source: issm/trunk-jpl/src/c/analyses/EnthalpyAnalysis.cpp@ 17463

Last change on this file since 17463 was 17463, checked in by jbondzio, 11 years ago

minor: cleanup code

File size: 49.2 KB
Line 
1#include "./EnthalpyAnalysis.h"
2#include "../toolkits/toolkits.h"
3#include "../classes/classes.h"
4#include "../shared/shared.h"
5#include "../modules/modules.h"
6
7/*Model processing*/
8int EnthalpyAnalysis::DofsPerNode(int** doflist,int meshtype,int approximation){/*{{{*/
9 return 1;
10}/*}}}*/
11void EnthalpyAnalysis::UpdateParameters(Parameters* parameters,IoModel* iomodel,int solution_enum,int analysis_enum){/*{{{*/
12
13 int numoutputs;
14 char** requestedoutputs = NULL;
15
16 parameters->AddObject(iomodel->CopyConstantObject(ThermalStabilizationEnum));
17 parameters->AddObject(iomodel->CopyConstantObject(ThermalIsenthalpyEnum));
18 parameters->AddObject(iomodel->CopyConstantObject(ThermalIsdynamicbasalspcEnum));
19
20 iomodel->FetchData(&requestedoutputs,&numoutputs,ThermalRequestedOutputsEnum);
21 parameters->AddObject(new IntParam(ThermalNumRequestedOutputsEnum,numoutputs));
22 if(numoutputs)parameters->AddObject(new StringArrayParam(ThermalRequestedOutputsEnum,requestedoutputs,numoutputs));
23 iomodel->DeleteData(&requestedoutputs,numoutputs,ThermalRequestedOutputsEnum);
24}/*}}}*/
25void EnthalpyAnalysis::UpdateElements(Elements* elements,IoModel* iomodel,int analysis_counter,int analysis_type){/*{{{*/
26
27 bool dakota_analysis, islevelset;
28 bool isenthalpy;
29
30 /*Now, is the model 3d? otherwise, do nothing: */
31 if(iomodel->meshtype==Mesh2DhorizontalEnum)return;
32
33 /*Is enthalpy requested?*/
34 iomodel->Constant(&isenthalpy,ThermalIsenthalpyEnum);
35 if(!isenthalpy) return;
36
37 /*Fetch data needed: */
38 iomodel->FetchData(3,TemperatureEnum,WaterfractionEnum,PressureEnum);
39
40 /*Update elements: */
41 int counter=0;
42 for(int i=0;i<iomodel->numberofelements;i++){
43 if(iomodel->my_elements[i]){
44 Element* element=(Element*)elements->GetObjectByOffset(counter);
45 element->Update(i,iomodel,analysis_counter,analysis_type,P1Enum);
46 counter++;
47 }
48 }
49
50 iomodel->Constant(&dakota_analysis,QmuIsdakotaEnum);
51 iomodel->Constant(&islevelset,TransientIslevelsetEnum);
52
53 iomodel->FetchDataToInput(elements,ThicknessEnum);
54 iomodel->FetchDataToInput(elements,SurfaceEnum);
55 iomodel->FetchDataToInput(elements,BedEnum);
56 iomodel->FetchDataToInput(elements,FrictionCoefficientEnum);
57 iomodel->FetchDataToInput(elements,FrictionPEnum);
58 iomodel->FetchDataToInput(elements,FrictionQEnum);
59 iomodel->FetchDataToInput(elements,MaskIceLevelsetEnum);
60 iomodel->FetchDataToInput(elements,MaskGroundediceLevelsetEnum);
61 iomodel->FetchDataToInput(elements,MeshElementonbedEnum);
62 iomodel->FetchDataToInput(elements,MeshElementonsurfaceEnum);
63 iomodel->FetchDataToInput(elements,FlowequationElementEquationEnum);
64 iomodel->FetchDataToInput(elements,MaterialsRheologyBEnum);
65 iomodel->FetchDataToInput(elements,MaterialsRheologyNEnum);
66 iomodel->FetchDataToInput(elements,PressureEnum);
67 iomodel->FetchDataToInput(elements,TemperatureEnum);
68 iomodel->FetchDataToInput(elements,WaterfractionEnum);
69 iomodel->FetchDataToInput(elements,EnthalpyEnum);
70 iomodel->FetchDataToInput(elements,BasalforcingsGeothermalfluxEnum);
71 iomodel->FetchDataToInput(elements,WatercolumnEnum);
72 iomodel->FetchDataToInput(elements,BasalforcingsMeltingRateEnum);
73 iomodel->FetchDataToInput(elements,VxEnum);
74 iomodel->FetchDataToInput(elements,VyEnum);
75 iomodel->FetchDataToInput(elements,VzEnum);
76 InputUpdateFromConstantx(elements,0.,VxMeshEnum);
77 InputUpdateFromConstantx(elements,0.,VyMeshEnum);
78 InputUpdateFromConstantx(elements,0.,VzMeshEnum);
79 if(dakota_analysis){
80 elements->InputDuplicate(TemperatureEnum,QmuTemperatureEnum);
81 elements->InputDuplicate(BasalforcingsMeltingRateEnum,QmuMeltingEnum);
82 elements->InputDuplicate(VxMeshEnum,QmuVxMeshEnum);
83 elements->InputDuplicate(VxMeshEnum,QmuVyMeshEnum);
84 elements->InputDuplicate(VxMeshEnum,QmuVzMeshEnum);
85 }
86 if(islevelset){
87 iomodel->FetchDataToInput(elements,IceMaskNodeActivationEnum);
88 iomodel->FetchDataToInput(elements,MeshVertexonbedEnum); // required for updating active nodes
89 }
90
91 /*Free data: */
92 iomodel->DeleteData(3,TemperatureEnum,WaterfractionEnum,PressureEnum);
93}/*}}}*/
94void EnthalpyAnalysis::CreateNodes(Nodes* nodes,IoModel* iomodel){/*{{{*/
95
96 if(iomodel->meshtype==Mesh3DEnum) iomodel->FetchData(2,MeshVertexonbedEnum,MeshVertexonsurfaceEnum);
97 ::CreateNodes(nodes,iomodel,EnthalpyAnalysisEnum,P1Enum);
98 iomodel->DeleteData(2,MeshVertexonbedEnum,MeshVertexonsurfaceEnum);
99}/*}}}*/
100void EnthalpyAnalysis::CreateConstraints(Constraints* constraints,IoModel* iomodel){/*{{{*/
101
102 /*Intermediary*/
103 int count;
104 int M,N;
105 bool spcpresent = false;
106 IssmDouble heatcapacity;
107 IssmDouble referencetemperature;
108
109 /*Output*/
110 IssmDouble *spcvector = NULL;
111 IssmDouble* times=NULL;
112 IssmDouble* values=NULL;
113
114 /*Fetch parameters: */
115 iomodel->Constant(&heatcapacity,MaterialsHeatcapacityEnum);
116 iomodel->Constant(&referencetemperature,ConstantsReferencetemperatureEnum);
117
118 /*return if 2d mesh*/
119 if(iomodel->meshtype==Mesh2DhorizontalEnum) return;
120
121 /*Fetch data: */
122 iomodel->FetchData(&spcvector,&M,&N,ThermalSpctemperatureEnum);
123
124 //FIX ME: SHOULD USE IOMODELCREATECONSTRAINTS
125 /*Transient or static?:*/
126 if(M==iomodel->numberofvertices){
127 /*static: just create Constraints objects*/
128 count=0;
129
130 for(int i=0;i<iomodel->numberofvertices;i++){
131 /*keep only this partition's nodes:*/
132 if((iomodel->my_vertices[i])){
133
134 if (!xIsNan<IssmDouble>(spcvector[i])){
135
136 constraints->AddObject(new SpcStatic(iomodel->constraintcounter+count+1,iomodel->nodecounter+i+1,1,heatcapacity*(spcvector[i]-referencetemperature),EnthalpyAnalysisEnum));
137 count++;
138
139 }
140 }
141 }
142 }
143 else if (M==(iomodel->numberofvertices+1)){
144 /*transient: create transient SpcTransient objects. Same logic, except we need to retrieve
145 * various times and values to initialize an SpcTransient object: */
146 count=0;
147
148 /*figure out times: */
149 times=xNew<IssmDouble>(N);
150 for(int j=0;j<N;j++){
151 times[j]=spcvector[(M-1)*N+j];
152 }
153
154 /*Create constraints from x,y,z: */
155 for(int i=0;i<iomodel->numberofvertices;i++){
156
157 /*keep only this partition's nodes:*/
158 if((iomodel->my_vertices[i])){
159
160 /*figure out times and values: */
161 values=xNew<IssmDouble>(N);
162 spcpresent=false;
163 for(int j=0;j<N;j++){
164 values[j]=heatcapacity*(spcvector[i*N+j]-referencetemperature);
165 if(!xIsNan<IssmDouble>(values[j]))spcpresent=true; //NaN means no spc by default
166 }
167
168 if(spcpresent){
169 constraints->AddObject(new SpcTransient(iomodel->constraintcounter+count+1,iomodel->nodecounter+i+1,1,N,times,values,EnthalpyAnalysisEnum));
170 count++;
171 }
172 xDelete<IssmDouble>(values);
173 }
174 }
175 }
176 else{
177 _error_("Size of field " << EnumToStringx(ThermalSpctemperatureEnum) << " not supported");
178 }
179
180 /*Free ressources:*/
181 iomodel->DeleteData(spcvector,ThermalSpctemperatureEnum);
182 xDelete<IssmDouble>(times);
183 xDelete<IssmDouble>(values);
184}/*}}}*/
185void EnthalpyAnalysis::CreateLoads(Loads* loads, IoModel* iomodel){/*{{{*/
186
187 /*No loads */
188}/*}}}*/
189
190/*Finite Element Analysis*/
191void EnthalpyAnalysis::Core(FemModel* femmodel){/*{{{*/
192 _error_("not implemented");
193}/*}}}*/
194ElementVector* EnthalpyAnalysis::CreateDVector(Element* element){/*{{{*/
195 /*Default, return NULL*/
196 return NULL;
197}/*}}}*/
198ElementMatrix* EnthalpyAnalysis::CreateJacobianMatrix(Element* element){/*{{{*/
199_error_("Not implemented");
200}/*}}}*/
201ElementMatrix* EnthalpyAnalysis::CreateKMatrix(Element* element){/*{{{*/
202
203 /* Check if ice in element */
204 if(!element->IsIceInElement()) return NULL;
205
206 /*compute all stiffness matrices for this element*/
207 ElementMatrix* Ke1=CreateKMatrixVolume(element);
208 ElementMatrix* Ke2=CreateKMatrixShelf(element);
209 ElementMatrix* Ke =new ElementMatrix(Ke1,Ke2);
210
211 /*clean-up and return*/
212 delete Ke1;
213 delete Ke2;
214 return Ke;
215}/*}}}*/
216ElementMatrix* EnthalpyAnalysis::CreateKMatrixVolume(Element* element){/*{{{*/
217
218 /* Check if ice in element */
219 if(!element->IsIceInElement()) return NULL;
220
221 /*Intermediaries */
222 int stabilization;
223 IssmDouble Jdet,dt,u,v,w,um,vm,wm,vel;
224 IssmDouble h,hx,hy,hz,vx,vy,vz;
225 IssmDouble tau_parameter,diameter;
226 IssmDouble D_scalar;
227 IssmDouble* xyz_list = NULL;
228
229 /*Fetch number of nodes and dof for this finite element*/
230 int numnodes = element->GetNumberOfNodes();
231
232 /*Initialize Element vector and other vectors*/
233 ElementMatrix* Ke = element->NewElementMatrix();
234 IssmDouble* basis = xNew<IssmDouble>(numnodes);
235 IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
236 IssmDouble* B = xNew<IssmDouble>(3*numnodes);
237 IssmDouble* Bprime = xNew<IssmDouble>(3*numnodes);
238 IssmDouble D[3][3] = {0.};
239 IssmDouble K[3][3];
240
241 /*Retrieve all inputs and parameters*/
242 element->GetVerticesCoordinates(&xyz_list);
243 element->FindParam(&dt,TimesteppingTimeStepEnum);
244 element->FindParam(&stabilization,ThermalStabilizationEnum);
245 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoWaterEnum);
246 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
247 IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
248 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
249 IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
250 Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
251 Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
252 Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
253 Input* vxm_input = element->GetInput(VxMeshEnum); _assert_(vxm_input);
254 Input* vym_input = element->GetInput(VyMeshEnum); _assert_(vym_input);
255 Input* vzm_input = element->GetInput(VzMeshEnum); _assert_(vzm_input);
256 if(stabilization==2) diameter=element->MinEdgeLength(xyz_list);
257
258 /*Enthalpy diffusion parameter*/
259 IssmDouble kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
260
261 /* Start looping on the number of gaussian points: */
262 Gauss* gauss=element->NewGauss(2);
263 for(int ig=gauss->begin();ig<gauss->end();ig++){
264 gauss->GaussPoint(ig);
265
266 element->JacobianDeterminant(&Jdet,xyz_list,gauss);
267 D_scalar=gauss->weight*Jdet;
268 if(dt!=0.) D_scalar=D_scalar*dt;
269
270 /*Conduction: */
271 GetBConduct(B,element,xyz_list,gauss);
272 D[0][0]=D_scalar*kappa/rho_ice;
273 D[1][1]=D_scalar*kappa/rho_ice;
274 D[2][2]=D_scalar*kappa/rho_ice;
275 TripleMultiply(B,3,numnodes,1,
276 &D[0][0],3,3,0,
277 B,3,numnodes,0,
278 &Ke->values[0],1);
279
280 /*Advection: */
281 GetBAdvec(B,element,xyz_list,gauss);
282 GetBAdvecprime(Bprime,element,xyz_list,gauss);
283 vx_input->GetInputValue(&u,gauss); vxm_input->GetInputValue(&um,gauss); vx=u-um;
284 vy_input->GetInputValue(&v,gauss); vym_input->GetInputValue(&vm,gauss); vy=v-vm;
285 vz_input->GetInputValue(&w,gauss); vzm_input->GetInputValue(&wm,gauss); vz=w-wm;
286 D[0][0]=D_scalar*vx;
287 D[1][1]=D_scalar*vy;
288 D[2][2]=D_scalar*vz;
289 TripleMultiply(B,3,numnodes,1,
290 &D[0][0],3,3,0,
291 Bprime,3,numnodes,0,
292 &Ke->values[0],1);
293
294 /*Transient: */
295 if(dt!=0.){
296 D_scalar=gauss->weight*Jdet;
297 element->NodalFunctions(basis,gauss);
298 TripleMultiply(basis,numnodes,1,0,
299 &D_scalar,1,1,0,
300 basis,1,numnodes,0,
301 &Ke->values[0],1);
302 D_scalar=D_scalar*dt;
303 }
304
305 /*Artifficial diffusivity*/
306 if(stabilization==1){
307 element->ElementSizes(&hx,&hy,&hz);
308 vel=sqrt(vx*vx + vy*vy + vz*vz)+1.e-14;
309 h=sqrt( pow(hx*vx/vel,2) + pow(hy*vy/vel,2) + pow(hz*vz/vel,2));
310 K[0][0]=h/(2.*vel)*vx*vx; K[0][1]=h/(2.*vel)*vx*vy; K[0][2]=h/(2.*vel)*vx*vz;
311 K[1][0]=h/(2.*vel)*vy*vx; K[1][1]=h/(2.*vel)*vy*vy; K[1][2]=h/(2.*vel)*vy*vz;
312 K[2][0]=h/(2.*vel)*vz*vx; K[2][1]=h/(2.*vel)*vz*vy; K[2][2]=h/(2.*vel)*vz*vz;
313 for(int i=0;i<3;i++) for(int j=0;j<3;j++) K[i][j] = D_scalar*K[i][j];
314
315 GetBAdvecprime(Bprime,element,xyz_list,gauss);
316 TripleMultiply(Bprime,3,numnodes,1,
317 &K[0][0],3,3,0,
318 Bprime,3,numnodes,0,
319 &Ke->values[0],1);
320 }
321 else if(stabilization==2){
322 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
323 tau_parameter=element->StabilizationParameter(u-um,v-vm,w-wm,diameter,kappa/rho_ice);
324 for(int i=0;i<numnodes;i++){
325 for(int j=0;j<numnodes;j++){
326 Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*
327 ((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i])*((u-um)*dbasis[0*numnodes+j]+(v-vm)*dbasis[1*numnodes+j]+(w-wm)*dbasis[2*numnodes+j]);
328 }
329 }
330 if(dt!=0.){
331 D_scalar=gauss->weight*Jdet;
332 for(int i=0;i<numnodes;i++){
333 for(int j=0;j<numnodes;j++){
334 Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*basis[j]*((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i]);
335 }
336 }
337 }
338 }
339 }
340
341 /*Clean up and return*/
342 xDelete<IssmDouble>(xyz_list);
343 xDelete<IssmDouble>(basis);
344 xDelete<IssmDouble>(dbasis);
345 xDelete<IssmDouble>(B);
346 xDelete<IssmDouble>(Bprime);
347 delete gauss;
348 return Ke;
349}/*}}}*/
350ElementMatrix* EnthalpyAnalysis::CreateKMatrixShelf(Element* element){/*{{{*/
351
352 /* Check if ice in element */
353 if(!element->IsIceInElement()) return NULL;
354
355 /*Initialize Element matrix and return if necessary*/
356 if(!element->IsOnBed() || !element->IsFloating()) return NULL;
357
358 /*Intermediaries*/
359 IssmDouble dt,Jdet,D;
360 IssmDouble *xyz_list_base = NULL;
361
362 /*Fetch number of nodes for this finite element*/
363 int numnodes = element->GetNumberOfNodes();
364
365 /*Initialize vectors*/
366 ElementMatrix* Ke = element->NewElementMatrix();
367 IssmDouble* basis = xNew<IssmDouble>(numnodes);
368
369 /*Retrieve all inputs and parameters*/
370 element->GetVerticesCoordinatesBase(&xyz_list_base);
371 element->FindParam(&dt,TimesteppingTimeStepEnum);
372 IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
373 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoWaterEnum);
374 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
375 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
376 IssmDouble mixed_layer_capacity= element->GetMaterialParameter(MaterialsMixedLayerCapacityEnum);
377 IssmDouble thermal_exchange_vel= element->GetMaterialParameter(MaterialsThermalExchangeVelocityEnum);
378
379 /* Start looping on the number of gaussian points: */
380 Gauss* gauss=element->NewGaussBase(2);
381 for(int ig=gauss->begin();ig<gauss->end();ig++){
382 gauss->GaussPoint(ig);
383
384 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
385 element->NodalFunctions(basis,gauss);
386
387 D=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel/(heatcapacity*rho_ice);
388 if(reCast<bool,IssmDouble>(dt)) D=dt*D;
389 TripleMultiply(basis,numnodes,1,0,
390 &D,1,1,0,
391 basis,1,numnodes,0,
392 &Ke->values[0],1);
393
394 }
395
396 /*Clean up and return*/
397 delete gauss;
398 xDelete<IssmDouble>(basis);
399 xDelete<IssmDouble>(xyz_list_base);
400 return Ke;
401}/*}}}*/
402ElementVector* EnthalpyAnalysis::CreatePVector(Element* element){/*{{{*/
403
404 /* Check if ice in element */
405 if(!element->IsIceInElement()) return NULL;
406
407 /*compute all load vectors for this element*/
408 ElementVector* pe1=CreatePVectorVolume(element);
409 ElementVector* pe2=CreatePVectorSheet(element);
410 ElementVector* pe3=CreatePVectorShelf(element);
411 ElementVector* pe =new ElementVector(pe1,pe2,pe3);
412
413 /*clean-up and return*/
414 delete pe1;
415 delete pe2;
416 delete pe3;
417 return pe;
418}/*}}}*/
419ElementVector* EnthalpyAnalysis::CreatePVectorVolume(Element* element){/*{{{*/
420
421 /* Check if ice in element */
422 if(!element->IsIceInElement()) return NULL;
423
424 /*Intermediaries*/
425 int i, stabilization;
426 IssmDouble Jdet,phi,dt;
427 IssmDouble enthalpy, Hpmp;
428 IssmDouble enthalpypicard, d1enthalpypicard[3];
429 IssmDouble pressure, d1pressure[3], d2pressure;
430 IssmDouble waterfractionpicard;
431 IssmDouble kappa,tau_parameter,diameter,kappa_w;
432 IssmDouble u,v,w;
433 IssmDouble scalar_def, scalar_sens ,scalar_transient;
434 IssmDouble* xyz_list = NULL;
435 IssmDouble d1H_d1P, d1P2;
436
437 /*Fetch number of nodes and dof for this finite element*/
438 int numnodes = element->GetNumberOfNodes();
439 int numvertices = element->GetNumberOfVertices();
440
441 /*Initialize Element vector*/
442 ElementVector* pe = element->NewElementVector();
443 IssmDouble* basis = xNew<IssmDouble>(numnodes);
444 IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
445
446 /*Retrieve all inputs and parameters*/
447 element->GetVerticesCoordinates(&xyz_list);
448 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
449 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
450 IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
451 IssmDouble temperateiceconductivity = element->GetMaterialParameter(MaterialsTemperateiceconductivityEnum);
452 IssmDouble beta = element->GetMaterialParameter(MaterialsBetaEnum);
453 IssmDouble latentheat = element->GetMaterialParameter(MaterialsLatentheatEnum);
454 element->FindParam(&dt,TimesteppingTimeStepEnum);
455 element->FindParam(&stabilization,ThermalStabilizationEnum);
456 Input* vx_input=element->GetInput(VxEnum); _assert_(vx_input);
457 Input* vy_input=element->GetInput(VyEnum); _assert_(vy_input);
458 Input* vz_input=element->GetInput(VzEnum); _assert_(vz_input);
459 Input* enthalpypicard_input=element->GetInput(EnthalpyPicardEnum); _assert_(enthalpypicard_input);
460 Input* pressure_input=element->GetInput(PressureEnum); _assert_(pressure_input);
461 Input* enthalpy_input=NULL;
462 if(reCast<bool,IssmDouble>(dt)){enthalpy_input = element->GetInput(EnthalpyEnum); _assert_(enthalpy_input);}
463 if(stabilization==2){
464 diameter=element->MinEdgeLength(xyz_list);
465 kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
466 }
467
468 /* Start looping on the number of gaussian points: */
469 Gauss* gauss=element->NewGauss(3);
470 for(int ig=gauss->begin();ig<gauss->end();ig++){
471 gauss->GaussPoint(ig);
472
473 element->JacobianDeterminant(&Jdet,xyz_list,gauss);
474 element->NodalFunctions(basis,gauss);
475
476 /*viscous dissipation*/
477 element->ViscousHeating(&phi,xyz_list,gauss,vx_input,vy_input,vz_input);
478
479 scalar_def=phi/rho_ice*Jdet*gauss->weight;
480 if(dt!=0.) scalar_def=scalar_def*dt;
481
482 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_def*basis[i];
483
484 /*sensible heat flux in temperate ice*/
485 enthalpypicard_input->GetInputValue(&enthalpypicard,gauss);
486 pressure_input->GetInputValue(&pressure,gauss);
487 Hpmp=this->PureIceEnthalpy(element, pressure);
488
489 if(enthalpypicard>=Hpmp){
490 enthalpypicard_input->GetInputDerivativeValue(&d1enthalpypicard[0],xyz_list,gauss);
491 pressure_input->GetInputDerivativeValue(&d1pressure[0],xyz_list,gauss);
492 d2pressure=0.; // for linear elements, 2nd derivative is zero
493
494 d1H_d1P=0.;
495 for(i=0;i<3;i++) d1H_d1P+=d1enthalpypicard[i]*d1pressure[i];
496 d1P2=0.;
497 for(i=0;i<3;i++) d1P2+=pow(d1pressure[i],2.);
498
499 scalar_sens=-beta*((temperateiceconductivity - thermalconductivity)/latentheat*(d1H_d1P + beta*heatcapacity*d1P2))/rho_ice;
500 if(dt!=0.) scalar_sens=scalar_sens*dt;
501 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_sens*basis[i];
502 }
503
504 /* Build transient now */
505 if(reCast<bool,IssmDouble>(dt)){
506 enthalpy_input->GetInputValue(&enthalpy, gauss);
507 scalar_transient=enthalpy*Jdet*gauss->weight;
508 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_transient*basis[i];
509 }
510
511 if(stabilization==2){
512 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
513
514 vx_input->GetInputValue(&u,gauss);
515 vy_input->GetInputValue(&v,gauss);
516 vz_input->GetInputValue(&w,gauss);
517 tau_parameter=element->StabilizationParameter(u,v,w,diameter,kappa/rho_ice);
518
519 for(i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_def*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]);
520
521 if(dt!=0.){
522 for(i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_transient*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]);
523 }
524 }
525 }
526
527 /*Clean up and return*/
528 xDelete<IssmDouble>(basis);
529 xDelete<IssmDouble>(dbasis);
530 xDelete<IssmDouble>(xyz_list);
531 delete gauss;
532 return pe;
533
534}/*}}}*/
535ElementVector* EnthalpyAnalysis::CreatePVectorSheet(Element* element){/*{{{*/
536
537 /* Check if ice in element */
538 if(!element->IsIceInElement()) return NULL;
539
540 /* implementation of the basal condition decision chart of Aschwanden 2012, Fig.5 */
541 if(!element->IsOnBed() || element->IsFloating()) return NULL;
542
543 IssmDouble dt,Jdet,enthalpy,pressure,watercolumn,geothermalflux,vx,vy,vz;
544 IssmDouble enthalpyup,pressureup,alpha2,scalar,basalfriction,heatflux;
545 IssmDouble *xyz_list_base = NULL;
546
547 /*Fetch number of nodes for this finite element*/
548 int numnodes = element->GetNumberOfNodes();
549
550 /*Initialize vectors*/
551 ElementVector* pe = element->NewElementVector();
552 IssmDouble* basis = xNew<IssmDouble>(numnodes);
553
554 /*Retrieve all inputs and parameters*/
555 element->GetVerticesCoordinatesBase(&xyz_list_base);
556 element->FindParam(&dt,TimesteppingTimeStepEnum);
557 Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
558 Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
559 Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
560 Input* enthalpy_input = element->GetInput(EnthalpyPicardEnum); _assert_(enthalpy_input);
561 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
562 Input* geothermalflux_input = element->GetInput(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input);
563 Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
564 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
565 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
566
567 /*Build friction element, needed later: */
568 Friction* friction=new Friction(element,3);
569
570 /* Start looping on the number of gaussian points: */
571 Gauss* gauss = element->NewGaussBase(2);
572 Gauss* gaussup = element->NewGaussTop(2);
573 for(int ig=gauss->begin();ig<gauss->end();ig++){
574 gauss->GaussPoint(ig);
575
576 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
577 element->NodalFunctions(basis,gauss);
578
579 enthalpy_input->GetInputValue(&enthalpy,gauss);
580 pressure_input->GetInputValue(&pressure,gauss);
581 watercolumn_input->GetInputValue(&watercolumn,gauss);
582
583 if((watercolumn<=0.) && (enthalpy<PureIceEnthalpy(element,pressure))){
584 /* the above check is equivalent to
585 NOT [(watercolumn>0.) AND (enthalpy<PIE)] AND (enthalpy<PIE)*/
586 geothermalflux_input->GetInputValue(&geothermalflux,gauss);
587
588 friction->GetAlpha2(&alpha2,gauss,vx_input,vy_input,vz_input);
589 vx_input->GetInputValue(&vx,gauss);
590 vy_input->GetInputValue(&vy,gauss);
591 vz_input->GetInputValue(&vz,gauss);
592 basalfriction = alpha2*(vx*vx + vy*vy + vz*vz);
593 heatflux = (basalfriction+geothermalflux)/(rho_ice);
594
595 scalar = gauss->weight*Jdet*heatflux;
596 if(dt!=0.) scalar=dt*scalar;
597
598 for(int i=0;i<numnodes;i++) pe->values[i]+=scalar*basis[i];
599 }
600 else if(enthalpy >= PureIceEnthalpy(element,pressure)){
601 /* check positive thickness of temperate basal ice layer */
602 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
603 pressure_input->GetInputValue(&pressureup,gaussup);
604 if(enthalpyup >= PureIceEnthalpy(element,pressureup)){
605 // do nothing, set grad enthalpy*n=0.
606 }
607 else{
608 // only base temperate, set Dirichlet BCs in Penta::UpdateBasalConstraintsEnthalpy()
609 }
610 }
611 else{
612 // base cold, but watercolumn positive. Set base to pressure melting point enthalpy
613 }
614 }
615
616 /*Clean up and return*/
617 delete gauss;
618 delete gaussup;
619 delete friction;
620 xDelete<IssmDouble>(basis);
621 xDelete<IssmDouble>(xyz_list_base);
622 return pe;
623
624}/*}}}*/
625ElementVector* EnthalpyAnalysis::CreatePVectorShelf(Element* element){/*{{{*/
626
627 /* Check if ice in element */
628 if(!element->IsIceInElement()) return NULL;
629
630 /*Get basal element*/
631 if(!element->IsOnBed() || !element->IsFloating()) return NULL;
632
633 IssmDouble h_pmp,dt,Jdet,scalar_ocean,pressure;
634 IssmDouble *xyz_list_base = NULL;
635
636 /*Fetch number of nodes for this finite element*/
637 int numnodes = element->GetNumberOfNodes();
638
639 /*Initialize vectors*/
640 ElementVector* pe = element->NewElementVector();
641 IssmDouble* basis = xNew<IssmDouble>(numnodes);
642
643 /*Retrieve all inputs and parameters*/
644 element->GetVerticesCoordinatesBase(&xyz_list_base);
645 element->FindParam(&dt,TimesteppingTimeStepEnum);
646 Input* pressure_input=element->GetInput(PressureEnum); _assert_(pressure_input);
647 IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
648 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoWaterEnum);
649 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
650 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
651 IssmDouble mixed_layer_capacity= element->GetMaterialParameter(MaterialsMixedLayerCapacityEnum);
652 IssmDouble thermal_exchange_vel= element->GetMaterialParameter(MaterialsThermalExchangeVelocityEnum);
653
654 /* Start looping on the number of gaussian points: */
655 Gauss* gauss=element->NewGaussBase(2);
656 for(int ig=gauss->begin();ig<gauss->end();ig++){
657 gauss->GaussPoint(ig);
658
659 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
660 element->NodalFunctions(basis,gauss);
661
662 pressure_input->GetInputValue(&pressure,gauss);
663 h_pmp=element->PureIceEnthalpy(pressure);
664
665 scalar_ocean=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel*h_pmp/(heatcapacity*rho_ice);
666 if(reCast<bool,IssmDouble>(dt)) scalar_ocean=dt*scalar_ocean;
667
668 for(int i=0;i<numnodes;i++) pe->values[i]+=scalar_ocean*basis[i];
669 }
670
671 /*Clean up and return*/
672 delete gauss;
673 xDelete<IssmDouble>(basis);
674 xDelete<IssmDouble>(xyz_list_base);
675 return pe;
676}/*}}}*/
677void EnthalpyAnalysis::GetBConduct(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
678 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
679 * For node i, Bi' can be expressed in the actual coordinate system
680 * by:
681 * Bi_conduct=[ dh/dx ]
682 * [ dh/dy ]
683 * [ dh/dz ]
684 * where h is the interpolation function for node i.
685 *
686 * We assume B has been allocated already, of size: 3x(NDOF1*numnodes)
687 */
688
689 /*Fetch number of nodes for this finite element*/
690 int numnodes = element->GetNumberOfNodes();
691
692 /*Get nodal functions derivatives*/
693 IssmDouble* dbasis=xNew<IssmDouble>(3*numnodes);
694 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
695
696 /*Build B: */
697 for(int i=0;i<numnodes;i++){
698 B[numnodes*0+i] = dbasis[0*numnodes+i];
699 B[numnodes*1+i] = dbasis[1*numnodes+i];
700 B[numnodes*2+i] = dbasis[2*numnodes+i];
701 }
702
703 /*Clean-up*/
704 xDelete<IssmDouble>(dbasis);
705}/*}}}*/
706void EnthalpyAnalysis::GetBAdvec(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
707 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
708 * For node i, Bi' can be expressed in the actual coordinate system
709 * by:
710 * Bi_advec =[ h ]
711 * [ h ]
712 * [ h ]
713 * where h is the interpolation function for node i.
714 *
715 * We assume B has been allocated already, of size: 3x(NDOF1*NUMNODESP1)
716 */
717
718 /*Fetch number of nodes for this finite element*/
719 int numnodes = element->GetNumberOfNodes();
720
721 /*Get nodal functions*/
722 IssmDouble* basis=xNew<IssmDouble>(numnodes);
723 element->NodalFunctions(basis,gauss);
724
725 /*Build B: */
726 for(int i=0;i<numnodes;i++){
727 B[numnodes*0+i] = basis[i];
728 B[numnodes*1+i] = basis[i];
729 B[numnodes*2+i] = basis[i];
730 }
731
732 /*Clean-up*/
733 xDelete<IssmDouble>(basis);
734}/*}}}*/
735void EnthalpyAnalysis::GetBAdvecprime(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
736 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
737 * For node i, Bi' can be expressed in the actual coordinate system
738 * by:
739 * Biprime_advec=[ dh/dx ]
740 * [ dh/dy ]
741 * [ dh/dz ]
742 * where h is the interpolation function for node i.
743 *
744 * We assume B has been allocated already, of size: 3x(NDOF1*numnodes)
745 */
746
747 /*Fetch number of nodes for this finite element*/
748 int numnodes = element->GetNumberOfNodes();
749
750 /*Get nodal functions derivatives*/
751 IssmDouble* dbasis=xNew<IssmDouble>(3*numnodes);
752 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
753
754 /*Build B: */
755 for(int i=0;i<numnodes;i++){
756 B[numnodes*0+i] = dbasis[0*numnodes+i];
757 B[numnodes*1+i] = dbasis[1*numnodes+i];
758 B[numnodes*2+i] = dbasis[2*numnodes+i];
759 }
760
761 /*Clean-up*/
762 xDelete<IssmDouble>(dbasis);
763}/*}}}*/
764void EnthalpyAnalysis::GetSolutionFromInputs(Vector<IssmDouble>* solution,Element* element){/*{{{*/
765 element->GetSolutionFromInputsOneDof(solution,EnthalpyEnum);
766}/*}}}*/
767void EnthalpyAnalysis::InputUpdateFromSolution(IssmDouble* solution,Element* element){/*{{{*/
768
769 bool converged;
770 int i,rheology_law;
771 IssmDouble B_average,s_average,T_average=0.,P_average=0.;
772 int *doflist = NULL;
773 IssmDouble *xyz_list = NULL;
774
775 /*Fetch number of nodes and dof for this finite element*/
776 int numnodes = element->GetNumberOfNodes();
777
778 /*Fetch dof list and allocate solution vector*/
779 element->GetDofList(&doflist,NoneApproximationEnum,GsetEnum);
780 IssmDouble* values = xNew<IssmDouble>(numnodes);
781 IssmDouble* pressure = xNew<IssmDouble>(numnodes);
782 IssmDouble* surface = xNew<IssmDouble>(numnodes);
783 IssmDouble* B = xNew<IssmDouble>(numnodes);
784 IssmDouble* temperature = xNew<IssmDouble>(numnodes);
785 IssmDouble* waterfraction = xNew<IssmDouble>(numnodes);
786
787 /*Use the dof list to index into the solution vector: */
788 for(i=0;i<numnodes;i++){
789 values[i]=solution[doflist[i]];
790
791 /*Check solution*/
792 if(xIsNan<IssmDouble>(values[i])) _error_("NaN found in solution vector");
793 }
794
795 /*Get all inputs and parameters*/
796 element->GetInputValue(&converged,ConvergedEnum);
797 element->GetInputListOnNodes(&pressure[0],PressureEnum);
798 if(converged){
799 for(i=0;i<numnodes;i++){
800 element->EnthalpyToThermal(&temperature[i],&waterfraction[i],values[i],pressure[i]);
801 if(waterfraction[i]<0.) _error_("Negative water fraction found in solution vector");
802 //if(waterfraction[i]>1.) _error_("Water fraction >1 found in solution vector");
803 }
804 element->AddInput(EnthalpyEnum,values,P1Enum);
805 element->AddInput(WaterfractionEnum,waterfraction,P1Enum);
806 element->AddInput(TemperatureEnum,temperature,P1Enum);
807
808 /*Update Rheology only if converged (we must make sure that the temperature is below melting point
809 * otherwise the rheology could be negative*/
810 element->FindParam(&rheology_law,MaterialsRheologyLawEnum);
811 element->GetInputListOnNodes(&surface[0],SurfaceEnum);
812 switch(rheology_law){
813 case NoneEnum:
814 /*Do nothing: B is not temperature dependent*/
815 break;
816 case CuffeyEnum:
817 for(i=0;i<numnodes;i++) B[i]=Cuffey(temperature[i]);
818 element->AddInput(MaterialsRheologyBEnum,&B[0],P1Enum);
819 break;
820 case PatersonEnum:
821 for(i=0;i<numnodes;i++) B[i]=Paterson(temperature[i]);
822 element->AddInput(MaterialsRheologyBEnum,&B[0],P1Enum);
823 break;
824 case ArrheniusEnum:
825 element->GetVerticesCoordinates(&xyz_list);
826 for(i=0;i<numnodes;i++) B[i]=Arrhenius(temperature[i],surface[i]-xyz_list[i*3+2],element->GetMaterialParameter(MaterialsRheologyNEnum));
827 element->AddInput(MaterialsRheologyBEnum,&B[0],P1Enum);
828 break;
829 case LliboutryDuvalEnum:
830 for(i=0;i<numnodes;i++) B[i]=LliboutryDuval(values[i],pressure[i],element->GetMaterialParameter(MaterialsRheologyNEnum),element->GetMaterialParameter(MaterialsBetaEnum),element->GetMaterialParameter(ConstantsReferencetemperatureEnum),element->GetMaterialParameter(MaterialsHeatcapacityEnum),element->GetMaterialParameter(MaterialsLatentheatEnum));
831 element->AddInput(MaterialsRheologyBEnum,&B[0],P1Enum);
832 break;
833 default: _error_("Rheology law " << EnumToStringx(rheology_law) << " not supported yet");
834 }
835 }
836 else{
837 element->AddInput(EnthalpyPicardEnum,values,P1Enum);
838 }
839
840 /*Free ressources:*/
841 xDelete<IssmDouble>(values);
842 xDelete<IssmDouble>(pressure);
843 xDelete<IssmDouble>(surface);
844 xDelete<IssmDouble>(B);
845 xDelete<IssmDouble>(temperature);
846 xDelete<IssmDouble>(waterfraction);
847 xDelete<IssmDouble>(xyz_list);
848 xDelete<int>(doflist);
849}/*}}}*/
850void EnthalpyAnalysis::UpdateConstraints(FemModel* femmodel){/*{{{*/
851
852 bool islevelset;
853 femmodel->parameters->FindParam(&islevelset,TransientIslevelsetEnum);
854 if(islevelset){
855 SetActiveNodesLSMx(femmodel);
856 }
857 return;
858}/*}}}*/
859
860/*Modules*/
861void EnthalpyAnalysis::PostProcessing(FemModel* femmodel){/*{{{*/
862
863 /*Intermediaries*/
864 int solution_type, i;
865 bool computebasalmeltingrates=true;
866 bool isdrainage=true;
867 bool updatebasalconstraints=true;
868
869 if(isdrainage){
870 /*Drain excess water fraction in ice column: */
871 for(i=0;i<femmodel->elements->Size();i++){
872 Element* element=dynamic_cast<Element*>(femmodel->elements->GetObjectByOffset(i));
873 DrainWaterfractionIcecolumn(element);
874 }
875 }
876
877 if(computebasalmeltingrates){
878 /*Compute basal melting rates: */
879 for(i=0;i<femmodel->elements->Size();i++){
880 Element* element=dynamic_cast<Element*>(femmodel->elements->GetObjectByOffset(i));
881 ComputeBasalMeltingrate(element);
882 }
883 }
884
885 if(updatebasalconstraints){
886 /*Update basal dirichlet BCs for enthalpy in transient runs: */
887 femmodel->parameters->FindParam(&solution_type,SolutionTypeEnum);
888 if(solution_type==TransientSolutionEnum){
889 for(i=0;i<femmodel->elements->Size();i++){
890 Element* element=dynamic_cast<Element*>(femmodel->elements->GetObjectByOffset(i));
891 UpdateBasalConstraints(element);
892 }
893 }
894 }
895}/*}}}*/
896void EnthalpyAnalysis::ComputeBasalMeltingrate(Element* element){/*{{{*/
897 /*Calculate the basal melt rates of the enthalpy model after Aschwanden 2012*/
898 /* melting rate is positive when melting, negative when refreezing*/
899
900 /* Check if ice in element */
901 if(!element->IsIceInElement()) return;
902
903 /* Only compute melt rates at the base of grounded ice*/
904 if(!element->IsOnBed() || element->IsFloating()) return;
905
906 /* Intermediaries */
907 const int dim=3;
908 int i,is,vertexdown,vertexup,numvertices,numsegments;
909 IssmDouble heatflux;
910 IssmDouble vec_heatflux[dim],normal_base[dim],d1enthalpy[dim];
911 IssmDouble temperature, waterfraction;
912 IssmDouble basalfriction,alpha2;
913 IssmDouble dt,yts;
914 IssmDouble melting_overshoot,lambda;
915 IssmDouble geothermalflux;
916 IssmDouble vx,vy,vz;
917 IssmDouble *xyz_list = NULL;
918 IssmDouble *xyz_list_base = NULL;
919 int *pairindices = NULL;
920
921 /*Fetch parameters and inputs */
922 element->GetVerticesCoordinates(&xyz_list);
923 element->GetVerticesCoordinatesBase(&xyz_list_base);
924 IssmDouble latentheat = element->GetMaterialParameter(MaterialsLatentheatEnum);
925 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
926 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoWaterEnum);
927 Input* enthalpy_input = element->GetInput(EnthalpyEnum); _assert_(enthalpy_input);
928 Input* geothermalflux_input = element->GetInput(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input);
929 Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
930 Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
931 Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
932 IssmDouble kappa=EnthalpyDiffusionParameterVolume(element,EnthalpyEnum); _assert_(kappa>=0.);
933 element->NormalBase(&normal_base[0],xyz_list_base);
934 element->VerticalSegmentIndices(&pairindices,&numsegments);
935 IssmDouble* meltingrate_enthalpy = xNew<IssmDouble>(numsegments);
936 IssmDouble* heating = xNew<IssmDouble>(numsegments);
937
938 /*Build friction element, needed later: */
939 Friction* friction=new Friction(element,dim);
940
941 /******** MELTING RATES ************************************/
942 numvertices=element->GetNumberOfVertices();
943 IssmDouble* enthalpy = xNew<IssmDouble>(numvertices);
944 IssmDouble* pressure = xNew<IssmDouble>(numvertices);
945 IssmDouble* watercolumn = xNew<IssmDouble>(numvertices);
946 IssmDouble* basalmeltingrate = xNew<IssmDouble>(numvertices);
947 element->GetInputListOnVertices(enthalpy,EnthalpyEnum);
948 element->GetInputListOnVertices(pressure,PressureEnum);
949 element->GetInputListOnVertices(watercolumn,WatercolumnEnum);
950 element->GetInputListOnVertices(basalmeltingrate,BasalforcingsMeltingRateEnum);
951
952 Gauss* gauss=element->NewGauss();
953
954 for(int is=0;is<numsegments;is++){
955 vertexdown = pairindices[is*2+0];
956 vertexup = pairindices[is*2+1];
957 gauss->GaussVertex(vertexdown);
958
959 bool checkpositivethickness=true;
960 _assert_(watercolumn[vertexdown]>=0.);
961
962 /*Calculate basal meltingrate after Fig.5 of A.Aschwanden 2012*/
963 meltingrate_enthalpy[is]=0.;
964 heating[is]=0.;
965 if((watercolumn[vertexdown]>0.) && (enthalpy[vertexdown]<PureIceEnthalpy(element,pressure[vertexdown]))){
966 /*ensure that no ice is at T<Tm(p), if water layer present*/
967 enthalpy[vertexdown]=element->PureIceEnthalpy(pressure[vertexdown]);
968 }
969 else if(enthalpy[vertexdown]<element->PureIceEnthalpy(pressure[vertexdown])){
970 /*cold base: set q*n=q_geo*n+frictionheating as Neumann BC in Penta::CreatePVectorEnthalpySheet*/
971 checkpositivethickness=false; // cold base, skip next test
972 }
973 else{/*we have a temperate base, go to next test*/}
974
975 if(checkpositivethickness){
976 /*From here on all basal ice is temperate. Check for positive thickness of layer of temperate ice. */
977 bool istemperatelayer=false;
978 if(enthalpy[vertexup]>=element->PureIceEnthalpy(pressure[vertexup])) istemperatelayer=true;
979 if(istemperatelayer) for(i=0;i<dim;i++) vec_heatflux[i]=0.; // TODO: add -k*nabla T_pmp
980 else{
981 enthalpy_input->GetInputDerivativeValue(&d1enthalpy[0],xyz_list,gauss);
982 for(i=0;i<3;i++) vec_heatflux[i]=-kappa*d1enthalpy[i];
983 }
984
985 /*heat flux along normal*/
986 heatflux=0.;
987 for(i=0;i<3;i++) heatflux+=(vec_heatflux[i])*normal_base[i];
988
989 /*basal friction*/
990 friction->GetAlpha2(&alpha2,gauss,vx_input,vy_input,vz_input);
991 vx_input->GetInputValue(&vx,gauss);
992 vy_input->GetInputValue(&vy,gauss);
993 vz_input->GetInputValue(&vz,gauss);
994 basalfriction=alpha2*(vx*vx + vy*vy + vz*vz);
995
996 element->EnthalpyToThermal(&temperature,&waterfraction,enthalpy[vertexdown],pressure[vertexdown]);
997 geothermalflux_input->GetInputValue(&geothermalflux,gauss);
998 /* -Mb= Fb-(q-q_geo)/((1-w)*L), cf Aschwanden 2012, eq.66*/
999 heating[is]=(heatflux+basalfriction+geothermalflux);
1000 meltingrate_enthalpy[is]=heating[is]/((1-waterfraction)*latentheat*rho_water); // m/s water equivalent
1001 }
1002 }
1003 /******** UPDATE MELTINGRATES AND WATERCOLUMN **************/
1004 element->FindParam(&dt,TimesteppingTimeStepEnum);
1005 for(is=0;is<numsegments;is++){
1006 vertexdown = pairindices[is*2+0];
1007 vertexup = pairindices[is*2+1];
1008 if(dt!=0.){
1009 if(watercolumn[vertexdown]+meltingrate_enthalpy[is]*dt<0.){ // prevent too much freeze on
1010 lambda = -watercolumn[vertexdown]/(dt*meltingrate_enthalpy[is]); _assert_(lambda>=0.); _assert_(lambda<1.);
1011 watercolumn[vertexdown]=0.;
1012 basalmeltingrate[vertexdown]=lambda*meltingrate_enthalpy[is]; // restrict freeze on only to size of watercolumn
1013 enthalpy[vertexdown]+=(1.-lambda)*meltingrate_enthalpy[is]*dt*latentheat; // use rest of energy to cool down base
1014 }
1015 else{
1016 basalmeltingrate[vertexdown]=meltingrate_enthalpy[is];
1017 watercolumn[vertexdown]+=dt*meltingrate_enthalpy[is];
1018 }
1019 }
1020 else{
1021 basalmeltingrate[vertexdown]=meltingrate_enthalpy[is];
1022 watercolumn[vertexdown]+=meltingrate_enthalpy[is];
1023 }
1024 basalmeltingrate[vertexdown]*=rho_water/rho_ice; // convert meltingrate from water to ice equivalent
1025 _assert_(watercolumn[vertexdown]>=0.);
1026 }
1027
1028 /*feed updated variables back into model*/
1029 element->AddInput(EnthalpyEnum,enthalpy,P1Enum);
1030 element->AddInput(WatercolumnEnum,watercolumn,P1Enum);
1031 element->AddInput(BasalforcingsMeltingRateEnum,basalmeltingrate,P1Enum);
1032
1033 /*Clean up and return*/
1034 delete gauss;
1035 delete friction;
1036 xDelete<IssmDouble>(enthalpy);
1037 xDelete<IssmDouble>(pressure);
1038 xDelete<IssmDouble>(watercolumn);
1039 xDelete<IssmDouble>(basalmeltingrate);
1040 xDelete<IssmDouble>(meltingrate_enthalpy);
1041 xDelete<IssmDouble>(heating);
1042 xDelete<IssmDouble>(xyz_list);
1043}/*}}}*/
1044void EnthalpyAnalysis::DrainWaterfractionIcecolumn(Element* element){/*{{{*/
1045
1046 /* Check if ice in element */
1047 if(!element->IsIceInElement()) return;
1048
1049 /* Only drain waterfraction of ice column from element at base*/
1050 if(!element->IsOnBed()) return; //FIXME: allow freeze on for floating elements
1051
1052 /* Intermediaries*/
1053 int is, numvertices, numsegments;
1054 int *pairindices = NULL;
1055
1056 numvertices=element->GetNumberOfVertices();
1057 element->VerticalSegmentIndices(&pairindices,&numsegments);
1058
1059 IssmDouble* watercolumn = xNew<IssmDouble>(numvertices);
1060 IssmDouble* drainrate_column = xNew<IssmDouble>(numsegments);
1061 IssmDouble* drainrate_element = xNew<IssmDouble>(numsegments);
1062
1063 element->GetInputListOnVertices(watercolumn,WatercolumnEnum);
1064
1065 for(is=0;is<numsegments;is++) drainrate_column[is]=0.;
1066 Element* elementi = element;
1067 for(;;){
1068 for(is=0;is<numsegments;is++) drainrate_element[is]=0.;
1069 DrainWaterfraction(elementi,drainrate_element); // TODO: make sure every vertex is only drained once
1070 for(is=0;is<numsegments;is++) drainrate_column[is]+=drainrate_element[is];
1071
1072 if(elementi->IsOnSurface()) break;
1073 elementi=elementi->GetUpperElement();
1074 }
1075 /* add drained water to water column*/
1076 for(is=0;is<numsegments;is++) watercolumn[is]+=drainrate_column[is];
1077 /* Feed updated water column back into model */
1078 element->AddInput(WatercolumnEnum,watercolumn,P1Enum);
1079
1080 delete pairindices;
1081 xDelete<IssmDouble>(drainrate_column);
1082 xDelete<IssmDouble>(drainrate_element);
1083 xDelete<IssmDouble>(watercolumn);
1084}/*}}}*/
1085void EnthalpyAnalysis::DrainWaterfraction(Element* element, IssmDouble* pdrainrate_element){/*{{{*/
1086
1087 /* Check if ice in element */
1088 if(!element->IsIceInElement()) return;
1089
1090 /*Intermediaries*/
1091 int iv,is,vertexdown,vertexup,numsegments;
1092 IssmDouble dt, height_element;
1093 IssmDouble rho_water, rho_ice;
1094 int numvertices = element->GetNumberOfVertices();
1095
1096 IssmDouble* xyz_list = NULL;
1097 IssmDouble* enthalpies = xNew<IssmDouble>(numvertices);
1098 IssmDouble* pressures = xNew<IssmDouble>(numvertices);
1099 IssmDouble* temperatures = xNew<IssmDouble>(numvertices);
1100 IssmDouble* waterfractions = xNew<IssmDouble>(numvertices);
1101 IssmDouble* deltawaterfractions = xNew<IssmDouble>(numvertices);
1102 int *pairindices = NULL;
1103
1104 rho_ice=element->GetMaterialParameter(MaterialsRhoIceEnum);
1105 rho_water=element->GetMaterialParameter(MaterialsRhoWaterEnum);
1106
1107 element->GetVerticesCoordinates(&xyz_list);
1108 element->GetInputListOnVertices(enthalpies,EnthalpyEnum);
1109 element->GetInputListOnVertices(pressures,PressureEnum);
1110
1111 element->FindParam(&dt,TimesteppingTimeStepEnum);
1112 for(iv=0;iv<numvertices;iv++){
1113 element->EnthalpyToThermal(&temperatures[iv],&waterfractions[iv], enthalpies[iv],pressures[iv]);
1114 deltawaterfractions[iv]=DrainageFunctionWaterfraction(waterfractions[iv], dt);
1115 }
1116
1117 /*drain waterfraction, feed updated variables back into model*/
1118 for(iv=0;iv<numvertices;iv++){
1119 if(reCast<bool,IssmDouble>(dt))
1120 waterfractions[iv]-=deltawaterfractions[iv]*dt;
1121 else
1122 waterfractions[iv]-=deltawaterfractions[iv];
1123 element->ThermalToEnthalpy(&enthalpies[iv], temperatures[iv], waterfractions[iv], pressures[iv]);
1124 }
1125 element->AddInput(EnthalpyEnum,enthalpies,P1Enum);
1126 element->AddInput(WaterfractionEnum,waterfractions,P1Enum);
1127
1128 /*return meltwater column equivalent to drained water*/
1129 element->VerticalSegmentIndices(&pairindices,&numsegments);
1130 for(is=0;is<numsegments;is++){
1131 vertexdown = pairindices[is*2+0];
1132 vertexup = pairindices[is*2+1];
1133 height_element=fabs(xyz_list[vertexup*3+2]-xyz_list[vertexdown*3+2]);
1134 pdrainrate_element[is]=(deltawaterfractions[vertexdown]+deltawaterfractions[vertexup])/2.*height_element; // return water equivalent of drainage
1135 _assert_(pdrainrate_element[is]>=0.);
1136 }
1137
1138 /*Clean up and return*/
1139 xDelete<IssmDouble>(xyz_list);
1140 xDelete<IssmDouble>(enthalpies);
1141 xDelete<IssmDouble>(pressures);
1142 xDelete<IssmDouble>(temperatures);
1143 xDelete<IssmDouble>(waterfractions);
1144 xDelete<IssmDouble>(deltawaterfractions);
1145}/*}}}*/
1146void EnthalpyAnalysis::UpdateBasalConstraints(Element* element){/*{{{*/
1147
1148 /* Check if ice in element */
1149 if(!element->IsIceInElement()) return;
1150
1151 /* Only update Constraints at the base of grounded ice*/
1152 if(!(element->IsOnBed()) || element->IsFloating()) return;
1153
1154 /*Intermediary*/
1155 bool isdynamicbasalspc,setspc;
1156 int numindices, numindicesup;
1157 IssmDouble pressure, pressureup;
1158 IssmDouble h_pmp, enthalpy, enthalpyup;
1159 IssmDouble watercolumn;
1160 int *indices = NULL, *indicesup = NULL;
1161 Node* node = NULL;
1162
1163 /*Check wether dynamic basal boundary conditions are activated */
1164 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
1165 if(!isdynamicbasalspc) return;
1166
1167 /*Fetch indices of basal & surface nodes for this finite element*/
1168 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
1169 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
1170 penta->SurfaceNodeIndices(&numindicesup,&indicesup,element->GetElementType());
1171 _assert_(numindices==numindicesup);
1172
1173 /*Get parameters and inputs: */
1174 Input* pressure_input=element->GetInput(PressureEnum); _assert_(pressure_input);
1175 Input* enthalpy_input=element->GetInput(EnthalpyEnum); _assert_(enthalpy_input);
1176 Input* watercolumn_input=element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
1177
1178 /*if there is a temperate layer of zero thickness, set spc enthalpy=h_pmp at that node*/
1179 GaussPenta* gauss=new GaussPenta();
1180 GaussPenta* gaussup=new GaussPenta();
1181 for(int i=0;i<numindices;i++){
1182 gauss->GaussNode(element->GetElementType(),indices[i]);
1183 gaussup->GaussNode(element->GetElementType(),indicesup[i]);
1184
1185 /*Check wether there is a temperate layer at the base or not */
1186 /*check if node is temperate, else continue*/
1187 enthalpy_input->GetInputValue(&enthalpy, gauss);
1188 pressure_input->GetInputValue(&pressure, gauss);
1189 watercolumn_input->GetInputValue(&watercolumn,gauss);
1190 h_pmp=PureIceEnthalpy(element,pressure);
1191 if (enthalpy>=h_pmp){
1192 /*check if upper node is temperate, too.
1193 if yes, then we have a temperate layer of positive thickness and reset the spc.
1194 if not, apply dirichlet BC.*/
1195 enthalpy_input->GetInputValue(&enthalpyup, gaussup);
1196 pressure_input->GetInputValue(&pressureup, gaussup);
1197 setspc=((enthalpyup<PureIceEnthalpy(element,pressureup)) && (watercolumn>=0.))?true:false;
1198 }
1199 else
1200 setspc = false;
1201
1202 node=element->GetNode(indices[i]);
1203 if (setspc)
1204 node->ApplyConstraint(1,h_pmp); /*apply spc*/
1205 else
1206 node->DofInFSet(0); /*remove spc*/
1207 }
1208
1209 /*Free ressources:*/
1210 xDelete<int>(indices);
1211 xDelete<int>(indicesup);
1212 delete gauss;
1213 delete gaussup;
1214}/*}}}*/
1215
1216/*Intermediaries*/
1217IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameter(Element* element,IssmDouble enthalpy,IssmDouble pressure){/*{{{*/
1218
1219 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
1220 IssmDouble temperateiceconductivity = element->GetMaterialParameter(MaterialsTemperateiceconductivityEnum);
1221 IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
1222
1223 if(enthalpy < PureIceEnthalpy(element,pressure)){
1224 return thermalconductivity/heatcapacity;
1225 }
1226 else{
1227 return temperateiceconductivity/heatcapacity;
1228 }
1229}/*}}}*/
1230IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameterVolume(Element* element,int enthalpy_enum){/*{{{*/
1231
1232 int iv;
1233 IssmDouble lambda; /* fraction of cold ice */
1234 IssmDouble kappa,kappa_c,kappa_t; /* enthalpy conductivities */
1235 IssmDouble Hc,Ht;
1236
1237 /*Get pressures and enthalpies on vertices*/
1238 int numvertices = element->GetNumberOfVertices();
1239 IssmDouble* pressures = xNew<IssmDouble>(numvertices);
1240 IssmDouble* enthalpies = xNew<IssmDouble>(numvertices);
1241 IssmDouble* PIE = xNew<IssmDouble>(numvertices);
1242 IssmDouble* dHpmp = xNew<IssmDouble>(numvertices);
1243 element->GetInputListOnVertices(pressures,PressureEnum);
1244 element->GetInputListOnVertices(enthalpies,enthalpy_enum);
1245 for(iv=0;iv<numvertices;iv++){
1246 PIE[iv] = PureIceEnthalpy(element,pressures[iv]);
1247 dHpmp[iv] = enthalpies[iv]-PIE[iv];
1248 }
1249
1250 bool allequalsign = true;
1251 if(dHpmp[0]<0.){
1252 for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]<0.));
1253 }
1254 else{
1255 for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]>=0.));
1256 }
1257
1258 if(allequalsign){
1259 kappa = EnthalpyDiffusionParameter(element,enthalpies[0],pressures[0]);
1260 }
1261 else{
1262 /* return harmonic mean of thermal conductivities, weighted by fraction of cold/temperate ice,
1263 cf Patankar 1980, pp44 */
1264 kappa_c = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)-1.,0.);
1265 kappa_t = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)+1.,0.);
1266 Hc=0.; Ht=0.;
1267 for(iv=0; iv<numvertices;iv++){
1268 if(enthalpies[iv]<PIE[iv])
1269 Hc+=(PIE[iv]-enthalpies[iv]);
1270 else
1271 Ht+=(enthalpies[iv]-PIE[iv]);
1272 }
1273 _assert_((Hc+Ht)>0.);
1274 lambda = Hc/(Hc+Ht);
1275 kappa = kappa_c*kappa_t/(lambda*kappa_t+(1.-lambda)*kappa_c); // ==(lambda/kappa_c + (1.-lambda)/kappa_t)^-1
1276 }
1277
1278 /*Clean up and return*/
1279 xDelete<IssmDouble>(PIE);
1280 xDelete<IssmDouble>(dHpmp);
1281 xDelete<IssmDouble>(pressures);
1282 xDelete<IssmDouble>(enthalpies);
1283 return kappa;
1284}/*}}}*/
1285IssmDouble EnthalpyAnalysis::PureIceEnthalpy(Element* element,IssmDouble pressure){/*{{{*/
1286
1287 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
1288 IssmDouble referencetemperature = element->GetMaterialParameter(ConstantsReferencetemperatureEnum);
1289
1290 return heatcapacity*(TMeltingPoint(element,pressure)-referencetemperature);
1291}/*}}}*/
1292IssmDouble EnthalpyAnalysis::TMeltingPoint(Element* element,IssmDouble pressure){/*{{{*/
1293
1294 IssmDouble meltingpoint = element->GetMaterialParameter(MaterialsMeltingpointEnum);
1295 IssmDouble beta = element->GetMaterialParameter(MaterialsBetaEnum);
1296
1297 return meltingpoint-beta*pressure;
1298}/*}}}*/
Note: See TracBrowser for help on using the repository browser.