameter(MaterialsHeatcapacityEnum),element->GetMaterialParameter(MaterialsLatentheatEnum));
1506 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1507 break;
1508 default: _error_("Rheology law " << EnumToStringx(rheology_law) << " not supported yet");
1509 }
1510 }
1511 else{
1512 element->AddInput(EnthalpyPicardEnum,values,element->GetElementType());
1513 }
1514
1515 /*Free ressources:*/
1516 xDelete<IssmDouble>(values);
1517 xDelete<IssmDouble>(pressure);
1518 xDelete<IssmDouble>(surface);
1519 xDelete<IssmDouble>(B);
1520 xDelete<IssmDouble>(temperature);
1521 xDelete<IssmDouble>(waterfraction);
1522 xDelete<IssmDouble>(xyz_list);
1523 xDelete<int>(doflist);
1524}/*}}}*/
1525void EnthalpyAnalysis::PostProcessing(FemModel* femmodel){/*{{{*/
1526
1527 /*Intermediaries*/
1528 bool computebasalmeltingrates=true;
1529 bool drainicecolumn=true;
1530 bool isdynamicbasalspc;
1531 IssmDouble dt;
1532
1533 femmodel->parameters->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
1534 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
1535
1536 //TODO: use dt to decide what to do
1537 if(drainicecolumn) DrainWaterfraction(femmodel);
1538 if(computebasalmeltingrates) ComputeBasalMeltingrate(femmodel);
1539 if(isdynamicbasalspc) UpdateBasalConstraints(femmodel);
1540
1541}/*}}}*/
1542IssmDouble EnthalpyAnalysis::PureIceEnthalpy(Element* element,IssmDouble pressure){/*{{{*/
1543
1544 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
1545 IssmDouble referencetemperature = element->GetMaterialParameter(ConstantsReferencetemperatureEnum);
1546
1547 return heatcapacity*(TMeltingPoint(element,pressure)-referencetemperature);
1548}/*}}}*/
1549IssmDouble EnthalpyAnalysis::TMeltingPoint(Element* element,IssmDouble pressure){/*{{{*/
1550
1551 IssmDouble meltingpoint = element->GetMaterialParameter(MaterialsMeltingpointEnum);
1552 IssmDouble beta = element->GetMaterialParameter(MaterialsBetaEnum);
1553
1554 return meltingpoint-beta*pressure;
1555}/*}}}*/
1556void EnthalpyAnalysis::UpdateBasalConstraints(FemModel* femmodel){/*{{{*/
1557
1558 /*Update basal dirichlet BCs for enthalpy: */
1559 Vector<IssmDouble>* spc = NULL;
1560 IssmDouble* serial_spc = NULL;
1561
1562 spc=new Vector<IssmDouble>(femmodel->nodes->NumberOfNodes(EnthalpyAnalysisEnum));
1563 /*First create a vector to figure out what elements should be constrained*/
1564 for(int i=0;i<femmodel->elements->Size();i++){
1565 Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1566 GetBasalConstraints(spc,element);
1567 }
1568
1569 /*Assemble and serialize*/
1570 spc->Assemble();
1571 serial_spc=spc->ToMPISerial();
1572 delete spc;
1573
1574 /*Then update basal constraints nodes accordingly*/
1575 for(int i=0;i<femmodel->elements->Size();i++){
1576 Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1577 ApplyBasalConstraints(serial_spc,element);
1578 }
1579
1580 femmodel->UpdateConstraintsx();
1581
1582 /*Delete*/
1583 xDelete<IssmDouble>(serial_spc);
1584}/*}}}*/
1585void EnthalpyAnalysis::UpdateConstraints(FemModel* femmodel){/*{{{*/
1586 SetActiveNodesLSMx(femmodel);
1587}/*}}}*/
Note: See TracBrowser for help on using the repository browser.