| 1 | #include "./EnthalpyAnalysis.h"
|
|---|
| 2 | #include "../toolkits/toolkits.h"
|
|---|
| 3 | #include "../classes/classes.h"
|
|---|
| 4 | #include "../shared/shared.h"
|
|---|
| 5 | #include "../modules/modules.h"
|
|---|
| 6 |
|
|---|
| 7 | /*Model processing*/
|
|---|
| 8 | int EnthalpyAnalysis::DofsPerNode(int** doflist,int domaintype,int approximation){/*{{{*/
|
|---|
| 9 | return 1;
|
|---|
| 10 | }/*}}}*/
|
|---|
| 11 | void EnthalpyAnalysis::UpdateParameters(Parameters* parameters,IoModel* iomodel,int solution_enum,int analysis_enum){/*{{{*/
|
|---|
| 12 |
|
|---|
| 13 | int numoutputs;
|
|---|
| 14 | char** requestedoutputs = NULL;
|
|---|
| 15 |
|
|---|
| 16 | parameters->AddObject(iomodel->CopyConstantObject(ThermalStabilizationEnum));
|
|---|
| 17 | parameters->AddObject(iomodel->CopyConstantObject(ThermalMaxiterEnum));
|
|---|
| 18 | parameters->AddObject(iomodel->CopyConstantObject(ThermalReltolEnum));
|
|---|
| 19 | parameters->AddObject(iomodel->CopyConstantObject(ThermalIsenthalpyEnum));
|
|---|
| 20 | parameters->AddObject(iomodel->CopyConstantObject(ThermalIsdynamicbasalspcEnum));
|
|---|
| 21 | parameters->AddObject(iomodel->CopyConstantObject(FrictionLawEnum));
|
|---|
| 22 |
|
|---|
| 23 | iomodel->FetchData(&requestedoutputs,&numoutputs,ThermalRequestedOutputsEnum);
|
|---|
| 24 | parameters->AddObject(new IntParam(ThermalNumRequestedOutputsEnum,numoutputs));
|
|---|
| 25 | if(numoutputs)parameters->AddObject(new StringArrayParam(ThermalRequestedOutputsEnum,requestedoutputs,numoutputs));
|
|---|
| 26 | iomodel->DeleteData(&requestedoutputs,numoutputs,ThermalRequestedOutputsEnum);
|
|---|
| 27 | }/*}}}*/
|
|---|
| 28 | void EnthalpyAnalysis::UpdateElements(Elements* elements,IoModel* iomodel,int analysis_counter,int analysis_type){/*{{{*/
|
|---|
| 29 |
|
|---|
| 30 | bool dakota_analysis,islevelset,isenthalpy;
|
|---|
| 31 | int frictionlaw;
|
|---|
| 32 |
|
|---|
| 33 | /*Now, is the model 3d? otherwise, do nothing: */
|
|---|
| 34 | if(iomodel->domaintype==Domain2DhorizontalEnum)return;
|
|---|
| 35 |
|
|---|
| 36 | /*Is enthalpy requested?*/
|
|---|
| 37 | iomodel->Constant(&isenthalpy,ThermalIsenthalpyEnum);
|
|---|
| 38 | if(!isenthalpy) return;
|
|---|
| 39 |
|
|---|
| 40 | /*Fetch data needed: */
|
|---|
| 41 | iomodel->FetchData(3,TemperatureEnum,WaterfractionEnum,PressureEnum);
|
|---|
| 42 |
|
|---|
| 43 | /*Update elements: */
|
|---|
| 44 | int counter=0;
|
|---|
| 45 | for(int i=0;i<iomodel->numberofelements;i++){
|
|---|
| 46 | if(iomodel->my_elements[i]){
|
|---|
| 47 | Element* element=(Element*)elements->GetObjectByOffset(counter);
|
|---|
| 48 | element->Update(i,iomodel,analysis_counter,analysis_type,P1Enum);
|
|---|
| 49 | counter++;
|
|---|
| 50 | }
|
|---|
| 51 | }
|
|---|
| 52 |
|
|---|
| 53 | iomodel->Constant(&dakota_analysis,QmuIsdakotaEnum);
|
|---|
| 54 | iomodel->Constant(&islevelset,TransientIslevelsetEnum);
|
|---|
| 55 | iomodel->Constant(&frictionlaw,FrictionLawEnum);
|
|---|
| 56 |
|
|---|
| 57 | iomodel->FetchDataToInput(elements,ThicknessEnum);
|
|---|
| 58 | iomodel->FetchDataToInput(elements,SurfaceEnum);
|
|---|
| 59 | iomodel->FetchDataToInput(elements,BaseEnum);
|
|---|
| 60 | iomodel->FetchDataToInput(elements,MaskIceLevelsetEnum);
|
|---|
| 61 | iomodel->FetchDataToInput(elements,MaskGroundediceLevelsetEnum);
|
|---|
| 62 | if(iomodel->domaintype!=Domain2DhorizontalEnum){
|
|---|
| 63 | iomodel->FetchDataToInput(elements,MeshVertexonbaseEnum);
|
|---|
| 64 | iomodel->FetchDataToInput(elements,MeshVertexonsurfaceEnum);
|
|---|
| 65 | }
|
|---|
| 66 | iomodel->FetchDataToInput(elements,MaterialsRheologyBEnum);
|
|---|
| 67 | iomodel->FetchDataToInput(elements,MaterialsRheologyNEnum);
|
|---|
| 68 | iomodel->FetchDataToInput(elements,PressureEnum);
|
|---|
| 69 | iomodel->FetchDataToInput(elements,TemperatureEnum);
|
|---|
| 70 | iomodel->FetchDataToInput(elements,WaterfractionEnum);
|
|---|
| 71 | iomodel->FetchDataToInput(elements,EnthalpyEnum);
|
|---|
| 72 | iomodel->FetchDataToInput(elements,BasalforcingsGeothermalfluxEnum);
|
|---|
| 73 | iomodel->FetchDataToInput(elements,WatercolumnEnum);
|
|---|
| 74 | iomodel->FetchDataToInput(elements,BasalforcingsGroundediceMeltingRateEnum);
|
|---|
| 75 | iomodel->FetchDataToInput(elements,VxEnum);
|
|---|
| 76 | iomodel->FetchDataToInput(elements,VyEnum);
|
|---|
| 77 | iomodel->FetchDataToInput(elements,VzEnum);
|
|---|
| 78 | InputUpdateFromConstantx(elements,0.,VxMeshEnum);
|
|---|
| 79 | InputUpdateFromConstantx(elements,0.,VyMeshEnum);
|
|---|
| 80 | InputUpdateFromConstantx(elements,0.,VzMeshEnum);
|
|---|
| 81 | if(islevelset){
|
|---|
| 82 | iomodel->FetchDataToInput(elements,IceMaskNodeActivationEnum);
|
|---|
| 83 | iomodel->FetchDataToInput(elements,MeshVertexonbaseEnum); // required for updating active nodes
|
|---|
| 84 | }
|
|---|
| 85 |
|
|---|
| 86 | /*Friction law variables*/
|
|---|
| 87 | switch(frictionlaw){
|
|---|
| 88 | case 1:
|
|---|
| 89 | iomodel->FetchDataToInput(elements,FrictionCoefficientEnum);
|
|---|
| 90 | iomodel->FetchDataToInput(elements,FrictionPEnum);
|
|---|
| 91 | iomodel->FetchDataToInput(elements,FrictionQEnum);
|
|---|
| 92 | break;
|
|---|
| 93 | case 2:
|
|---|
| 94 | iomodel->FetchDataToInput(elements,FrictionCEnum);
|
|---|
| 95 | iomodel->FetchDataToInput(elements,FrictionMEnum);
|
|---|
| 96 | break;
|
|---|
| 97 | default:
|
|---|
| 98 | _error_("not supported");
|
|---|
| 99 | }
|
|---|
| 100 | /*Free data: */
|
|---|
| 101 | iomodel->DeleteData(3,TemperatureEnum,WaterfractionEnum,PressureEnum);
|
|---|
| 102 | }/*}}}*/
|
|---|
| 103 | void EnthalpyAnalysis::CreateNodes(Nodes* nodes,IoModel* iomodel){/*{{{*/
|
|---|
| 104 |
|
|---|
| 105 | if(iomodel->domaintype==Domain3DEnum) iomodel->FetchData(2,MeshVertexonbaseEnum,MeshVertexonsurfaceEnum);
|
|---|
| 106 | ::CreateNodes(nodes,iomodel,EnthalpyAnalysisEnum,P1Enum);
|
|---|
| 107 | iomodel->DeleteData(2,MeshVertexonbaseEnum,MeshVertexonsurfaceEnum);
|
|---|
| 108 | }/*}}}*/
|
|---|
| 109 | void EnthalpyAnalysis::CreateConstraints(Constraints* constraints,IoModel* iomodel){/*{{{*/
|
|---|
| 110 |
|
|---|
| 111 | /*Intermediary*/
|
|---|
| 112 | int count;
|
|---|
| 113 | int M,N;
|
|---|
| 114 | bool spcpresent = false;
|
|---|
| 115 | IssmDouble heatcapacity;
|
|---|
| 116 | IssmDouble referencetemperature;
|
|---|
| 117 |
|
|---|
| 118 | /*Output*/
|
|---|
| 119 | IssmDouble *spcvector = NULL;
|
|---|
| 120 | IssmDouble* times=NULL;
|
|---|
| 121 | IssmDouble* values=NULL;
|
|---|
| 122 |
|
|---|
| 123 | /*Fetch parameters: */
|
|---|
| 124 | iomodel->Constant(&heatcapacity,MaterialsHeatcapacityEnum);
|
|---|
| 125 | iomodel->Constant(&referencetemperature,ConstantsReferencetemperatureEnum);
|
|---|
| 126 |
|
|---|
| 127 | /*return if 2d mesh*/
|
|---|
| 128 | if(iomodel->domaintype==Domain2DhorizontalEnum) return;
|
|---|
| 129 |
|
|---|
| 130 | /*Fetch data: */
|
|---|
| 131 | iomodel->FetchData(&spcvector,&M,&N,ThermalSpctemperatureEnum);
|
|---|
| 132 |
|
|---|
| 133 | //FIX ME: SHOULD USE IOMODELCREATECONSTRAINTS
|
|---|
| 134 | /*Transient or static?:*/
|
|---|
| 135 | if(M==iomodel->numberofvertices){
|
|---|
| 136 | /*static: just create Constraints objects*/
|
|---|
| 137 | count=0;
|
|---|
| 138 |
|
|---|
| 139 | for(int i=0;i<iomodel->numberofvertices;i++){
|
|---|
| 140 | /*keep only this partition's nodes:*/
|
|---|
| 141 | if((iomodel->my_vertices[i])){
|
|---|
| 142 |
|
|---|
| 143 | if (!xIsNan<IssmDouble>(spcvector[i])){
|
|---|
| 144 |
|
|---|
| 145 | constraints->AddObject(new SpcStatic(iomodel->constraintcounter+count+1,iomodel->nodecounter+i+1,0,heatcapacity*(spcvector[i]-referencetemperature),EnthalpyAnalysisEnum));
|
|---|
| 146 | count++;
|
|---|
| 147 |
|
|---|
| 148 | }
|
|---|
| 149 | }
|
|---|
| 150 | }
|
|---|
| 151 | }
|
|---|
| 152 | else if (M==(iomodel->numberofvertices+1)){
|
|---|
| 153 | /*transient: create transient SpcTransient objects. Same logic, except we need to retrieve
|
|---|
| 154 | * various times and values to initialize an SpcTransient object: */
|
|---|
| 155 | count=0;
|
|---|
| 156 |
|
|---|
| 157 | /*figure out times: */
|
|---|
| 158 | times=xNew<IssmDouble>(N);
|
|---|
| 159 | for(int j=0;j<N;j++){
|
|---|
| 160 | times[j]=spcvector[(M-1)*N+j];
|
|---|
| 161 | }
|
|---|
| 162 |
|
|---|
| 163 | /*Create constraints from x,y,z: */
|
|---|
| 164 | for(int i=0;i<iomodel->numberofvertices;i++){
|
|---|
| 165 |
|
|---|
| 166 | /*keep only this partition's nodes:*/
|
|---|
| 167 | if((iomodel->my_vertices[i])){
|
|---|
| 168 |
|
|---|
| 169 | /*figure out times and values: */
|
|---|
| 170 | values=xNew<IssmDouble>(N);
|
|---|
| 171 | spcpresent=false;
|
|---|
| 172 | for(int j=0;j<N;j++){
|
|---|
| 173 | values[j]=heatcapacity*(spcvector[i*N+j]-referencetemperature);
|
|---|
| 174 | if(!xIsNan<IssmDouble>(values[j]))spcpresent=true; //NaN means no spc by default
|
|---|
| 175 | }
|
|---|
| 176 |
|
|---|
| 177 | if(spcpresent){
|
|---|
| 178 | constraints->AddObject(new SpcTransient(iomodel->constraintcounter+count+1,iomodel->nodecounter+i+1,0,N,times,values,EnthalpyAnalysisEnum));
|
|---|
| 179 | count++;
|
|---|
| 180 | }
|
|---|
| 181 | xDelete<IssmDouble>(values);
|
|---|
| 182 | }
|
|---|
| 183 | }
|
|---|
| 184 | }
|
|---|
| 185 | else{
|
|---|
| 186 | _error_("Size of field " << EnumToStringx(ThermalSpctemperatureEnum) << " not supported");
|
|---|
| 187 | }
|
|---|
| 188 |
|
|---|
| 189 | /*Free ressources:*/
|
|---|
| 190 | iomodel->DeleteData(spcvector,ThermalSpctemperatureEnum);
|
|---|
| 191 | xDelete<IssmDouble>(times);
|
|---|
| 192 | xDelete<IssmDouble>(values);
|
|---|
| 193 | }/*}}}*/
|
|---|
| 194 | void EnthalpyAnalysis::CreateLoads(Loads* loads, IoModel* iomodel){/*{{{*/
|
|---|
| 195 |
|
|---|
| 196 | /*No loads */
|
|---|
| 197 | }/*}}}*/
|
|---|
| 198 |
|
|---|
| 199 | /*Finite Element Analysis*/
|
|---|
| 200 | void EnthalpyAnalysis::Core(FemModel* femmodel){/*{{{*/
|
|---|
| 201 | _error_("not implemented");
|
|---|
| 202 | }/*}}}*/
|
|---|
| 203 | ElementVector* EnthalpyAnalysis::CreateDVector(Element* element){/*{{{*/
|
|---|
| 204 | /*Default, return NULL*/
|
|---|
| 205 | return NULL;
|
|---|
| 206 | }/*}}}*/
|
|---|
| 207 | ElementMatrix* EnthalpyAnalysis::CreateJacobianMatrix(Element* element){/*{{{*/
|
|---|
| 208 | _error_("Not implemented");
|
|---|
| 209 | }/*}}}*/
|
|---|
| 210 | ElementMatrix* EnthalpyAnalysis::CreateKMatrix(Element* element){/*{{{*/
|
|---|
| 211 |
|
|---|
| 212 | /* Check if ice in element */
|
|---|
| 213 | if(!element->IsIceInElement()) return NULL;
|
|---|
| 214 |
|
|---|
| 215 | /*compute all stiffness matrices for this element*/
|
|---|
| 216 | ElementMatrix* Ke1=CreateKMatrixVolume(element);
|
|---|
| 217 | ElementMatrix* Ke2=CreateKMatrixShelf(element);
|
|---|
| 218 | ElementMatrix* Ke =new ElementMatrix(Ke1,Ke2);
|
|---|
| 219 |
|
|---|
| 220 | /*clean-up and return*/
|
|---|
| 221 | delete Ke1;
|
|---|
| 222 | delete Ke2;
|
|---|
| 223 | return Ke;
|
|---|
| 224 | }/*}}}*/
|
|---|
| 225 | ElementMatrix* EnthalpyAnalysis::CreateKMatrixVolume(Element* element){/*{{{*/
|
|---|
| 226 |
|
|---|
| 227 | /* Check if ice in element */
|
|---|
| 228 | if(!element->IsIceInElement()) return NULL;
|
|---|
| 229 |
|
|---|
| 230 | /*Intermediaries */
|
|---|
| 231 | int stabilization;
|
|---|
| 232 | IssmDouble Jdet,dt,u,v,w,um,vm,wm,vel;
|
|---|
| 233 | IssmDouble h,hx,hy,hz,vx,vy,vz;
|
|---|
| 234 | IssmDouble tau_parameter,diameter;
|
|---|
| 235 | IssmDouble D_scalar;
|
|---|
| 236 | IssmDouble* xyz_list = NULL;
|
|---|
| 237 |
|
|---|
| 238 | /*Fetch number of nodes and dof for this finite element*/
|
|---|
| 239 | int numnodes = element->GetNumberOfNodes();
|
|---|
| 240 |
|
|---|
| 241 | /*Initialize Element vector and other vectors*/
|
|---|
| 242 | ElementMatrix* Ke = element->NewElementMatrix();
|
|---|
| 243 | IssmDouble* basis = xNew<IssmDouble>(numnodes);
|
|---|
| 244 | IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
|
|---|
| 245 | IssmDouble* B = xNew<IssmDouble>(3*numnodes);
|
|---|
| 246 | IssmDouble* Bprime = xNew<IssmDouble>(3*numnodes);
|
|---|
| 247 | IssmDouble D[3][3] = {0.};
|
|---|
| 248 | IssmDouble K[3][3];
|
|---|
| 249 |
|
|---|
| 250 | /*Retrieve all inputs and parameters*/
|
|---|
| 251 | element->GetVerticesCoordinates(&xyz_list);
|
|---|
| 252 | element->FindParam(&dt,TimesteppingTimeStepEnum);
|
|---|
| 253 | element->FindParam(&stabilization,ThermalStabilizationEnum);
|
|---|
| 254 | IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
|
|---|
| 255 | IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
|
|---|
| 256 | IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
|
|---|
| 257 | IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
|
|---|
| 258 | IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
|
|---|
| 259 | Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
|
|---|
| 260 | Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
|
|---|
| 261 | Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
|
|---|
| 262 | Input* vxm_input = element->GetInput(VxMeshEnum); _assert_(vxm_input);
|
|---|
| 263 | Input* vym_input = element->GetInput(VyMeshEnum); _assert_(vym_input);
|
|---|
| 264 | Input* vzm_input = element->GetInput(VzMeshEnum); _assert_(vzm_input);
|
|---|
| 265 | if(stabilization==2) diameter=element->MinEdgeLength(xyz_list);
|
|---|
| 266 |
|
|---|
| 267 | /*Enthalpy diffusion parameter*/
|
|---|
| 268 | IssmDouble kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
|
|---|
| 269 |
|
|---|
| 270 | /* Start looping on the number of gaussian points: */
|
|---|
| 271 | Gauss* gauss=element->NewGauss(2);
|
|---|
| 272 | for(int ig=gauss->begin();ig<gauss->end();ig++){
|
|---|
| 273 | gauss->GaussPoint(ig);
|
|---|
| 274 |
|
|---|
| 275 | element->JacobianDeterminant(&Jdet,xyz_list,gauss);
|
|---|
| 276 | D_scalar=gauss->weight*Jdet;
|
|---|
| 277 | if(dt!=0.) D_scalar=D_scalar*dt;
|
|---|
| 278 |
|
|---|
| 279 | /*Conduction: */
|
|---|
| 280 | GetBConduct(B,element,xyz_list,gauss);
|
|---|
| 281 | D[0][0]=D_scalar*kappa/rho_ice;
|
|---|
| 282 | D[1][1]=D_scalar*kappa/rho_ice;
|
|---|
| 283 | D[2][2]=D_scalar*kappa/rho_ice;
|
|---|
| 284 | TripleMultiply(B,3,numnodes,1,
|
|---|
| 285 | &D[0][0],3,3,0,
|
|---|
| 286 | B,3,numnodes,0,
|
|---|
| 287 | &Ke->values[0],1);
|
|---|
| 288 |
|
|---|
| 289 | /*Advection: */
|
|---|
| 290 | GetBAdvec(B,element,xyz_list,gauss);
|
|---|
| 291 | GetBAdvecprime(Bprime,element,xyz_list,gauss);
|
|---|
| 292 | vx_input->GetInputValue(&u,gauss); vxm_input->GetInputValue(&um,gauss); vx=u-um;
|
|---|
| 293 | vy_input->GetInputValue(&v,gauss); vym_input->GetInputValue(&vm,gauss); vy=v-vm;
|
|---|
| 294 | vz_input->GetInputValue(&w,gauss); vzm_input->GetInputValue(&wm,gauss); vz=w-wm;
|
|---|
| 295 | D[0][0]=D_scalar*vx;
|
|---|
| 296 | D[1][1]=D_scalar*vy;
|
|---|
| 297 | D[2][2]=D_scalar*vz;
|
|---|
| 298 | TripleMultiply(B,3,numnodes,1,
|
|---|
| 299 | &D[0][0],3,3,0,
|
|---|
| 300 | Bprime,3,numnodes,0,
|
|---|
| 301 | &Ke->values[0],1);
|
|---|
| 302 |
|
|---|
| 303 | /*Transient: */
|
|---|
| 304 | if(dt!=0.){
|
|---|
| 305 | D_scalar=gauss->weight*Jdet;
|
|---|
| 306 | element->NodalFunctions(basis,gauss);
|
|---|
| 307 | TripleMultiply(basis,numnodes,1,0,
|
|---|
| 308 | &D_scalar,1,1,0,
|
|---|
| 309 | basis,1,numnodes,0,
|
|---|
| 310 | &Ke->values[0],1);
|
|---|
| 311 | D_scalar=D_scalar*dt;
|
|---|
| 312 | }
|
|---|
| 313 |
|
|---|
| 314 | /*Artifficial diffusivity*/
|
|---|
| 315 | if(stabilization==1){
|
|---|
| 316 | element->ElementSizes(&hx,&hy,&hz);
|
|---|
| 317 | vel=sqrt(vx*vx + vy*vy + vz*vz)+1.e-14;
|
|---|
| 318 | h=sqrt( pow(hx*vx/vel,2) + pow(hy*vy/vel,2) + pow(hz*vz/vel,2));
|
|---|
| 319 | K[0][0]=h/(2.*vel)*fabs(vx*vx); K[0][1]=h/(2.*vel)*fabs(vx*vy); K[0][2]=h/(2.*vel)*fabs(vx*vz);
|
|---|
| 320 | K[1][0]=h/(2.*vel)*fabs(vy*vx); K[1][1]=h/(2.*vel)*fabs(vy*vy); K[1][2]=h/(2.*vel)*fabs(vy*vz);
|
|---|
| 321 | K[2][0]=h/(2.*vel)*fabs(vz*vx); K[2][1]=h/(2.*vel)*fabs(vz*vy); K[2][2]=h/(2.*vel)*fabs(vz*vz);
|
|---|
| 322 | for(int i=0;i<3;i++) for(int j=0;j<3;j++) K[i][j] = D_scalar*K[i][j];
|
|---|
| 323 |
|
|---|
| 324 | GetBAdvecprime(Bprime,element,xyz_list,gauss);
|
|---|
| 325 | TripleMultiply(Bprime,3,numnodes,1,
|
|---|
| 326 | &K[0][0],3,3,0,
|
|---|
| 327 | Bprime,3,numnodes,0,
|
|---|
| 328 | &Ke->values[0],1);
|
|---|
| 329 | }
|
|---|
| 330 | else if(stabilization==2){
|
|---|
| 331 | element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
|
|---|
| 332 | tau_parameter=element->StabilizationParameter(u-um,v-vm,w-wm,diameter,kappa/rho_ice);
|
|---|
| 333 | for(int i=0;i<numnodes;i++){
|
|---|
| 334 | for(int j=0;j<numnodes;j++){
|
|---|
| 335 | Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*
|
|---|
| 336 | ((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i])*((u-um)*dbasis[0*numnodes+j]+(v-vm)*dbasis[1*numnodes+j]+(w-wm)*dbasis[2*numnodes+j]);
|
|---|
| 337 | }
|
|---|
| 338 | }
|
|---|
| 339 | if(dt!=0.){
|
|---|
| 340 | D_scalar=gauss->weight*Jdet;
|
|---|
| 341 | for(int i=0;i<numnodes;i++){
|
|---|
| 342 | for(int j=0;j<numnodes;j++){
|
|---|
| 343 | Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*basis[j]*((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i]);
|
|---|
| 344 | }
|
|---|
| 345 | }
|
|---|
| 346 | }
|
|---|
| 347 | }
|
|---|
| 348 | }
|
|---|
| 349 |
|
|---|
| 350 | /*Clean up and return*/
|
|---|
| 351 | xDelete<IssmDouble>(xyz_list);
|
|---|
| 352 | xDelete<IssmDouble>(basis);
|
|---|
| 353 | xDelete<IssmDouble>(dbasis);
|
|---|
| 354 | xDelete<IssmDouble>(B);
|
|---|
| 355 | xDelete<IssmDouble>(Bprime);
|
|---|
| 356 | delete gauss;
|
|---|
| 357 | return Ke;
|
|---|
| 358 | }/*}}}*/
|
|---|
| 359 | ElementMatrix* EnthalpyAnalysis::CreateKMatrixShelf(Element* element){/*{{{*/
|
|---|
| 360 |
|
|---|
| 361 | /* Check if ice in element */
|
|---|
| 362 | if(!element->IsIceInElement()) return NULL;
|
|---|
| 363 |
|
|---|
| 364 | /*Initialize Element matrix and return if necessary*/
|
|---|
| 365 | if(!element->IsOnBase() || !element->IsFloating()) return NULL;
|
|---|
| 366 |
|
|---|
| 367 | /*Intermediaries*/
|
|---|
| 368 | IssmDouble dt,Jdet,D;
|
|---|
| 369 | IssmDouble *xyz_list_base = NULL;
|
|---|
| 370 |
|
|---|
| 371 | /*Fetch number of nodes for this finite element*/
|
|---|
| 372 | int numnodes = element->GetNumberOfNodes();
|
|---|
| 373 |
|
|---|
| 374 | /*Initialize vectors*/
|
|---|
| 375 | ElementMatrix* Ke = element->NewElementMatrix();
|
|---|
| 376 | IssmDouble* basis = xNew<IssmDouble>(numnodes);
|
|---|
| 377 |
|
|---|
| 378 | /*Retrieve all inputs and parameters*/
|
|---|
| 379 | element->GetVerticesCoordinatesBase(&xyz_list_base);
|
|---|
| 380 | element->FindParam(&dt,TimesteppingTimeStepEnum);
|
|---|
| 381 | IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
|
|---|
| 382 | IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
|
|---|
| 383 | IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
|
|---|
| 384 | IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
|
|---|
| 385 | IssmDouble mixed_layer_capacity= element->GetMaterialParameter(MaterialsMixedLayerCapacityEnum);
|
|---|
| 386 | IssmDouble thermal_exchange_vel= element->GetMaterialParameter(MaterialsThermalExchangeVelocityEnum);
|
|---|
| 387 |
|
|---|
| 388 | /* Start looping on the number of gaussian points: */
|
|---|
| 389 | Gauss* gauss=element->NewGaussBase(2);
|
|---|
| 390 | for(int ig=gauss->begin();ig<gauss->end();ig++){
|
|---|
| 391 | gauss->GaussPoint(ig);
|
|---|
| 392 |
|
|---|
| 393 | element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
|
|---|
| 394 | element->NodalFunctions(basis,gauss);
|
|---|
| 395 |
|
|---|
| 396 | D=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel/(heatcapacity*rho_ice);
|
|---|
| 397 | if(reCast<bool,IssmDouble>(dt)) D=dt*D;
|
|---|
| 398 | TripleMultiply(basis,numnodes,1,0,
|
|---|
| 399 | &D,1,1,0,
|
|---|
| 400 | basis,1,numnodes,0,
|
|---|
| 401 | &Ke->values[0],1);
|
|---|
| 402 |
|
|---|
| 403 | }
|
|---|
| 404 |
|
|---|
| 405 | /*Clean up and return*/
|
|---|
| 406 | delete gauss;
|
|---|
| 407 | xDelete<IssmDouble>(basis);
|
|---|
| 408 | xDelete<IssmDouble>(xyz_list_base);
|
|---|
| 409 | return Ke;
|
|---|
| 410 | }/*}}}*/
|
|---|
| 411 | ElementVector* EnthalpyAnalysis::CreatePVector(Element* element){/*{{{*/
|
|---|
| 412 |
|
|---|
| 413 | /* Check if ice in element */
|
|---|
| 414 | if(!element->IsIceInElement()) return NULL;
|
|---|
| 415 |
|
|---|
| 416 | /*compute all load vectors for this element*/
|
|---|
| 417 | ElementVector* pe1=CreatePVectorVolume(element);
|
|---|
| 418 | ElementVector* pe2=CreatePVectorSheet(element);
|
|---|
| 419 | ElementVector* pe3=CreatePVectorShelf(element);
|
|---|
| 420 | ElementVector* pe =new ElementVector(pe1,pe2,pe3);
|
|---|
| 421 |
|
|---|
| 422 | /*clean-up and return*/
|
|---|
| 423 | delete pe1;
|
|---|
| 424 | delete pe2;
|
|---|
| 425 | delete pe3;
|
|---|
| 426 | return pe;
|
|---|
| 427 | }/*}}}*/
|
|---|
| 428 | ElementVector* EnthalpyAnalysis::CreatePVectorVolume(Element* element){/*{{{*/
|
|---|
| 429 |
|
|---|
| 430 | /* Check if ice in element */
|
|---|
| 431 | if(!element->IsIceInElement()) return NULL;
|
|---|
| 432 |
|
|---|
| 433 | /*Intermediaries*/
|
|---|
| 434 | int i, stabilization;
|
|---|
| 435 | IssmDouble Jdet,phi,dt;
|
|---|
| 436 | IssmDouble enthalpy, Hpmp;
|
|---|
| 437 | IssmDouble enthalpypicard, d1enthalpypicard[3];
|
|---|
| 438 | IssmDouble pressure, d1pressure[3], d2pressure;
|
|---|
| 439 | IssmDouble waterfractionpicard;
|
|---|
| 440 | IssmDouble kappa,tau_parameter,diameter,kappa_w;
|
|---|
| 441 | IssmDouble u,v,w;
|
|---|
| 442 | IssmDouble scalar_def, scalar_sens ,scalar_transient;
|
|---|
| 443 | IssmDouble* xyz_list = NULL;
|
|---|
| 444 | IssmDouble d1H_d1P, d1P2;
|
|---|
| 445 |
|
|---|
| 446 | /*Fetch number of nodes and dof for this finite element*/
|
|---|
| 447 | int numnodes = element->GetNumberOfNodes();
|
|---|
| 448 | int numvertices = element->GetNumberOfVertices();
|
|---|
| 449 |
|
|---|
| 450 | /*Initialize Element vector*/
|
|---|
| 451 | ElementVector* pe = element->NewElementVector();
|
|---|
| 452 | IssmDouble* basis = xNew<IssmDouble>(numnodes);
|
|---|
| 453 | IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
|
|---|
| 454 |
|
|---|
| 455 | /*Retrieve all inputs and parameters*/
|
|---|
| 456 | element->GetVerticesCoordinates(&xyz_list);
|
|---|
| 457 | IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
|
|---|
| 458 | IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
|
|---|
| 459 | IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
|
|---|
| 460 | IssmDouble temperateiceconductivity = element->GetMaterialParameter(MaterialsTemperateiceconductivityEnum);
|
|---|
| 461 | IssmDouble beta = element->GetMaterialParameter(MaterialsBetaEnum);
|
|---|
| 462 | IssmDouble latentheat = element->GetMaterialParameter(MaterialsLatentheatEnum);
|
|---|
| 463 | element->FindParam(&dt,TimesteppingTimeStepEnum);
|
|---|
| 464 | element->FindParam(&stabilization,ThermalStabilizationEnum);
|
|---|
| 465 | Input* vx_input=element->GetInput(VxEnum); _assert_(vx_input);
|
|---|
| 466 | Input* vy_input=element->GetInput(VyEnum); _assert_(vy_input);
|
|---|
| 467 | Input* vz_input=element->GetInput(VzEnum); _assert_(vz_input);
|
|---|
| 468 | Input* enthalpypicard_input=element->GetInput(EnthalpyPicardEnum); _assert_(enthalpypicard_input);
|
|---|
| 469 | Input* pressure_input=element->GetInput(PressureEnum); _assert_(pressure_input);
|
|---|
| 470 | Input* enthalpy_input=NULL;
|
|---|
| 471 | if(reCast<bool,IssmDouble>(dt)){enthalpy_input = element->GetInput(EnthalpyEnum); _assert_(enthalpy_input);}
|
|---|
| 472 | if(stabilization==2){
|
|---|
| 473 | diameter=element->MinEdgeLength(xyz_list);
|
|---|
| 474 | kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
|
|---|
| 475 | }
|
|---|
| 476 |
|
|---|
| 477 | /* Start looping on the number of gaussian points: */
|
|---|
| 478 | Gauss* gauss=element->NewGauss(3);
|
|---|
| 479 | for(int ig=gauss->begin();ig<gauss->end();ig++){
|
|---|
| 480 | gauss->GaussPoint(ig);
|
|---|
| 481 |
|
|---|
| 482 | element->JacobianDeterminant(&Jdet,xyz_list,gauss);
|
|---|
| 483 | element->NodalFunctions(basis,gauss);
|
|---|
| 484 |
|
|---|
| 485 | /*viscous dissipation*/
|
|---|
| 486 | element->ViscousHeating(&phi,xyz_list,gauss,vx_input,vy_input,vz_input);
|
|---|
| 487 |
|
|---|
| 488 | scalar_def=phi/rho_ice*Jdet*gauss->weight;
|
|---|
| 489 | if(dt!=0.) scalar_def=scalar_def*dt;
|
|---|
| 490 |
|
|---|
| 491 | for(i=0;i<numnodes;i++) pe->values[i]+=scalar_def*basis[i];
|
|---|
| 492 |
|
|---|
| 493 | /*sensible heat flux in temperate ice*/
|
|---|
| 494 | enthalpypicard_input->GetInputValue(&enthalpypicard,gauss);
|
|---|
| 495 | pressure_input->GetInputValue(&pressure,gauss);
|
|---|
| 496 | Hpmp=this->PureIceEnthalpy(element, pressure);
|
|---|
| 497 |
|
|---|
| 498 | if(enthalpypicard>=Hpmp){
|
|---|
| 499 | enthalpypicard_input->GetInputDerivativeValue(&d1enthalpypicard[0],xyz_list,gauss);
|
|---|
| 500 | pressure_input->GetInputDerivativeValue(&d1pressure[0],xyz_list,gauss);
|
|---|
| 501 | d2pressure=0.; // for linear elements, 2nd derivative is zero
|
|---|
| 502 |
|
|---|
| 503 | d1H_d1P=0.;
|
|---|
| 504 | for(i=0;i<3;i++) d1H_d1P+=d1enthalpypicard[i]*d1pressure[i];
|
|---|
| 505 | d1P2=0.;
|
|---|
| 506 | for(i=0;i<3;i++) d1P2+=pow(d1pressure[i],2.);
|
|---|
| 507 |
|
|---|
| 508 | scalar_sens=-beta*((temperateiceconductivity - thermalconductivity)/latentheat*(d1H_d1P + beta*heatcapacity*d1P2))/rho_ice;
|
|---|
| 509 | if(dt!=0.) scalar_sens=scalar_sens*dt;
|
|---|
| 510 | for(i=0;i<numnodes;i++) pe->values[i]+=scalar_sens*basis[i];
|
|---|
| 511 | }
|
|---|
| 512 |
|
|---|
| 513 | /* Build transient now */
|
|---|
| 514 | if(reCast<bool,IssmDouble>(dt)){
|
|---|
| 515 | enthalpy_input->GetInputValue(&enthalpy, gauss);
|
|---|
| 516 | scalar_transient=enthalpy*Jdet*gauss->weight;
|
|---|
| 517 | for(i=0;i<numnodes;i++) pe->values[i]+=scalar_transient*basis[i];
|
|---|
| 518 | }
|
|---|
| 519 |
|
|---|
| 520 | if(stabilization==2){
|
|---|
| 521 | element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
|
|---|
| 522 |
|
|---|
| 523 | vx_input->GetInputValue(&u,gauss);
|
|---|
| 524 | vy_input->GetInputValue(&v,gauss);
|
|---|
| 525 | vz_input->GetInputValue(&w,gauss);
|
|---|
| 526 | tau_parameter=element->StabilizationParameter(u,v,w,diameter,kappa/rho_ice);
|
|---|
| 527 |
|
|---|
| 528 | for(i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_def*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]);
|
|---|
| 529 |
|
|---|
| 530 | if(dt!=0.){
|
|---|
| 531 | for(i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_transient*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]);
|
|---|
| 532 | }
|
|---|
| 533 | }
|
|---|
| 534 | }
|
|---|
| 535 |
|
|---|
| 536 | /*Clean up and return*/
|
|---|
| 537 | xDelete<IssmDouble>(basis);
|
|---|
| 538 | xDelete<IssmDouble>(dbasis);
|
|---|
| 539 | xDelete<IssmDouble>(xyz_list);
|
|---|
| 540 | delete gauss;
|
|---|
| 541 | return pe;
|
|---|
| 542 |
|
|---|
| 543 | }/*}}}*/
|
|---|
| 544 | ElementVector* EnthalpyAnalysis::CreatePVectorSheet(Element* element){/*{{{*/
|
|---|
| 545 |
|
|---|
| 546 | /* Check if ice in element */
|
|---|
| 547 | if(!element->IsIceInElement()) return NULL;
|
|---|
| 548 |
|
|---|
| 549 | /* implementation of the basal condition decision chart of Aschwanden 2012, Fig.5 */
|
|---|
| 550 | if(!element->IsOnBase() || element->IsFloating()) return NULL;
|
|---|
| 551 |
|
|---|
| 552 | IssmDouble dt,Jdet,enthalpy,pressure,watercolumn,geothermalflux,vx,vy,vz;
|
|---|
| 553 | IssmDouble enthalpyup,pressureup,alpha2,scalar,basalfriction,heatflux;
|
|---|
| 554 | IssmDouble *xyz_list_base = NULL;
|
|---|
| 555 |
|
|---|
| 556 | /*Fetch number of nodes for this finite element*/
|
|---|
| 557 | int numnodes = element->GetNumberOfNodes();
|
|---|
| 558 |
|
|---|
| 559 | /*Initialize vectors*/
|
|---|
| 560 | ElementVector* pe = element->NewElementVector();
|
|---|
| 561 | IssmDouble* basis = xNew<IssmDouble>(numnodes);
|
|---|
| 562 |
|
|---|
| 563 | /*Retrieve all inputs and parameters*/
|
|---|
| 564 | element->GetVerticesCoordinatesBase(&xyz_list_base);
|
|---|
| 565 | element->FindParam(&dt,TimesteppingTimeStepEnum);
|
|---|
| 566 | Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
|
|---|
| 567 | Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
|
|---|
| 568 | Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
|
|---|
| 569 | Input* enthalpy_input = element->GetInput(EnthalpyPicardEnum); _assert_(enthalpy_input);
|
|---|
| 570 | Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
|
|---|
| 571 | Input* geothermalflux_input = element->GetInput(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input);
|
|---|
| 572 | Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
|
|---|
| 573 | IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
|
|---|
| 574 | IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
|
|---|
| 575 |
|
|---|
| 576 | /*Build friction element, needed later: */
|
|---|
| 577 | Friction* friction=new Friction(element,3);
|
|---|
| 578 |
|
|---|
| 579 | /* Start looping on the number of gaussian points: */
|
|---|
| 580 | Gauss* gauss = element->NewGaussBase(2);
|
|---|
| 581 | Gauss* gaussup = element->NewGaussTop(2);
|
|---|
| 582 | for(int ig=gauss->begin();ig<gauss->end();ig++){
|
|---|
| 583 | gauss->GaussPoint(ig);
|
|---|
| 584 |
|
|---|
| 585 | element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
|
|---|
| 586 | element->NodalFunctions(basis,gauss);
|
|---|
| 587 |
|
|---|
| 588 | enthalpy_input->GetInputValue(&enthalpy,gauss);
|
|---|
| 589 | pressure_input->GetInputValue(&pressure,gauss);
|
|---|
| 590 | watercolumn_input->GetInputValue(&watercolumn,gauss);
|
|---|
| 591 |
|
|---|
| 592 | if((dt==0.) || ((watercolumn<=0.) && (enthalpy<PureIceEnthalpy(element,pressure)))){
|
|---|
| 593 | /* the above check is equivalent to
|
|---|
| 594 | NOT [(watercolumn>0.) AND (enthalpy<PIE)] AND (enthalpy<PIE)*/
|
|---|
| 595 | geothermalflux_input->GetInputValue(&geothermalflux,gauss);
|
|---|
| 596 |
|
|---|
| 597 | friction->GetAlpha2(&alpha2,gauss);
|
|---|
| 598 | vx_input->GetInputValue(&vx,gauss);
|
|---|
| 599 | vy_input->GetInputValue(&vy,gauss);
|
|---|
| 600 | vz_input->GetInputValue(&vz,gauss);
|
|---|
| 601 | basalfriction = alpha2*(vx*vx + vy*vy + vz*vz);
|
|---|
| 602 | heatflux = (basalfriction+geothermalflux)/(rho_ice);
|
|---|
| 603 |
|
|---|
| 604 | scalar = gauss->weight*Jdet*heatflux;
|
|---|
| 605 | if(dt!=0.) scalar=dt*scalar;
|
|---|
| 606 |
|
|---|
| 607 | for(int i=0;i<numnodes;i++) pe->values[i]+=scalar*basis[i];
|
|---|
| 608 | }
|
|---|
| 609 | else if(enthalpy >= PureIceEnthalpy(element,pressure)){
|
|---|
| 610 | /* check positive thickness of temperate basal ice layer */
|
|---|
| 611 | enthalpy_input->GetInputValue(&enthalpyup,gaussup);
|
|---|
| 612 | pressure_input->GetInputValue(&pressureup,gaussup);
|
|---|
| 613 | if(enthalpyup >= PureIceEnthalpy(element,pressureup)){
|
|---|
| 614 | // do nothing, set grad enthalpy*n=0.
|
|---|
| 615 | }
|
|---|
| 616 | else{
|
|---|
| 617 | // only base temperate, set Dirichlet BCs in Penta::UpdateBasalConstraintsEnthalpy()
|
|---|
| 618 | }
|
|---|
| 619 | }
|
|---|
| 620 | else{
|
|---|
| 621 | // base cold, but watercolumn positive. Set base to pressure melting point enthalpy
|
|---|
| 622 | }
|
|---|
| 623 | }
|
|---|
| 624 |
|
|---|
| 625 | /*Clean up and return*/
|
|---|
| 626 | delete gauss;
|
|---|
| 627 | delete gaussup;
|
|---|
| 628 | delete friction;
|
|---|
| 629 | xDelete<IssmDouble>(basis);
|
|---|
| 630 | xDelete<IssmDouble>(xyz_list_base);
|
|---|
| 631 | return pe;
|
|---|
| 632 |
|
|---|
| 633 | }/*}}}*/
|
|---|
| 634 | ElementVector* EnthalpyAnalysis::CreatePVectorShelf(Element* element){/*{{{*/
|
|---|
| 635 |
|
|---|
| 636 | /* Check if ice in element */
|
|---|
| 637 | if(!element->IsIceInElement()) return NULL;
|
|---|
| 638 |
|
|---|
| 639 | /*Get basal element*/
|
|---|
| 640 | if(!element->IsOnBase() || !element->IsFloating()) return NULL;
|
|---|
| 641 |
|
|---|
| 642 | IssmDouble h_pmp,dt,Jdet,scalar_ocean,pressure;
|
|---|
| 643 | IssmDouble *xyz_list_base = NULL;
|
|---|
| 644 |
|
|---|
| 645 | /*Fetch number of nodes for this finite element*/
|
|---|
| 646 | int numnodes = element->GetNumberOfNodes();
|
|---|
| 647 |
|
|---|
| 648 | /*Initialize vectors*/
|
|---|
| 649 | ElementVector* pe = element->NewElementVector();
|
|---|
| 650 | IssmDouble* basis = xNew<IssmDouble>(numnodes);
|
|---|
| 651 |
|
|---|
| 652 | /*Retrieve all inputs and parameters*/
|
|---|
| 653 | element->GetVerticesCoordinatesBase(&xyz_list_base);
|
|---|
| 654 | element->FindParam(&dt,TimesteppingTimeStepEnum);
|
|---|
| 655 | Input* pressure_input=element->GetInput(PressureEnum); _assert_(pressure_input);
|
|---|
| 656 | IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
|
|---|
| 657 | IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
|
|---|
| 658 | IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
|
|---|
| 659 | IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
|
|---|
| 660 | IssmDouble mixed_layer_capacity= element->GetMaterialParameter(MaterialsMixedLayerCapacityEnum);
|
|---|
| 661 | IssmDouble thermal_exchange_vel= element->GetMaterialParameter(MaterialsThermalExchangeVelocityEnum);
|
|---|
| 662 |
|
|---|
| 663 | /* Start looping on the number of gaussian points: */
|
|---|
| 664 | Gauss* gauss=element->NewGaussBase(2);
|
|---|
| 665 | for(int ig=gauss->begin();ig<gauss->end();ig++){
|
|---|
| 666 | gauss->GaussPoint(ig);
|
|---|
| 667 |
|
|---|
| 668 | element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
|
|---|
| 669 | element->NodalFunctions(basis,gauss);
|
|---|
| 670 |
|
|---|
| 671 | pressure_input->GetInputValue(&pressure,gauss);
|
|---|
| 672 | h_pmp=element->PureIceEnthalpy(pressure);
|
|---|
| 673 |
|
|---|
| 674 | scalar_ocean=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel*h_pmp/(heatcapacity*rho_ice);
|
|---|
| 675 | if(reCast<bool,IssmDouble>(dt)) scalar_ocean=dt*scalar_ocean;
|
|---|
| 676 |
|
|---|
| 677 | for(int i=0;i<numnodes;i++) pe->values[i]+=scalar_ocean*basis[i];
|
|---|
| 678 | }
|
|---|
| 679 |
|
|---|
| 680 | /*Clean up and return*/
|
|---|
| 681 | delete gauss;
|
|---|
| 682 | xDelete<IssmDouble>(basis);
|
|---|
| 683 | xDelete<IssmDouble>(xyz_list_base);
|
|---|
| 684 | return pe;
|
|---|
| 685 | }/*}}}*/
|
|---|
| 686 | void EnthalpyAnalysis::GetBConduct(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
|
|---|
| 687 | /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
|
|---|
| 688 | * For node i, Bi' can be expressed in the actual coordinate system
|
|---|
| 689 | * by:
|
|---|
| 690 | * Bi_conduct=[ dh/dx ]
|
|---|
| 691 | * [ dh/dy ]
|
|---|
| 692 | * [ dh/dz ]
|
|---|
| 693 | * where h is the interpolation function for node i.
|
|---|
| 694 | *
|
|---|
| 695 | * We assume B has been allocated already, of size: 3x(NDOF1*numnodes)
|
|---|
| 696 | */
|
|---|
| 697 |
|
|---|
| 698 | /*Fetch number of nodes for this finite element*/
|
|---|
| 699 | int numnodes = element->GetNumberOfNodes();
|
|---|
| 700 |
|
|---|
| 701 | /*Get nodal functions derivatives*/
|
|---|
| 702 | IssmDouble* dbasis=xNew<IssmDouble>(3*numnodes);
|
|---|
| 703 | element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
|
|---|
| 704 |
|
|---|
| 705 | /*Build B: */
|
|---|
| 706 | for(int i=0;i<numnodes;i++){
|
|---|
| 707 | B[numnodes*0+i] = dbasis[0*numnodes+i];
|
|---|
| 708 | B[numnodes*1+i] = dbasis[1*numnodes+i];
|
|---|
| 709 | B[numnodes*2+i] = dbasis[2*numnodes+i];
|
|---|
| 710 | }
|
|---|
| 711 |
|
|---|
| 712 | /*Clean-up*/
|
|---|
| 713 | xDelete<IssmDouble>(dbasis);
|
|---|
| 714 | }/*}}}*/
|
|---|
| 715 | void EnthalpyAnalysis::GetBAdvec(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
|
|---|
| 716 | /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
|
|---|
| 717 | * For node i, Bi' can be expressed in the actual coordinate system
|
|---|
| 718 | * by:
|
|---|
| 719 | * Bi_advec =[ h ]
|
|---|
| 720 | * [ h ]
|
|---|
| 721 | * [ h ]
|
|---|
| 722 | * where h is the interpolation function for node i.
|
|---|
| 723 | *
|
|---|
| 724 | * We assume B has been allocated already, of size: 3x(NDOF1*NUMNODESP1)
|
|---|
| 725 | */
|
|---|
| 726 |
|
|---|
| 727 | /*Fetch number of nodes for this finite element*/
|
|---|
| 728 | int numnodes = element->GetNumberOfNodes();
|
|---|
| 729 |
|
|---|
| 730 | /*Get nodal functions*/
|
|---|
| 731 | IssmDouble* basis=xNew<IssmDouble>(numnodes);
|
|---|
| 732 | element->NodalFunctions(basis,gauss);
|
|---|
| 733 |
|
|---|
| 734 | /*Build B: */
|
|---|
| 735 | for(int i=0;i<numnodes;i++){
|
|---|
| 736 | B[numnodes*0+i] = basis[i];
|
|---|
| 737 | B[numnodes*1+i] = basis[i];
|
|---|
| 738 | B[numnodes*2+i] = basis[i];
|
|---|
| 739 | }
|
|---|
| 740 |
|
|---|
| 741 | /*Clean-up*/
|
|---|
| 742 | xDelete<IssmDouble>(basis);
|
|---|
| 743 | }/*}}}*/
|
|---|
| 744 | void EnthalpyAnalysis::GetBAdvecprime(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
|
|---|
| 745 | /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
|
|---|
| 746 | * For node i, Bi' can be expressed in the actual coordinate system
|
|---|
| 747 | * by:
|
|---|
| 748 | * Biprime_advec=[ dh/dx ]
|
|---|
| 749 | * [ dh/dy ]
|
|---|
| 750 | * [ dh/dz ]
|
|---|
| 751 | * where h is the interpolation function for node i.
|
|---|
| 752 | *
|
|---|
| 753 | * We assume B has been allocated already, of size: 3x(NDOF1*numnodes)
|
|---|
| 754 | */
|
|---|
| 755 |
|
|---|
| 756 | /*Fetch number of nodes for this finite element*/
|
|---|
| 757 | int numnodes = element->GetNumberOfNodes();
|
|---|
| 758 |
|
|---|
| 759 | /*Get nodal functions derivatives*/
|
|---|
| 760 | IssmDouble* dbasis=xNew<IssmDouble>(3*numnodes);
|
|---|
| 761 | element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
|
|---|
| 762 |
|
|---|
| 763 | /*Build B: */
|
|---|
| 764 | for(int i=0;i<numnodes;i++){
|
|---|
| 765 | B[numnodes*0+i] = dbasis[0*numnodes+i];
|
|---|
| 766 | B[numnodes*1+i] = dbasis[1*numnodes+i];
|
|---|
| 767 | B[numnodes*2+i] = dbasis[2*numnodes+i];
|
|---|
| 768 | }
|
|---|
| 769 |
|
|---|
| 770 | /*Clean-up*/
|
|---|
| 771 | xDelete<IssmDouble>(dbasis);
|
|---|
| 772 | }/*}}}*/
|
|---|
| 773 | void EnthalpyAnalysis::GetSolutionFromInputs(Vector<IssmDouble>* solution,Element* element){/*{{{*/
|
|---|
| 774 | element->GetSolutionFromInputsOneDof(solution,EnthalpyEnum);
|
|---|
| 775 | }/*}}}*/
|
|---|
| 776 | void EnthalpyAnalysis::GradientJ(Vector<IssmDouble>* gradient,Element* element,int control_type,int control_index){/*{{{*/
|
|---|
| 777 | _error_("Not implemented yet");
|
|---|
| 778 | }/*}}}*/
|
|---|
| 779 | void EnthalpyAnalysis::InputUpdateFromSolution(IssmDouble* solution,Element* element){/*{{{*/
|
|---|
| 780 |
|
|---|
| 781 | bool converged;
|
|---|
| 782 | int i,rheology_law;
|
|---|
| 783 | IssmDouble B_average,s_average,T_average=0.,P_average=0.;
|
|---|
| 784 | int *doflist = NULL;
|
|---|
| 785 | IssmDouble *xyz_list = NULL;
|
|---|
| 786 |
|
|---|
| 787 | /*Fetch number of nodes and dof for this finite element*/
|
|---|
| 788 | int numnodes = element->GetNumberOfNodes();
|
|---|
| 789 |
|
|---|
| 790 | /*Fetch dof list and allocate solution vector*/
|
|---|
| 791 | element->GetDofList(&doflist,NoneApproximationEnum,GsetEnum);
|
|---|
| 792 | IssmDouble* values = xNew<IssmDouble>(numnodes);
|
|---|
| 793 | IssmDouble* pressure = xNew<IssmDouble>(numnodes);
|
|---|
| 794 | IssmDouble* surface = xNew<IssmDouble>(numnodes);
|
|---|
| 795 | IssmDouble* B = xNew<IssmDouble>(numnodes);
|
|---|
| 796 | IssmDouble* temperature = xNew<IssmDouble>(numnodes);
|
|---|
| 797 | IssmDouble* waterfraction = xNew<IssmDouble>(numnodes);
|
|---|
| 798 |
|
|---|
| 799 | /*Use the dof list to index into the solution vector: */
|
|---|
| 800 | for(i=0;i<numnodes;i++){
|
|---|
| 801 | values[i]=solution[doflist[i]];
|
|---|
| 802 |
|
|---|
| 803 | /*Check solution*/
|
|---|
| 804 | if(xIsNan<IssmDouble>(values[i])) _error_("NaN found in solution vector");
|
|---|
| 805 | }
|
|---|
| 806 |
|
|---|
| 807 | /*Get all inputs and parameters*/
|
|---|
| 808 | element->GetInputValue(&converged,ConvergedEnum);
|
|---|
| 809 | element->GetInputListOnNodes(&pressure[0],PressureEnum);
|
|---|
| 810 | if(converged){
|
|---|
| 811 | for(i=0;i<numnodes;i++){
|
|---|
| 812 | element->EnthalpyToThermal(&temperature[i],&waterfraction[i],values[i],pressure[i]);
|
|---|
| 813 | if(waterfraction[i]<0.) _error_("Negative water fraction found in solution vector");
|
|---|
| 814 | //if(waterfraction[i]>1.) _error_("Water fraction >1 found in solution vector");
|
|---|
| 815 | }
|
|---|
| 816 | element->AddInput(EnthalpyEnum,values,element->GetElementType());
|
|---|
| 817 | element->AddInput(WaterfractionEnum,waterfraction,element->GetElementType());
|
|---|
| 818 | element->AddInput(TemperatureEnum,temperature,element->GetElementType());
|
|---|
| 819 |
|
|---|
| 820 | /*Update Rheology only if converged (we must make sure that the temperature is below melting point
|
|---|
| 821 | * otherwise the rheology could be negative*/
|
|---|
| 822 | element->FindParam(&rheology_law,MaterialsRheologyLawEnum);
|
|---|
| 823 | element->GetInputListOnNodes(&surface[0],SurfaceEnum);
|
|---|
| 824 | switch(rheology_law){
|
|---|
| 825 | case NoneEnum:
|
|---|
| 826 | /*Do nothing: B is not temperature dependent*/
|
|---|
| 827 | break;
|
|---|
| 828 | case CuffeyEnum:
|
|---|
| 829 | for(i=0;i<numnodes;i++) B[i]=Cuffey(temperature[i]);
|
|---|
| 830 | element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
|
|---|
| 831 | break;
|
|---|
| 832 | case PatersonEnum:
|
|---|
| 833 | for(i=0;i<numnodes;i++) B[i]=Paterson(temperature[i]);
|
|---|
| 834 | element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
|
|---|
| 835 | break;
|
|---|
| 836 | case ArrheniusEnum:
|
|---|
| 837 | element->GetVerticesCoordinates(&xyz_list);
|
|---|
| 838 | for(i=0;i<numnodes;i++) B[i]=Arrhenius(temperature[i],surface[i]-xyz_list[i*3+2],element->GetMaterialParameter(MaterialsRheologyNEnum));
|
|---|
| 839 | element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
|
|---|
| 840 | break;
|
|---|
| 841 | case LliboutryDuvalEnum:
|
|---|
| 842 | for(i=0;i<numnodes;i++) B[i]=LliboutryDuval(values[i],pressure[i],element->GetMaterialParameter(MaterialsRheologyNEnum),element->GetMaterialParameter(MaterialsBetaEnum),element->GetMaterialParameter(ConstantsReferencetemperatureEnum),element->GetMaterialParameter(MaterialsHeatcapacityEnum),element->GetMaterialParameter(MaterialsLatentheatEnum));
|
|---|
| 843 | element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
|
|---|
| 844 | break;
|
|---|
| 845 | default: _error_("Rheology law " << EnumToStringx(rheology_law) << " not supported yet");
|
|---|
| 846 | }
|
|---|
| 847 | }
|
|---|
| 848 | else{
|
|---|
| 849 | element->AddInput(EnthalpyPicardEnum,values,element->GetElementType());
|
|---|
| 850 | }
|
|---|
| 851 |
|
|---|
| 852 | /*Free ressources:*/
|
|---|
| 853 | xDelete<IssmDouble>(values);
|
|---|
| 854 | xDelete<IssmDouble>(pressure);
|
|---|
| 855 | xDelete<IssmDouble>(surface);
|
|---|
| 856 | xDelete<IssmDouble>(B);
|
|---|
| 857 | xDelete<IssmDouble>(temperature);
|
|---|
| 858 | xDelete<IssmDouble>(waterfraction);
|
|---|
| 859 | xDelete<IssmDouble>(xyz_list);
|
|---|
| 860 | xDelete<int>(doflist);
|
|---|
| 861 | }/*}}}*/
|
|---|
| 862 | void EnthalpyAnalysis::UpdateConstraints(FemModel* femmodel){/*{{{*/
|
|---|
| 863 |
|
|---|
| 864 | bool islevelset;
|
|---|
| 865 | femmodel->parameters->FindParam(&islevelset,TransientIslevelsetEnum);
|
|---|
| 866 | if(islevelset){
|
|---|
| 867 | SetActiveNodesLSMx(femmodel);
|
|---|
| 868 | }
|
|---|
| 869 | return;
|
|---|
| 870 | }/*}}}*/
|
|---|
| 871 |
|
|---|
| 872 | /*Modules*/
|
|---|
| 873 | void EnthalpyAnalysis::PostProcessing(FemModel* femmodel){/*{{{*/
|
|---|
| 874 |
|
|---|
| 875 | /*Intermediaries*/
|
|---|
| 876 | int solution_type, i;
|
|---|
| 877 | bool computebasalmeltingrates=true;
|
|---|
| 878 | bool isdrainage=true;
|
|---|
| 879 | bool updatebasalconstraints=true;
|
|---|
| 880 |
|
|---|
| 881 | if(isdrainage){
|
|---|
| 882 | /*Drain excess water fraction in ice column: */
|
|---|
| 883 | for(i=0;i<femmodel->elements->Size();i++){
|
|---|
| 884 | Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
|
|---|
| 885 | DrainWaterfractionIcecolumn(element);
|
|---|
| 886 | }
|
|---|
| 887 | }
|
|---|
| 888 |
|
|---|
| 889 | if(computebasalmeltingrates){
|
|---|
| 890 | /*Compute basal melting rates: */
|
|---|
| 891 | for(i=0;i<femmodel->elements->Size();i++){
|
|---|
| 892 | Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
|
|---|
| 893 | ComputeBasalMeltingrate(element);
|
|---|
| 894 | }
|
|---|
| 895 | }
|
|---|
| 896 |
|
|---|
| 897 | if(updatebasalconstraints){
|
|---|
| 898 | /*Update basal dirichlet BCs for enthalpy in transient runs: */
|
|---|
| 899 | femmodel->parameters->FindParam(&solution_type,SolutionTypeEnum);
|
|---|
| 900 | if(solution_type==TransientSolutionEnum){
|
|---|
| 901 | for(i=0;i<femmodel->elements->Size();i++){
|
|---|
| 902 | Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
|
|---|
| 903 | UpdateBasalConstraints(element);
|
|---|
| 904 | }
|
|---|
| 905 | }
|
|---|
| 906 | }
|
|---|
| 907 | }/*}}}*/
|
|---|
| 908 | void EnthalpyAnalysis::ComputeBasalMeltingrate(Element* element){/*{{{*/
|
|---|
| 909 | /*Calculate the basal melt rates of the enthalpy model after Aschwanden 2012*/
|
|---|
| 910 | /* melting rate is positive when melting, negative when refreezing*/
|
|---|
| 911 |
|
|---|
| 912 | /* Check if ice in element */
|
|---|
| 913 | if(!element->IsIceInElement()) return;
|
|---|
| 914 |
|
|---|
| 915 | /* Only compute melt rates at the base of grounded ice*/
|
|---|
| 916 | if(!element->IsOnBase() || element->IsFloating()) return;
|
|---|
| 917 |
|
|---|
| 918 | /* Intermediaries */
|
|---|
| 919 | const int dim=3;
|
|---|
| 920 | int i,is,vertexdown,vertexup,numvertices,numsegments;
|
|---|
| 921 | IssmDouble heatflux;
|
|---|
| 922 | IssmDouble vec_heatflux[dim],normal_base[dim],d1enthalpy[dim];
|
|---|
| 923 | IssmDouble basalfriction,alpha2;
|
|---|
| 924 | IssmDouble dt,yts;
|
|---|
| 925 | IssmDouble melting_overshoot,lambda;
|
|---|
| 926 | IssmDouble geothermalflux;
|
|---|
| 927 | IssmDouble vx,vy,vz;
|
|---|
| 928 | IssmDouble *xyz_list = NULL;
|
|---|
| 929 | IssmDouble *xyz_list_base = NULL;
|
|---|
| 930 | int *pairindices = NULL;
|
|---|
| 931 |
|
|---|
| 932 | /*Fetch parameters and inputs */
|
|---|
| 933 | element->GetVerticesCoordinates(&xyz_list);
|
|---|
| 934 | element->GetVerticesCoordinatesBase(&xyz_list_base);
|
|---|
| 935 | IssmDouble latentheat = element->GetMaterialParameter(MaterialsLatentheatEnum);
|
|---|
| 936 | IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
|
|---|
| 937 | IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoFreshwaterEnum);
|
|---|
| 938 | Input* enthalpy_input = element->GetInput(EnthalpyEnum); _assert_(enthalpy_input);
|
|---|
| 939 | Input* geothermalflux_input = element->GetInput(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input);
|
|---|
| 940 | Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
|
|---|
| 941 | Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
|
|---|
| 942 | Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
|
|---|
| 943 | IssmDouble kappa=EnthalpyDiffusionParameterVolume(element,EnthalpyEnum); _assert_(kappa>=0.);
|
|---|
| 944 | element->NormalBase(&normal_base[0],xyz_list_base);
|
|---|
| 945 | element->VerticalSegmentIndices(&pairindices,&numsegments);
|
|---|
| 946 | IssmDouble* meltingrate_enthalpy = xNew<IssmDouble>(numsegments);
|
|---|
| 947 | IssmDouble* heating = xNew<IssmDouble>(numsegments);
|
|---|
| 948 |
|
|---|
| 949 | /*Build friction element, needed later: */
|
|---|
| 950 | Friction* friction=new Friction(element,dim);
|
|---|
| 951 |
|
|---|
| 952 | /******** MELTING RATES ************************************/
|
|---|
| 953 | numvertices=element->GetNumberOfVertices();
|
|---|
| 954 | IssmDouble* enthalpy = xNew<IssmDouble>(numvertices);
|
|---|
| 955 | IssmDouble* pressure = xNew<IssmDouble>(numvertices);
|
|---|
| 956 | IssmDouble* watercolumn = xNew<IssmDouble>(numvertices);
|
|---|
| 957 | IssmDouble* basalmeltingrate = xNew<IssmDouble>(numvertices);
|
|---|
| 958 | element->GetInputListOnVertices(enthalpy,EnthalpyEnum);
|
|---|
| 959 | element->GetInputListOnVertices(pressure,PressureEnum);
|
|---|
| 960 | element->GetInputListOnVertices(watercolumn,WatercolumnEnum);
|
|---|
| 961 | element->GetInputListOnVertices(basalmeltingrate,BasalforcingsGroundediceMeltingRateEnum);
|
|---|
| 962 |
|
|---|
| 963 | Gauss* gauss=element->NewGauss();
|
|---|
| 964 |
|
|---|
| 965 | for(int is=0;is<numsegments;is++){
|
|---|
| 966 | vertexdown = pairindices[is*2+0];
|
|---|
| 967 | vertexup = pairindices[is*2+1];
|
|---|
| 968 | gauss->GaussVertex(vertexdown);
|
|---|
| 969 |
|
|---|
| 970 | bool checkpositivethickness=true;
|
|---|
| 971 | _assert_(watercolumn[vertexdown]>=0.);
|
|---|
| 972 |
|
|---|
| 973 | /*Calculate basal meltingrate after Fig.5 of A.Aschwanden 2012*/
|
|---|
| 974 | meltingrate_enthalpy[is]=0.;
|
|---|
| 975 | heating[is]=0.;
|
|---|
| 976 | if((watercolumn[vertexdown]>0.) && (enthalpy[vertexdown]<PureIceEnthalpy(element,pressure[vertexdown]))){
|
|---|
| 977 | /*ensure that no ice is at T<Tm(p), if water layer present*/
|
|---|
| 978 | enthalpy[vertexdown]=element->PureIceEnthalpy(pressure[vertexdown]);
|
|---|
| 979 | }
|
|---|
| 980 | else if(enthalpy[vertexdown]<element->PureIceEnthalpy(pressure[vertexdown])){
|
|---|
| 981 | /*cold base: set q*n=q_geo*n+frictionheating as Neumann BC in Penta::CreatePVectorEnthalpySheet*/
|
|---|
| 982 | checkpositivethickness=false; // cold base, skip next test
|
|---|
| 983 | }
|
|---|
| 984 | else{/*we have a temperate base, go to next test*/}
|
|---|
| 985 |
|
|---|
| 986 | if(checkpositivethickness){
|
|---|
| 987 | /*From here on all basal ice is temperate. Check for positive thickness of layer of temperate ice. */
|
|---|
| 988 | bool istemperatelayer=false;
|
|---|
| 989 | if(enthalpy[vertexup]>=element->PureIceEnthalpy(pressure[vertexup])) istemperatelayer=true;
|
|---|
| 990 | if(istemperatelayer) for(i=0;i<dim;i++) vec_heatflux[i]=0.; // TODO: add -k*nabla T_pmp
|
|---|
| 991 | else{
|
|---|
| 992 | enthalpy_input->GetInputDerivativeValue(&d1enthalpy[0],xyz_list,gauss);
|
|---|
| 993 | for(i=0;i<3;i++) vec_heatflux[i]=-kappa*d1enthalpy[i];
|
|---|
| 994 | }
|
|---|
| 995 |
|
|---|
| 996 | /*heat flux along normal*/
|
|---|
| 997 | heatflux=0.;
|
|---|
| 998 | for(i=0;i<3;i++) heatflux+=(vec_heatflux[i])*normal_base[i];
|
|---|
| 999 |
|
|---|
| 1000 | /*basal friction*/
|
|---|
| 1001 | friction->GetAlpha2(&alpha2,gauss);
|
|---|
| 1002 | vx_input->GetInputValue(&vx,gauss);
|
|---|
| 1003 | vy_input->GetInputValue(&vy,gauss);
|
|---|
| 1004 | vz_input->GetInputValue(&vz,gauss);
|
|---|
| 1005 | basalfriction=alpha2*(vx*vx + vy*vy + vz*vz);
|
|---|
| 1006 |
|
|---|
| 1007 | geothermalflux_input->GetInputValue(&geothermalflux,gauss);
|
|---|
| 1008 | /* -Mb= Fb-(q-q_geo)/((1-w)*L*rho), and (1-w)*rho=rho_ice, cf Aschwanden 2012, eqs.1, 2, 66*/
|
|---|
| 1009 | heating[is]=(heatflux+basalfriction+geothermalflux);
|
|---|
| 1010 | meltingrate_enthalpy[is]=heating[is]/(latentheat*rho_ice); // m/s water equivalent
|
|---|
| 1011 | }
|
|---|
| 1012 | }
|
|---|
| 1013 | /******** UPDATE MELTINGRATES AND WATERCOLUMN **************/
|
|---|
| 1014 | element->FindParam(&dt,TimesteppingTimeStepEnum);
|
|---|
| 1015 | for(is=0;is<numsegments;is++){
|
|---|
| 1016 | vertexdown = pairindices[is*2+0];
|
|---|
| 1017 | vertexup = pairindices[is*2+1];
|
|---|
| 1018 | if(dt!=0.){
|
|---|
| 1019 | if(watercolumn[vertexdown]+meltingrate_enthalpy[is]*dt<0.){ // prevent too much freeze on
|
|---|
| 1020 | lambda = -watercolumn[vertexdown]/(dt*meltingrate_enthalpy[is]); _assert_(lambda>=0.); _assert_(lambda<1.);
|
|---|
| 1021 | watercolumn[vertexdown]=0.;
|
|---|
| 1022 | basalmeltingrate[vertexdown]=lambda*meltingrate_enthalpy[is]; // restrict freeze on only to size of watercolumn
|
|---|
| 1023 | enthalpy[vertexdown]+=(1.-lambda)*meltingrate_enthalpy[is]*dt*latentheat; // use rest of energy to cool down base
|
|---|
| 1024 | }
|
|---|
| 1025 | else{
|
|---|
| 1026 | basalmeltingrate[vertexdown]=meltingrate_enthalpy[is];
|
|---|
| 1027 | watercolumn[vertexdown]+=dt*meltingrate_enthalpy[is];
|
|---|
| 1028 | }
|
|---|
| 1029 | }
|
|---|
| 1030 | else{
|
|---|
| 1031 | basalmeltingrate[vertexdown]=meltingrate_enthalpy[is];
|
|---|
| 1032 | if(watercolumn[vertexdown]+meltingrate_enthalpy[is]<0.)
|
|---|
| 1033 | watercolumn[vertexdown]=0.;
|
|---|
| 1034 | else
|
|---|
| 1035 | watercolumn[vertexdown]+=meltingrate_enthalpy[is];
|
|---|
| 1036 | }
|
|---|
| 1037 | basalmeltingrate[vertexdown]*=rho_water/rho_ice; // convert meltingrate from water to ice equivalent
|
|---|
| 1038 | _assert_(watercolumn[vertexdown]>=0.);
|
|---|
| 1039 | }
|
|---|
| 1040 |
|
|---|
| 1041 | /*feed updated variables back into model*/
|
|---|
| 1042 | element->AddInput(EnthalpyEnum,enthalpy,P1Enum);
|
|---|
| 1043 | element->AddInput(WatercolumnEnum,watercolumn,P1Enum);
|
|---|
| 1044 | element->AddInput(BasalforcingsGroundediceMeltingRateEnum,basalmeltingrate,P1Enum);
|
|---|
| 1045 |
|
|---|
| 1046 | /*Clean up and return*/
|
|---|
| 1047 | delete gauss;
|
|---|
| 1048 | delete friction;
|
|---|
| 1049 | xDelete<int>(pairindices);
|
|---|
| 1050 | xDelete<IssmDouble>(enthalpy);
|
|---|
| 1051 | xDelete<IssmDouble>(pressure);
|
|---|
| 1052 | xDelete<IssmDouble>(watercolumn);
|
|---|
| 1053 | xDelete<IssmDouble>(basalmeltingrate);
|
|---|
| 1054 | xDelete<IssmDouble>(meltingrate_enthalpy);
|
|---|
| 1055 | xDelete<IssmDouble>(heating);
|
|---|
| 1056 | xDelete<IssmDouble>(xyz_list);
|
|---|
| 1057 | xDelete<IssmDouble>(xyz_list_base);
|
|---|
| 1058 | }/*}}}*/
|
|---|
| 1059 | void EnthalpyAnalysis::DrainWaterfractionIcecolumn(Element* element){/*{{{*/
|
|---|
| 1060 |
|
|---|
| 1061 | /* Check if ice in element */
|
|---|
| 1062 | if(!element->IsIceInElement()) return;
|
|---|
| 1063 |
|
|---|
| 1064 | /* Only drain waterfraction of ice column from element at base*/
|
|---|
| 1065 | if(!element->IsOnBase()) return; //FIXME: allow freeze on for floating elements
|
|---|
| 1066 |
|
|---|
| 1067 | /* Intermediaries*/
|
|---|
| 1068 | int is, numvertices, numsegments;
|
|---|
| 1069 | int *pairindices = NULL;
|
|---|
| 1070 |
|
|---|
| 1071 | numvertices=element->GetNumberOfVertices();
|
|---|
| 1072 | element->VerticalSegmentIndices(&pairindices,&numsegments);
|
|---|
| 1073 |
|
|---|
| 1074 | IssmDouble* watercolumn = xNew<IssmDouble>(numvertices);
|
|---|
| 1075 | IssmDouble* drainrate_column = xNew<IssmDouble>(numsegments);
|
|---|
| 1076 | IssmDouble* drainrate_element = xNew<IssmDouble>(numsegments);
|
|---|
| 1077 |
|
|---|
| 1078 | element->GetInputListOnVertices(watercolumn,WatercolumnEnum);
|
|---|
| 1079 |
|
|---|
| 1080 | for(is=0;is<numsegments;is++) drainrate_column[is]=0.;
|
|---|
| 1081 | Element* elementi = element;
|
|---|
| 1082 | for(;;){
|
|---|
| 1083 | for(is=0;is<numsegments;is++) drainrate_element[is]=0.;
|
|---|
| 1084 | DrainWaterfraction(elementi,drainrate_element); // TODO: make sure every vertex is only drained once
|
|---|
| 1085 | for(is=0;is<numsegments;is++) drainrate_column[is]+=drainrate_element[is];
|
|---|
| 1086 |
|
|---|
| 1087 | if(elementi->IsOnSurface()) break;
|
|---|
| 1088 | elementi=elementi->GetUpperElement();
|
|---|
| 1089 | }
|
|---|
| 1090 | /* add drained water to water column*/
|
|---|
| 1091 | for(is=0;is<numsegments;is++) watercolumn[is]+=drainrate_column[is];
|
|---|
| 1092 | /* Feed updated water column back into model */
|
|---|
| 1093 | element->AddInput(WatercolumnEnum,watercolumn,P1Enum);
|
|---|
| 1094 |
|
|---|
| 1095 | xDelete<int>(pairindices);
|
|---|
| 1096 | xDelete<IssmDouble>(drainrate_column);
|
|---|
| 1097 | xDelete<IssmDouble>(drainrate_element);
|
|---|
| 1098 | xDelete<IssmDouble>(watercolumn);
|
|---|
| 1099 | }/*}}}*/
|
|---|
| 1100 | void EnthalpyAnalysis::DrainWaterfraction(Element* element, IssmDouble* pdrainrate_element){/*{{{*/
|
|---|
| 1101 |
|
|---|
| 1102 | /* Check if ice in element */
|
|---|
| 1103 | if(!element->IsIceInElement()) return;
|
|---|
| 1104 |
|
|---|
| 1105 | /*Intermediaries*/
|
|---|
| 1106 | int iv,is,vertexdown,vertexup,numsegments;
|
|---|
| 1107 | IssmDouble dt, height_element;
|
|---|
| 1108 | IssmDouble rho_water, rho_ice;
|
|---|
| 1109 | int numvertices = element->GetNumberOfVertices();
|
|---|
| 1110 |
|
|---|
| 1111 | IssmDouble* xyz_list = NULL;
|
|---|
| 1112 | IssmDouble* enthalpies = xNew<IssmDouble>(numvertices);
|
|---|
| 1113 | IssmDouble* pressures = xNew<IssmDouble>(numvertices);
|
|---|
| 1114 | IssmDouble* temperatures = xNew<IssmDouble>(numvertices);
|
|---|
| 1115 | IssmDouble* waterfractions = xNew<IssmDouble>(numvertices);
|
|---|
| 1116 | IssmDouble* deltawaterfractions = xNew<IssmDouble>(numvertices);
|
|---|
| 1117 | int *pairindices = NULL;
|
|---|
| 1118 |
|
|---|
| 1119 | rho_ice=element->GetMaterialParameter(MaterialsRhoIceEnum);
|
|---|
| 1120 | rho_water=element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
|
|---|
| 1121 |
|
|---|
| 1122 | element->GetVerticesCoordinates(&xyz_list);
|
|---|
| 1123 | element->GetInputListOnVertices(enthalpies,EnthalpyEnum);
|
|---|
| 1124 | element->GetInputListOnVertices(pressures,PressureEnum);
|
|---|
| 1125 |
|
|---|
| 1126 | element->FindParam(&dt,TimesteppingTimeStepEnum);
|
|---|
| 1127 | for(iv=0;iv<numvertices;iv++){
|
|---|
| 1128 | element->EnthalpyToThermal(&temperatures[iv],&waterfractions[iv], enthalpies[iv],pressures[iv]);
|
|---|
| 1129 | deltawaterfractions[iv]=DrainageFunctionWaterfraction(waterfractions[iv], dt);
|
|---|
| 1130 | }
|
|---|
| 1131 |
|
|---|
| 1132 | /*drain waterfraction, feed updated variables back into model*/
|
|---|
| 1133 | for(iv=0;iv<numvertices;iv++){
|
|---|
| 1134 | if(reCast<bool,IssmDouble>(dt))
|
|---|
| 1135 | waterfractions[iv]-=deltawaterfractions[iv]*dt;
|
|---|
| 1136 | else
|
|---|
| 1137 | waterfractions[iv]-=deltawaterfractions[iv];
|
|---|
| 1138 | element->ThermalToEnthalpy(&enthalpies[iv], temperatures[iv], waterfractions[iv], pressures[iv]);
|
|---|
| 1139 | }
|
|---|
| 1140 | element->AddInput(EnthalpyEnum,enthalpies,P1Enum);
|
|---|
| 1141 | element->AddInput(WaterfractionEnum,waterfractions,P1Enum);
|
|---|
| 1142 |
|
|---|
| 1143 | /*return meltwater column equivalent to drained water*/
|
|---|
| 1144 | element->VerticalSegmentIndices(&pairindices,&numsegments);
|
|---|
| 1145 | for(is=0;is<numsegments;is++){
|
|---|
| 1146 | vertexdown = pairindices[is*2+0];
|
|---|
| 1147 | vertexup = pairindices[is*2+1];
|
|---|
| 1148 | height_element=fabs(xyz_list[vertexup*3+2]-xyz_list[vertexdown*3+2]);
|
|---|
| 1149 | pdrainrate_element[is]=(deltawaterfractions[vertexdown]+deltawaterfractions[vertexup])/2.*height_element; // return water equivalent of drainage
|
|---|
| 1150 | _assert_(pdrainrate_element[is]>=0.);
|
|---|
| 1151 | }
|
|---|
| 1152 |
|
|---|
| 1153 | /*Clean up and return*/
|
|---|
| 1154 | xDelete<int>(pairindices);
|
|---|
| 1155 | xDelete<IssmDouble>(xyz_list);
|
|---|
| 1156 | xDelete<IssmDouble>(enthalpies);
|
|---|
| 1157 | xDelete<IssmDouble>(pressures);
|
|---|
| 1158 | xDelete<IssmDouble>(temperatures);
|
|---|
| 1159 | xDelete<IssmDouble>(waterfractions);
|
|---|
| 1160 | xDelete<IssmDouble>(deltawaterfractions);
|
|---|
| 1161 | }/*}}}*/
|
|---|
| 1162 | void EnthalpyAnalysis::UpdateBasalConstraints(Element* element){/*{{{*/
|
|---|
| 1163 |
|
|---|
| 1164 | /* Check if ice in element */
|
|---|
| 1165 | if(!element->IsIceInElement()) return;
|
|---|
| 1166 |
|
|---|
| 1167 | /* Only update Constraints at the base of grounded ice*/
|
|---|
| 1168 | if(!(element->IsOnBase()) || element->IsFloating()) return;
|
|---|
| 1169 |
|
|---|
| 1170 | /*Intermediary*/
|
|---|
| 1171 | bool isdynamicbasalspc,setspc;
|
|---|
| 1172 | int numindices, numindicesup;
|
|---|
| 1173 | IssmDouble pressure, pressureup;
|
|---|
| 1174 | IssmDouble h_pmp, enthalpy, enthalpyup;
|
|---|
| 1175 | IssmDouble watercolumn;
|
|---|
| 1176 | int *indices = NULL, *indicesup = NULL;
|
|---|
| 1177 | Node* node = NULL;
|
|---|
| 1178 |
|
|---|
| 1179 | /*Check wether dynamic basal boundary conditions are activated */
|
|---|
| 1180 | element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
|
|---|
| 1181 | if(!isdynamicbasalspc) return;
|
|---|
| 1182 |
|
|---|
| 1183 | /*Fetch indices of basal & surface nodes for this finite element*/
|
|---|
| 1184 | Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
|
|---|
| 1185 | penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
|
|---|
| 1186 | penta->SurfaceNodeIndices(&numindicesup,&indicesup,element->GetElementType());
|
|---|
| 1187 | _assert_(numindices==numindicesup);
|
|---|
| 1188 |
|
|---|
| 1189 | /*Get parameters and inputs: */
|
|---|
| 1190 | Input* pressure_input=element->GetInput(PressureEnum); _assert_(pressure_input);
|
|---|
| 1191 | Input* enthalpy_input=element->GetInput(EnthalpyEnum); _assert_(enthalpy_input);
|
|---|
| 1192 | Input* watercolumn_input=element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
|
|---|
| 1193 |
|
|---|
| 1194 | /*if there is a temperate layer of zero thickness, set spc enthalpy=h_pmp at that node*/
|
|---|
| 1195 | GaussPenta* gauss=new GaussPenta();
|
|---|
| 1196 | GaussPenta* gaussup=new GaussPenta();
|
|---|
| 1197 | for(int i=0;i<numindices;i++){
|
|---|
| 1198 | gauss->GaussNode(element->GetElementType(),indices[i]);
|
|---|
| 1199 | gaussup->GaussNode(element->GetElementType(),indicesup[i]);
|
|---|
| 1200 |
|
|---|
| 1201 | /*Check wether there is a temperate layer at the base or not */
|
|---|
| 1202 | /*check if node is temperate, else continue*/
|
|---|
| 1203 | enthalpy_input->GetInputValue(&enthalpy, gauss);
|
|---|
| 1204 | pressure_input->GetInputValue(&pressure, gauss);
|
|---|
| 1205 | watercolumn_input->GetInputValue(&watercolumn,gauss);
|
|---|
| 1206 | h_pmp=PureIceEnthalpy(element,pressure);
|
|---|
| 1207 | if (enthalpy>=h_pmp){
|
|---|
| 1208 | /*check if upper node is temperate, too.
|
|---|
| 1209 | if yes, then we have a temperate layer of positive thickness and reset the spc.
|
|---|
| 1210 | if not, apply dirichlet BC.*/
|
|---|
| 1211 | enthalpy_input->GetInputValue(&enthalpyup, gaussup);
|
|---|
| 1212 | pressure_input->GetInputValue(&pressureup, gaussup);
|
|---|
| 1213 | setspc=((enthalpyup<PureIceEnthalpy(element,pressureup)) && (watercolumn>=0.))?true:false;
|
|---|
| 1214 | }
|
|---|
| 1215 | else
|
|---|
| 1216 | setspc = false;
|
|---|
| 1217 |
|
|---|
| 1218 | node=element->GetNode(indices[i]);
|
|---|
| 1219 | if(setspc)
|
|---|
| 1220 | node->ApplyConstraint(0,h_pmp); /*apply spc*/
|
|---|
| 1221 | else
|
|---|
| 1222 | node->DofInFSet(0); /*remove spc*/
|
|---|
| 1223 | }
|
|---|
| 1224 |
|
|---|
| 1225 | /*Free ressources:*/
|
|---|
| 1226 | xDelete<int>(indices);
|
|---|
| 1227 | xDelete<int>(indicesup);
|
|---|
| 1228 | delete gauss;
|
|---|
| 1229 | delete gaussup;
|
|---|
| 1230 | }/*}}}*/
|
|---|
| 1231 |
|
|---|
| 1232 | /*Intermediaries*/
|
|---|
| 1233 | IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameter(Element* element,IssmDouble enthalpy,IssmDouble pressure){/*{{{*/
|
|---|
| 1234 |
|
|---|
| 1235 | IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
|
|---|
| 1236 | IssmDouble temperateiceconductivity = element->GetMaterialParameter(MaterialsTemperateiceconductivityEnum);
|
|---|
| 1237 | IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
|
|---|
| 1238 |
|
|---|
| 1239 | if(enthalpy < PureIceEnthalpy(element,pressure)){
|
|---|
| 1240 | return thermalconductivity/heatcapacity;
|
|---|
| 1241 | }
|
|---|
| 1242 | else{
|
|---|
| 1243 | return temperateiceconductivity/heatcapacity;
|
|---|
| 1244 | }
|
|---|
| 1245 | }/*}}}*/
|
|---|
| 1246 | IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameterVolume(Element* element,int enthalpy_enum){/*{{{*/
|
|---|
| 1247 |
|
|---|
| 1248 | int iv;
|
|---|
| 1249 | IssmDouble lambda; /* fraction of cold ice */
|
|---|
| 1250 | IssmDouble kappa,kappa_c,kappa_t; /* enthalpy conductivities */
|
|---|
| 1251 | IssmDouble Hc,Ht;
|
|---|
| 1252 |
|
|---|
| 1253 | /*Get pressures and enthalpies on vertices*/
|
|---|
| 1254 | int numvertices = element->GetNumberOfVertices();
|
|---|
| 1255 | IssmDouble* pressures = xNew<IssmDouble>(numvertices);
|
|---|
| 1256 | IssmDouble* enthalpies = xNew<IssmDouble>(numvertices);
|
|---|
| 1257 | IssmDouble* PIE = xNew<IssmDouble>(numvertices);
|
|---|
| 1258 | IssmDouble* dHpmp = xNew<IssmDouble>(numvertices);
|
|---|
| 1259 | element->GetInputListOnVertices(pressures,PressureEnum);
|
|---|
| 1260 | element->GetInputListOnVertices(enthalpies,enthalpy_enum);
|
|---|
| 1261 | for(iv=0;iv<numvertices;iv++){
|
|---|
| 1262 | PIE[iv] = PureIceEnthalpy(element,pressures[iv]);
|
|---|
| 1263 | dHpmp[iv] = enthalpies[iv]-PIE[iv];
|
|---|
| 1264 | }
|
|---|
| 1265 |
|
|---|
| 1266 | bool allequalsign = true;
|
|---|
| 1267 | if(dHpmp[0]<0.){
|
|---|
| 1268 | for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]<0.));
|
|---|
| 1269 | }
|
|---|
| 1270 | else{
|
|---|
| 1271 | for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]>=0.));
|
|---|
| 1272 | }
|
|---|
| 1273 |
|
|---|
| 1274 | if(allequalsign){
|
|---|
| 1275 | kappa = EnthalpyDiffusionParameter(element,enthalpies[0],pressures[0]);
|
|---|
| 1276 | }
|
|---|
| 1277 | else{
|
|---|
| 1278 | /* return harmonic mean of thermal conductivities, weighted by fraction of cold/temperate ice,
|
|---|
| 1279 | cf Patankar 1980, pp44 */
|
|---|
| 1280 | kappa_c = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)-1.,0.);
|
|---|
| 1281 | kappa_t = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)+1.,0.);
|
|---|
| 1282 | Hc=0.; Ht=0.;
|
|---|
| 1283 | for(iv=0; iv<numvertices;iv++){
|
|---|
| 1284 | if(enthalpies[iv]<PIE[iv])
|
|---|
| 1285 | Hc+=(PIE[iv]-enthalpies[iv]);
|
|---|
| 1286 | else
|
|---|
| 1287 | Ht+=(enthalpies[iv]-PIE[iv]);
|
|---|
| 1288 | }
|
|---|
| 1289 | _assert_((Hc+Ht)>0.);
|
|---|
| 1290 | lambda = Hc/(Hc+Ht);
|
|---|
| 1291 | kappa = kappa_c*kappa_t/(lambda*kappa_t+(1.-lambda)*kappa_c); // ==(lambda/kappa_c + (1.-lambda)/kappa_t)^-1
|
|---|
| 1292 | }
|
|---|
| 1293 |
|
|---|
| 1294 | /*Clean up and return*/
|
|---|
| 1295 | xDelete<IssmDouble>(PIE);
|
|---|
| 1296 | xDelete<IssmDouble>(dHpmp);
|
|---|
| 1297 | xDelete<IssmDouble>(pressures);
|
|---|
| 1298 | xDelete<IssmDouble>(enthalpies);
|
|---|
| 1299 | return kappa;
|
|---|
| 1300 | }/*}}}*/
|
|---|
| 1301 | IssmDouble EnthalpyAnalysis::PureIceEnthalpy(Element* element,IssmDouble pressure){/*{{{*/
|
|---|
| 1302 |
|
|---|
| 1303 | IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
|
|---|
| 1304 | IssmDouble referencetemperature = element->GetMaterialParameter(ConstantsReferencetemperatureEnum);
|
|---|
| 1305 |
|
|---|
| 1306 | return heatcapacity*(TMeltingPoint(element,pressure)-referencetemperature);
|
|---|
| 1307 | }/*}}}*/
|
|---|
| 1308 | IssmDouble EnthalpyAnalysis::TMeltingPoint(Element* element,IssmDouble pressure){/*{{{*/
|
|---|
| 1309 |
|
|---|
| 1310 | IssmDouble meltingpoint = element->GetMaterialParameter(MaterialsMeltingpointEnum);
|
|---|
| 1311 | IssmDouble beta = element->GetMaterialParameter(MaterialsBetaEnum);
|
|---|
| 1312 |
|
|---|
| 1313 | return meltingpoint-beta*pressure;
|
|---|
| 1314 | }/*}}}*/
|
|---|