source: issm/trunk-jpl/src/c/analyses/EnthalpyAnalysis.cpp@ 16992

Last change on this file since 16992 was 16992, checked in by Mathieu Morlighem, 11 years ago

NEW: added CreateJacobianMatrix to each analysis

File size: 32.1 KB
Line 
1#include "./EnthalpyAnalysis.h"
2#include "../toolkits/toolkits.h"
3#include "../classes/classes.h"
4#include "../shared/shared.h"
5#include "../modules/modules.h"
6
7/*Model processing*/
8int EnthalpyAnalysis::DofsPerNode(int** doflist,int meshtype,int approximation){/*{{{*/
9 return 1;
10}/*}}}*/
11void EnthalpyAnalysis::UpdateParameters(Parameters* parameters,IoModel* iomodel,int solution_enum,int analysis_enum){/*{{{*/
12
13 int numoutputs;
14 char** requestedoutputs = NULL;
15
16 parameters->AddObject(iomodel->CopyConstantObject(ThermalStabilizationEnum));
17 parameters->AddObject(iomodel->CopyConstantObject(ThermalIsenthalpyEnum));
18 parameters->AddObject(iomodel->CopyConstantObject(ThermalIsdynamicbasalspcEnum));
19
20 iomodel->FetchData(&requestedoutputs,&numoutputs,ThermalRequestedOutputsEnum);
21 parameters->AddObject(new IntParam(ThermalNumRequestedOutputsEnum,numoutputs));
22 if(numoutputs)parameters->AddObject(new StringArrayParam(ThermalRequestedOutputsEnum,requestedoutputs,numoutputs));
23 iomodel->DeleteData(&requestedoutputs,numoutputs,ThermalRequestedOutputsEnum);
24}/*}}}*/
25void EnthalpyAnalysis::UpdateElements(Elements* elements,IoModel* iomodel,int analysis_counter,int analysis_type){/*{{{*/
26
27 bool dakota_analysis;
28 bool isenthalpy;
29
30 /*Now, is the model 3d? otherwise, do nothing: */
31 if(iomodel->meshtype==Mesh2DhorizontalEnum)return;
32
33 /*Is enthalpy requested?*/
34 iomodel->Constant(&isenthalpy,ThermalIsenthalpyEnum);
35 if(!isenthalpy) return;
36
37 /*Fetch data needed: */
38 iomodel->FetchData(3,TemperatureEnum,WaterfractionEnum,PressureEnum);
39
40 /*Update elements: */
41 int counter=0;
42 for(int i=0;i<iomodel->numberofelements;i++){
43 if(iomodel->my_elements[i]){
44 Element* element=(Element*)elements->GetObjectByOffset(counter);
45 element->Update(i,iomodel,analysis_counter,analysis_type,P1Enum);
46 counter++;
47 }
48 }
49
50 iomodel->Constant(&dakota_analysis,QmuIsdakotaEnum);
51
52 iomodel->FetchDataToInput(elements,ThicknessEnum);
53 iomodel->FetchDataToInput(elements,SurfaceEnum);
54 iomodel->FetchDataToInput(elements,BedEnum);
55 iomodel->FetchDataToInput(elements,FrictionCoefficientEnum);
56 iomodel->FetchDataToInput(elements,FrictionPEnum);
57 iomodel->FetchDataToInput(elements,FrictionQEnum);
58 iomodel->FetchDataToInput(elements,MaskIceLevelsetEnum);
59 iomodel->FetchDataToInput(elements,MaskGroundediceLevelsetEnum);
60 iomodel->FetchDataToInput(elements,MeshElementonbedEnum);
61 iomodel->FetchDataToInput(elements,MeshElementonsurfaceEnum);
62 iomodel->FetchDataToInput(elements,FlowequationElementEquationEnum);
63 iomodel->FetchDataToInput(elements,MaterialsRheologyBEnum);
64 iomodel->FetchDataToInput(elements,MaterialsRheologyNEnum);
65 iomodel->FetchDataToInput(elements,PressureEnum);
66 iomodel->FetchDataToInput(elements,TemperatureEnum);
67 iomodel->FetchDataToInput(elements,WaterfractionEnum);
68 iomodel->FetchDataToInput(elements,EnthalpyEnum);
69 iomodel->FetchDataToInput(elements,BasalforcingsGeothermalfluxEnum);
70 iomodel->FetchDataToInput(elements,WatercolumnEnum);
71 iomodel->FetchDataToInput(elements,BasalforcingsMeltingRateEnum);
72 iomodel->FetchDataToInput(elements,VxEnum);
73 iomodel->FetchDataToInput(elements,VyEnum);
74 iomodel->FetchDataToInput(elements,VzEnum);
75 InputUpdateFromConstantx(elements,0.,VxMeshEnum);
76 InputUpdateFromConstantx(elements,0.,VyMeshEnum);
77 InputUpdateFromConstantx(elements,0.,VzMeshEnum);
78 if(dakota_analysis){
79 elements->InputDuplicate(TemperatureEnum,QmuTemperatureEnum);
80 elements->InputDuplicate(BasalforcingsMeltingRateEnum,QmuMeltingEnum);
81 elements->InputDuplicate(VxMeshEnum,QmuVxMeshEnum);
82 elements->InputDuplicate(VxMeshEnum,QmuVyMeshEnum);
83 elements->InputDuplicate(VxMeshEnum,QmuVzMeshEnum);
84 }
85
86 /*Free data: */
87 iomodel->DeleteData(3,TemperatureEnum,WaterfractionEnum,PressureEnum);
88}/*}}}*/
89void EnthalpyAnalysis::CreateNodes(Nodes* nodes,IoModel* iomodel){/*{{{*/
90
91 if(iomodel->meshtype==Mesh3DEnum) iomodel->FetchData(2,MeshVertexonbedEnum,MeshVertexonsurfaceEnum);
92 ::CreateNodes(nodes,iomodel,EnthalpyAnalysisEnum,P1Enum);
93 iomodel->DeleteData(2,MeshVertexonbedEnum,MeshVertexonsurfaceEnum);
94}/*}}}*/
95void EnthalpyAnalysis::CreateConstraints(Constraints* constraints,IoModel* iomodel){/*{{{*/
96
97 /*Intermediary*/
98 int count;
99 int M,N;
100 bool spcpresent = false;
101 IssmDouble heatcapacity;
102 IssmDouble referencetemperature;
103
104 /*Output*/
105 IssmDouble *spcvector = NULL;
106 IssmDouble* times=NULL;
107 IssmDouble* values=NULL;
108
109 /*Fetch parameters: */
110 iomodel->Constant(&heatcapacity,MaterialsHeatcapacityEnum);
111 iomodel->Constant(&referencetemperature,ConstantsReferencetemperatureEnum);
112
113 /*return if 2d mesh*/
114 if(iomodel->meshtype==Mesh2DhorizontalEnum) return;
115
116 /*Fetch data: */
117 iomodel->FetchData(&spcvector,&M,&N,ThermalSpctemperatureEnum);
118
119 //FIX ME: SHOULD USE IOMODELCREATECONSTRAINTS
120 /*Transient or static?:*/
121 if(M==iomodel->numberofvertices){
122 /*static: just create Constraints objects*/
123 count=0;
124
125 for(int i=0;i<iomodel->numberofvertices;i++){
126 /*keep only this partition's nodes:*/
127 if((iomodel->my_vertices[i])){
128
129 if (!xIsNan<IssmDouble>(spcvector[i])){
130
131 constraints->AddObject(new SpcStatic(iomodel->constraintcounter+count+1,iomodel->nodecounter+i+1,1,heatcapacity*(spcvector[i]-referencetemperature),EnthalpyAnalysisEnum));
132 count++;
133
134 }
135 }
136 }
137 }
138 else if (M==(iomodel->numberofvertices+1)){
139 /*transient: create transient SpcTransient objects. Same logic, except we need to retrieve
140 * various times and values to initialize an SpcTransient object: */
141 count=0;
142
143 /*figure out times: */
144 times=xNew<IssmDouble>(N);
145 for(int j=0;j<N;j++){
146 times[j]=spcvector[(M-1)*N+j];
147 }
148
149 /*Create constraints from x,y,z: */
150 for(int i=0;i<iomodel->numberofvertices;i++){
151
152 /*keep only this partition's nodes:*/
153 if((iomodel->my_vertices[i])){
154
155 /*figure out times and values: */
156 values=xNew<IssmDouble>(N);
157 spcpresent=false;
158 for(int j=0;j<N;j++){
159 values[j]=heatcapacity*(spcvector[i*N+j]-referencetemperature);
160 if(!xIsNan<IssmDouble>(values[j]))spcpresent=true; //NaN means no spc by default
161 }
162
163 if(spcpresent){
164 constraints->AddObject(new SpcTransient(iomodel->constraintcounter+count+1,iomodel->nodecounter+i+1,1,N,times,values,EnthalpyAnalysisEnum));
165 count++;
166 }
167 xDelete<IssmDouble>(values);
168 }
169 }
170 }
171 else{
172 _error_("Size of field " << EnumToStringx(ThermalSpctemperatureEnum) << " not supported");
173 }
174
175 /*Free ressources:*/
176 iomodel->DeleteData(spcvector,ThermalSpctemperatureEnum);
177 xDelete<IssmDouble>(times);
178 xDelete<IssmDouble>(values);
179}/*}}}*/
180void EnthalpyAnalysis::CreateLoads(Loads* loads, IoModel* iomodel){/*{{{*/
181
182 /*No loads */
183}/*}}}*/
184
185/*Finite Element Analysis*/
186ElementMatrix* EnthalpyAnalysis::CreateJacobianMatrix(Element* element){/*{{{*/
187_error_("Not implemented");
188}/*}}}*/
189ElementMatrix* EnthalpyAnalysis::CreateKMatrix(Element* element){/*{{{*/
190
191 /*compute all stiffness matrices for this element*/
192 ElementMatrix* Ke1=CreateKMatrixVolume(element);
193 ElementMatrix* Ke2=CreateKMatrixShelf(element);
194 ElementMatrix* Ke =new ElementMatrix(Ke1,Ke2);
195
196 /*clean-up and return*/
197 delete Ke1;
198 delete Ke2;
199 return Ke;
200}/*}}}*/
201ElementMatrix* EnthalpyAnalysis::CreateKMatrixVolume(Element* element){/*{{{*/
202
203 /*Intermediaries */
204 int stabilization;
205 IssmDouble Jdet,dt,u,v,w,um,vm,wm,vel;
206 IssmDouble h,hx,hy,hz,vx,vy,vz;
207 IssmDouble tau_parameter,diameter;
208 IssmDouble D_scalar;
209 IssmDouble* xyz_list = NULL;
210
211 /*Fetch number of nodes and dof for this finite element*/
212 int numnodes = element->GetNumberOfNodes();
213
214 /*Initialize Element vector and other vectors*/
215 ElementMatrix* Ke = element->NewElementMatrix();
216 IssmDouble* basis = xNew<IssmDouble>(numnodes);
217 IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
218 IssmDouble* B = xNew<IssmDouble>(3*numnodes);
219 IssmDouble* Bprime = xNew<IssmDouble>(3*numnodes);
220 IssmDouble D[3][3] = {0.};
221 IssmDouble K[3][3];
222
223 /*Retrieve all inputs and parameters*/
224 element->GetVerticesCoordinates(&xyz_list);
225 element->FindParam(&dt,TimesteppingTimeStepEnum);
226 element->FindParam(&stabilization,ThermalStabilizationEnum);
227 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoWaterEnum);
228 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
229 IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
230 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
231 IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
232 Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
233 Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
234 Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
235 Input* vxm_input = element->GetInput(VxMeshEnum); _assert_(vxm_input);
236 Input* vym_input = element->GetInput(VyMeshEnum); _assert_(vym_input);
237 Input* vzm_input = element->GetInput(VzMeshEnum); _assert_(vzm_input);
238 if(stabilization==2) diameter=element->MinEdgeLength(xyz_list);
239
240 /*Enthalpy diffusion parameter*/
241 IssmDouble kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>0.);
242
243 /* Start looping on the number of gaussian points: */
244 Gauss* gauss=element->NewGauss(2);
245 for(int ig=gauss->begin();ig<gauss->end();ig++){
246 gauss->GaussPoint(ig);
247
248 element->JacobianDeterminant(&Jdet,xyz_list,gauss);
249 D_scalar=gauss->weight*Jdet;
250 if(dt!=0.) D_scalar=D_scalar*dt;
251
252 /*Conduction: */
253 GetBConduct(B,element,xyz_list,gauss);
254 D[0][0]=D_scalar*kappa/rho_ice;
255 D[1][1]=D_scalar*kappa/rho_ice;
256 D[2][2]=D_scalar*kappa/rho_ice;
257 TripleMultiply(B,3,numnodes,1,
258 &D[0][0],3,3,0,
259 B,3,numnodes,0,
260 &Ke->values[0],1);
261
262 /*Advection: */
263 GetBAdvec(B,element,xyz_list,gauss);
264 GetBAdvecprime(Bprime,element,xyz_list,gauss);
265 vx_input->GetInputValue(&u,gauss); vxm_input->GetInputValue(&um,gauss); vx=u-um;
266 vy_input->GetInputValue(&v,gauss); vym_input->GetInputValue(&vm,gauss); vy=v-vm;
267 vz_input->GetInputValue(&w,gauss); vzm_input->GetInputValue(&wm,gauss); vz=w-wm;
268 D[0][0]=D_scalar*vx;
269 D[1][1]=D_scalar*vy;
270 D[2][2]=D_scalar*vz;
271 TripleMultiply(B,3,numnodes,1,
272 &D[0][0],3,3,0,
273 Bprime,3,numnodes,0,
274 &Ke->values[0],1);
275
276 /*Transient: */
277 if(dt!=0.){
278 D_scalar=gauss->weight*Jdet;
279 element->NodalFunctions(basis,gauss);
280 TripleMultiply(basis,numnodes,1,0,
281 &D_scalar,1,1,0,
282 basis,1,numnodes,0,
283 &Ke->values[0],1);
284 D_scalar=D_scalar*dt;
285 }
286
287 /*Artifficial diffusivity*/
288 if(stabilization==1){
289 element->ElementSizes(&hx,&hy,&hz);
290 vel=sqrt(vx*vx + vy*vy + vz*vz)+1.e-14;
291 h=sqrt( pow(hx*vx/vel,2) + pow(hy*vy/vel,2) + pow(hz*vz/vel,2));
292 K[0][0]=h/(2.*vel)*vx*vx; K[0][1]=h/(2.*vel)*vx*vy; K[0][2]=h/(2.*vel)*vx*vz;
293 K[1][0]=h/(2.*vel)*vy*vx; K[1][1]=h/(2.*vel)*vy*vy; K[1][2]=h/(2.*vel)*vy*vz;
294 K[2][0]=h/(2.*vel)*vz*vx; K[2][1]=h/(2.*vel)*vz*vy; K[2][2]=h/(2.*vel)*vz*vz;
295 for(int i=0;i<3;i++) for(int j=0;j<3;j++) K[i][j] = D_scalar*K[i][j];
296
297 GetBAdvecprime(Bprime,element,xyz_list,gauss);
298 TripleMultiply(Bprime,3,numnodes,1,
299 &K[0][0],3,3,0,
300 Bprime,3,numnodes,0,
301 &Ke->values[0],1);
302 }
303 else if(stabilization==2){
304 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
305 tau_parameter=element->StabilizationParameter(u-um,v-vm,w-wm,diameter,kappa/rho_ice);
306 for(int i=0;i<numnodes;i++){
307 for(int j=0;j<numnodes;j++){
308 Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*
309 ((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i])*((u-um)*dbasis[0*numnodes+j]+(v-vm)*dbasis[1*numnodes+j]+(w-wm)*dbasis[2*numnodes+j]);
310 }
311 }
312 if(dt!=0.){
313 D_scalar=gauss->weight*Jdet;
314 for(int i=0;i<numnodes;i++){
315 for(int j=0;j<numnodes;j++){
316 Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*basis[j]*((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i]);
317 }
318 }
319 }
320 }
321 }
322
323 /*Clean up and return*/
324 xDelete<IssmDouble>(xyz_list);
325 xDelete<IssmDouble>(basis);
326 xDelete<IssmDouble>(dbasis);
327 xDelete<IssmDouble>(B);
328 xDelete<IssmDouble>(Bprime);
329 delete gauss;
330 return Ke;
331}/*}}}*/
332ElementMatrix* EnthalpyAnalysis::CreateKMatrixShelf(Element* element){/*{{{*/
333
334 /*Initialize Element matrix and return if necessary*/
335 if(!element->IsOnBed() || !element->IsFloating()) return NULL;
336
337 /*Intermediaries*/
338 IssmDouble dt,Jdet,D;
339 IssmDouble *xyz_list_base = NULL;
340
341 /*Fetch number of nodes for this finite element*/
342 int numnodes = element->GetNumberOfNodes();
343
344 /*Initialize vectors*/
345 ElementMatrix* Ke = element->NewElementMatrix();
346 IssmDouble* basis = xNew<IssmDouble>(numnodes);
347
348 /*Retrieve all inputs and parameters*/
349 element->GetVerticesCoordinatesBase(&xyz_list_base);
350 element->FindParam(&dt,TimesteppingTimeStepEnum);
351 IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
352 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoWaterEnum);
353 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
354 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
355 IssmDouble mixed_layer_capacity= element->GetMaterialParameter(MaterialsMixedLayerCapacityEnum);
356 IssmDouble thermal_exchange_vel= element->GetMaterialParameter(MaterialsThermalExchangeVelocityEnum);
357
358 /* Start looping on the number of gaussian points: */
359 Gauss* gauss=element->NewGaussBase(2);
360 for(int ig=gauss->begin();ig<gauss->end();ig++){
361 gauss->GaussPoint(ig);
362
363 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
364 element->NodalFunctions(basis,gauss);
365
366 D=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel/(heatcapacity*rho_ice);
367 if(reCast<bool,IssmDouble>(dt)) D=dt*D;
368 TripleMultiply(basis,numnodes,1,0,
369 &D,1,1,0,
370 basis,1,numnodes,0,
371 &Ke->values[0],1);
372
373 }
374
375 /*Clean up and return*/
376 delete gauss;
377 xDelete<IssmDouble>(basis);
378 xDelete<IssmDouble>(xyz_list_base);
379 return Ke;
380}/*}}}*/
381ElementVector* EnthalpyAnalysis::CreatePVector(Element* element){/*{{{*/
382
383 /*compute all load vectors for this element*/
384 ElementVector* pe1=CreatePVectorVolume(element);
385 ElementVector* pe2=CreatePVectorSheet(element);
386 ElementVector* pe3=CreatePVectorShelf(element);
387 ElementVector* pe =new ElementVector(pe1,pe2,pe3);
388
389 /*clean-up and return*/
390 delete pe1;
391 delete pe2;
392 delete pe3;
393 return pe;
394}/*}}}*/
395ElementVector* EnthalpyAnalysis::CreatePVectorVolume(Element* element){/*{{{*/
396
397 /*Intermediaries*/
398 int stabilization;
399 IssmDouble Jdet,phi,dt;
400 IssmDouble enthalpy;
401 IssmDouble kappa,tau_parameter,diameter;
402 IssmDouble u,v,w;
403 IssmDouble scalar_def,scalar_transient;
404 IssmDouble* xyz_list = NULL;
405
406 /*Fetch number of nodes and dof for this finite element*/
407 int numnodes = element->GetNumberOfNodes();
408 int numvertices = element->GetNumberOfVertices();
409
410 /*Initialize Element vector*/
411 ElementVector* pe = element->NewElementVector();
412 IssmDouble* basis = xNew<IssmDouble>(numnodes);
413 IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
414
415 /*Retrieve all inputs and parameters*/
416 element->GetVerticesCoordinates(&xyz_list);
417 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
418 IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
419 element->FindParam(&dt,TimesteppingTimeStepEnum);
420 element->FindParam(&stabilization,ThermalStabilizationEnum);
421 Input* vx_input=element->GetInput(VxEnum); _assert_(vx_input);
422 Input* vy_input=element->GetInput(VyEnum); _assert_(vy_input);
423 Input* vz_input=element->GetInput(VzEnum); _assert_(vz_input);
424 Input* enthalpy_input = NULL;
425 if(reCast<bool,IssmDouble>(dt)){enthalpy_input = element->GetInput(EnthalpyEnum); _assert_(enthalpy_input);}
426 if(stabilization==2){
427 diameter=element->MinEdgeLength(xyz_list);
428 kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>0.);
429 }
430
431 /* Start looping on the number of gaussian points: */
432 Gauss* gauss=element->NewGauss(3);
433 for(int ig=gauss->begin();ig<gauss->end();ig++){
434 gauss->GaussPoint(ig);
435
436 element->JacobianDeterminant(&Jdet,xyz_list,gauss);
437 element->NodalFunctions(basis,gauss);
438 element->ViscousHeating(&phi,xyz_list,gauss,vx_input,vy_input,vz_input);
439
440 scalar_def=phi/rho_ice*Jdet*gauss->weight;
441 if(dt!=0.) scalar_def=scalar_def*dt;
442
443 /*TODO: add -beta*laplace T_m(p)*/
444 for(int i=0;i<numnodes;i++) pe->values[i]+=scalar_def*basis[i];
445
446 /* Build transient now */
447 if(reCast<bool,IssmDouble>(dt)){
448 enthalpy_input->GetInputValue(&enthalpy, gauss);
449 scalar_transient=enthalpy*Jdet*gauss->weight;
450 for(int i=0;i<numnodes;i++) pe->values[i]+=scalar_transient*basis[i];
451 }
452
453 if(stabilization==2){
454 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
455
456 vx_input->GetInputValue(&u,gauss);
457 vy_input->GetInputValue(&v,gauss);
458 vz_input->GetInputValue(&w,gauss);
459 tau_parameter=element->StabilizationParameter(u,v,w,diameter,kappa/rho_ice);
460
461 for(int i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_def*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]);
462
463 if(dt!=0.){
464 for(int i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_transient*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]);
465 }
466 }
467 }
468
469 /*Clean up and return*/
470 xDelete<IssmDouble>(basis);
471 xDelete<IssmDouble>(dbasis);
472 xDelete<IssmDouble>(xyz_list);
473 delete gauss;
474 return pe;
475
476}/*}}}*/
477ElementVector* EnthalpyAnalysis::CreatePVectorSheet(Element* element){/*{{{*/
478
479 /* Geothermal flux on ice sheet base and basal friction */
480 if(!element->IsOnBed() || element->IsFloating()) return NULL;
481
482 IssmDouble dt,Jdet,enthalpy,pressure,watercolumn,geothermalflux,vx,vy,vz;
483 IssmDouble enthalpyup,pressureup,alpha2,scalar,basalfriction,heatflux;
484 IssmDouble *xyz_list_base = NULL;
485
486 /*Fetch number of nodes for this finite element*/
487 int numnodes = element->GetNumberOfNodes();
488
489 /*Initialize vectors*/
490 ElementVector* pe = element->NewElementVector();
491 IssmDouble* basis = xNew<IssmDouble>(numnodes);
492
493 /*Retrieve all inputs and parameters*/
494 element->GetVerticesCoordinatesBase(&xyz_list_base);
495 element->FindParam(&dt,TimesteppingTimeStepEnum);
496 Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
497 Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
498 Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
499 Input* enthalpy_input = element->GetInput(EnthalpyPicardEnum); _assert_(enthalpy_input);
500 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
501 Input* geothermalflux_input = element->GetInput(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input);
502 Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
503 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
504 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
505
506 /*Build friction element, needed later: */
507 Friction* friction=new Friction(element,3);
508
509 /* Start looping on the number of gaussian points: */
510 Gauss* gauss = element->NewGaussBase(2);
511 Gauss* gaussup = element->NewGaussTop(2);
512 for(int ig=gauss->begin();ig<gauss->end();ig++){
513 gauss->GaussPoint(ig);
514
515 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
516 element->NodalFunctions(basis,gauss);
517
518 enthalpy_input->GetInputValue(&enthalpy,gauss);
519 pressure_input->GetInputValue(&pressure,gauss);
520 watercolumn_input->GetInputValue(&watercolumn,gauss);
521
522 if((watercolumn<=0.) && (enthalpy < PureIceEnthalpy(element,pressure))){
523 /* the above check is equivalent to
524 NOT ((watercolumn>0.) AND (enthalpy<PIE)) AND (enthalpy<PIE)*/
525 geothermalflux_input->GetInputValue(&geothermalflux,gauss);
526
527 friction->GetAlpha2(&alpha2,gauss,vx_input,vy_input,vz_input);
528 vx_input->GetInputValue(&vx,gauss);
529 vy_input->GetInputValue(&vy,gauss);
530 vz_input->GetInputValue(&vz,gauss);
531 basalfriction = alpha2*(vx*vx + vy*vy + vz*vz);
532 heatflux = (basalfriction+geothermalflux)/(rho_ice);
533
534 scalar = gauss->weight*Jdet*heatflux;
535 if(dt!=0.) scalar=dt*scalar;
536
537 for(int i=0;i<numnodes;i++) pe->values[i]+=scalar*basis[i];
538 }
539 else if(enthalpy >= PureIceEnthalpy(element,pressure)){
540 /* check positive thickness of temperate basal ice layer */
541 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
542 pressure_input->GetInputValue(&pressureup,gaussup);
543 if(enthalpyup >= PureIceEnthalpy(element,pressureup)){
544 // TODO: temperate ice has positive thickness: grad enthalpy*n=0.
545 }
546 else{
547 // only base temperate, set Dirichlet BCs in Penta::UpdateBasalConstraintsEnthalpy()
548 }
549 }
550 else{
551 // base cold, but watercolumn positive. Set base to h_pmp.
552 }
553 }
554
555 /*Clean up and return*/
556 delete gauss;
557 delete gaussup;
558 delete friction;
559 xDelete<IssmDouble>(basis);
560 xDelete<IssmDouble>(xyz_list_base);
561 return pe;
562
563}/*}}}*/
564ElementVector* EnthalpyAnalysis::CreatePVectorShelf(Element* element){/*{{{*/
565
566 /*Get basal element*/
567 if(!element->IsOnBed() || !element->IsFloating()) return NULL;
568
569 IssmDouble h_pmp,dt,Jdet,scalar_ocean,pressure;
570 IssmDouble *xyz_list_base = NULL;
571
572 /*Fetch number of nodes for this finite element*/
573 int numnodes = element->GetNumberOfNodes();
574
575 /*Initialize vectors*/
576 ElementVector* pe = element->NewElementVector();
577 IssmDouble* basis = xNew<IssmDouble>(numnodes);
578
579 /*Retrieve all inputs and parameters*/
580 element->GetVerticesCoordinatesBase(&xyz_list_base);
581 element->FindParam(&dt,TimesteppingTimeStepEnum);
582 Input* pressure_input=element->GetInput(PressureEnum); _assert_(pressure_input);
583 IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
584 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoWaterEnum);
585 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
586 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
587 IssmDouble mixed_layer_capacity= element->GetMaterialParameter(MaterialsMixedLayerCapacityEnum);
588 IssmDouble thermal_exchange_vel= element->GetMaterialParameter(MaterialsThermalExchangeVelocityEnum);
589
590 /* Start looping on the number of gaussian points: */
591 Gauss* gauss=element->NewGaussBase(2);
592 for(int ig=gauss->begin();ig<gauss->end();ig++){
593 gauss->GaussPoint(ig);
594
595 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
596 element->NodalFunctions(basis,gauss);
597
598 pressure_input->GetInputValue(&pressure,gauss);
599 h_pmp=element->PureIceEnthalpy(pressure);
600
601 scalar_ocean=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel*h_pmp/(heatcapacity*rho_ice);
602 if(reCast<bool,IssmDouble>(dt)) scalar_ocean=dt*scalar_ocean;
603
604 for(int i=0;i<numnodes;i++) pe->values[i]+=scalar_ocean*basis[i];
605 }
606
607 /*Clean up and return*/
608 delete gauss;
609 xDelete<IssmDouble>(basis);
610 xDelete<IssmDouble>(xyz_list_base);
611 return pe;
612}/*}}}*/
613void EnthalpyAnalysis::GetBConduct(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
614 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
615 * For node i, Bi' can be expressed in the actual coordinate system
616 * by:
617 * Bi_conduct=[ dh/dx ]
618 * [ dh/dy ]
619 * [ dh/dz ]
620 * where h is the interpolation function for node i.
621 *
622 * We assume B has been allocated already, of size: 3x(NDOF1*numnodes)
623 */
624
625 /*Fetch number of nodes for this finite element*/
626 int numnodes = element->GetNumberOfNodes();
627
628 /*Get nodal functions derivatives*/
629 IssmDouble* dbasis=xNew<IssmDouble>(3*numnodes);
630 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
631
632 /*Build B: */
633 for(int i=0;i<numnodes;i++){
634 B[numnodes*0+i] = dbasis[0*numnodes+i];
635 B[numnodes*1+i] = dbasis[1*numnodes+i];
636 B[numnodes*2+i] = dbasis[2*numnodes+i];
637 }
638
639 /*Clean-up*/
640 xDelete<IssmDouble>(dbasis);
641}/*}}}*/
642void EnthalpyAnalysis::GetBAdvec(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
643 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
644 * For node i, Bi' can be expressed in the actual coordinate system
645 * by:
646 * Bi_advec =[ h ]
647 * [ h ]
648 * [ h ]
649 * where h is the interpolation function for node i.
650 *
651 * We assume B has been allocated already, of size: 3x(NDOF1*NUMNODESP1)
652 */
653
654 /*Fetch number of nodes for this finite element*/
655 int numnodes = element->GetNumberOfNodes();
656
657 /*Get nodal functions*/
658 IssmDouble* basis=xNew<IssmDouble>(numnodes);
659 element->NodalFunctions(basis,gauss);
660
661 /*Build B: */
662 for(int i=0;i<numnodes;i++){
663 B[numnodes*0+i] = basis[i];
664 B[numnodes*1+i] = basis[i];
665 B[numnodes*2+i] = basis[i];
666 }
667
668 /*Clean-up*/
669 xDelete<IssmDouble>(basis);
670}/*}}}*/
671void EnthalpyAnalysis::GetBAdvecprime(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
672 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
673 * For node i, Bi' can be expressed in the actual coordinate system
674 * by:
675 * Biprime_advec=[ dh/dx ]
676 * [ dh/dy ]
677 * [ dh/dz ]
678 * where h is the interpolation function for node i.
679 *
680 * We assume B has been allocated already, of size: 3x(NDOF1*numnodes)
681 */
682
683 /*Fetch number of nodes for this finite element*/
684 int numnodes = element->GetNumberOfNodes();
685
686 /*Get nodal functions derivatives*/
687 IssmDouble* dbasis=xNew<IssmDouble>(3*numnodes);
688 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
689
690 /*Build B: */
691 for(int i=0;i<numnodes;i++){
692 B[numnodes*0+i] = dbasis[0*numnodes+i];
693 B[numnodes*1+i] = dbasis[1*numnodes+i];
694 B[numnodes*2+i] = dbasis[2*numnodes+i];
695 }
696
697 /*Clean-up*/
698 xDelete<IssmDouble>(dbasis);
699}/*}}}*/
700void EnthalpyAnalysis::GetSolutionFromInputs(Vector<IssmDouble>* solution,Element* element){/*{{{*/
701 element->GetSolutionFromInputsOneDof(solution,EnthalpyEnum);
702}/*}}}*/
703void EnthalpyAnalysis::InputUpdateFromSolution(IssmDouble* solution,Element* element){/*{{{*/
704
705 bool converged;
706 int i,rheology_law;
707 IssmDouble B_average,s_average,T_average=0.,P_average=0.;
708 int *doflist = NULL;
709 IssmDouble *xyz_list = NULL;
710
711 /*Fetch number of nodes and dof for this finite element*/
712 int numnodes = element->GetNumberOfNodes();
713
714 /*Fetch dof list and allocate solution vector*/
715 element->GetDofList(&doflist,NoneApproximationEnum,GsetEnum);
716 IssmDouble* values = xNew<IssmDouble>(numnodes);
717 IssmDouble* pressure = xNew<IssmDouble>(numnodes);
718 IssmDouble* surface = xNew<IssmDouble>(numnodes);
719 IssmDouble* B = xNew<IssmDouble>(numnodes);
720 IssmDouble* temperature = xNew<IssmDouble>(numnodes);
721 IssmDouble* waterfraction = xNew<IssmDouble>(numnodes);
722
723 /*Use the dof list to index into the solution vector: */
724 for(i=0;i<numnodes;i++){
725 values[i]=solution[doflist[i]];
726
727 /*Check solution*/
728 if(xIsNan<IssmDouble>(values[i])) _error_("NaN found in solution vector");
729 }
730
731 /*Get all inputs and parameters*/
732 element->GetInputValue(&converged,ConvergedEnum);
733 element->GetInputListOnNodes(&pressure[0],PressureEnum);
734 if(converged){
735 for(i=0;i<numnodes;i++){
736 element->EnthalpyToThermal(&temperature[i],&waterfraction[i],values[i],pressure[i]);
737 if(waterfraction[i]<0.) _error_("Negative water fraction found in solution vector");
738 if(waterfraction[i]>1.) _error_("Water fraction >1 found in solution vector");
739 }
740 element->AddInput(EnthalpyEnum,values,P1Enum);
741 element->AddInput(WaterfractionEnum,waterfraction,P1Enum);
742 element->AddInput(TemperatureEnum,temperature,P1Enum);
743
744 /*Update Rheology only if converged (we must make sure that the temperature is below melting point
745 * otherwise the rheology could be negative*/
746 element->FindParam(&rheology_law,MaterialsRheologyLawEnum);
747 element->GetInputListOnNodes(&surface[0],SurfaceEnum);
748 switch(rheology_law){
749 case NoneEnum:
750 /*Do nothing: B is not temperature dependent*/
751 break;
752 case PatersonEnum:
753 for(i=0;i<numnodes;i++) B[i]=Paterson(temperature[i]);
754 element->AddMaterialInput(MaterialsRheologyBEnum,&B[0],P1Enum);
755 break;
756 case ArrheniusEnum:
757 element->GetVerticesCoordinates(&xyz_list);
758 for(i=0;i<numnodes;i++) B[i]=Arrhenius(temperature[i],surface[i]-xyz_list[i*3+2],element->GetMaterialParameter(MaterialsRheologyNEnum));
759 element->AddMaterialInput(MaterialsRheologyBEnum,&B[0],P1Enum);
760 break;
761 case LliboutryDuvalEnum:
762 for(i=0;i<numnodes;i++) B[i]=LliboutryDuval(values[i],pressure[i],element->GetMaterialParameter(MaterialsRheologyNEnum),element->GetMaterialParameter(MaterialsBetaEnum),element->GetMaterialParameter(ConstantsReferencetemperatureEnum),element->GetMaterialParameter(MaterialsHeatcapacityEnum),element->GetMaterialParameter(MaterialsLatentheatEnum));
763 element->AddMaterialInput(MaterialsRheologyBEnum,&B[0],P1Enum);
764 break;
765 default: _error_("Rheology law " << EnumToStringx(rheology_law) << " not supported yet");
766 }
767 }
768 else{
769 element->AddInput(EnthalpyPicardEnum,values,P1Enum);
770 }
771
772 /*Free ressources:*/
773 xDelete<IssmDouble>(values);
774 xDelete<IssmDouble>(pressure);
775 xDelete<IssmDouble>(surface);
776 xDelete<IssmDouble>(B);
777 xDelete<IssmDouble>(temperature);
778 xDelete<IssmDouble>(waterfraction);
779 xDelete<IssmDouble>(xyz_list);
780 xDelete<int>(doflist);
781}/*}}}*/
782
783/*Intermediaries*/
784IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameter(Element* element,IssmDouble enthalpy,IssmDouble pressure){/*{{{*/
785
786 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
787 IssmDouble temperateiceconductivity = element->GetMaterialParameter(MaterialsTemperateiceconductivityEnum);
788 IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
789
790 if(enthalpy < PureIceEnthalpy(element,pressure)){
791 return thermalconductivity/heatcapacity;
792 }
793 else{
794 return temperateiceconductivity/heatcapacity;
795 }
796}/*}}}*/
797IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameterVolume(Element* element,int enthalpy_enum){/*{{{*/
798
799 int iv;
800 IssmDouble lambda; /* fraction of cold ice */
801 IssmDouble kappa ,kappa_c,kappa_t; /* enthalpy conductivities */
802 IssmDouble Hc,Ht;
803
804
805 /*Get pressures and enthalpies on vertices*/
806 int numvertices = element->GetNumberOfVertices();
807 IssmDouble* pressures = xNew<IssmDouble>(numvertices);
808 IssmDouble* enthalpies = xNew<IssmDouble>(numvertices);
809 IssmDouble* PIE = xNew<IssmDouble>(numvertices);
810 IssmDouble* dHpmp = xNew<IssmDouble>(numvertices);
811 element->GetInputListOnVertices(pressures,PressureEnum);
812 element->GetInputListOnVertices(enthalpies,enthalpy_enum);
813 for(iv=0;iv<numvertices;iv++){
814 PIE[iv] = PureIceEnthalpy(element,pressures[iv]);
815 dHpmp[iv] = enthalpies[iv]-PIE[iv];
816 }
817
818 bool allequalsign = true;
819 if(dHpmp[0]<0.){
820 for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]<0.));
821 }
822 else{
823 for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]>=0.));
824 }
825
826 if(allequalsign){
827 kappa = EnthalpyDiffusionParameter(element,enthalpies[0],pressures[0]);
828 }
829 else{
830 /* return harmonic mean of thermal conductivities, weighted by fraction of cold/temperate ice,
831 cf Patankar 1980, pp44 */
832 kappa_c = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)-1.,0.);
833 kappa_t = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)+1.,0.);
834 Hc=0.; Ht=0.;
835 for(iv=0; iv<numvertices;iv++){
836 if(enthalpies[iv]<PIE[iv])
837 Hc+=(PIE[iv]-enthalpies[iv]);
838 else
839 Ht+=(enthalpies[iv]-PIE[iv]);
840 }
841 _assert_((Hc+Ht)>0.);
842 lambda = Hc/(Hc+Ht);
843 kappa = 1./(lambda/kappa_c + (1.-lambda)/kappa_t);
844 }
845
846 /*Clean up and return*/
847 xDelete<IssmDouble>(PIE);
848 xDelete<IssmDouble>(dHpmp);
849 xDelete<IssmDouble>(pressures);
850 xDelete<IssmDouble>(enthalpies);
851 return kappa;
852}
853/*}}}*/
854IssmDouble EnthalpyAnalysis::PureIceEnthalpy(Element* element,IssmDouble pressure){/*{{{*/
855
856 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
857 IssmDouble referencetemperature = element->GetMaterialParameter(ConstantsReferencetemperatureEnum);
858
859 return heatcapacity*(TMeltingPoint(element,pressure)-referencetemperature);
860}/*}}}*/
861IssmDouble EnthalpyAnalysis::TMeltingPoint(Element* element,IssmDouble pressure){/*{{{*/
862
863 IssmDouble meltingpoint = element->GetMaterialParameter(MaterialsMeltingpointEnum);
864 IssmDouble beta = element->GetMaterialParameter(MaterialsBetaEnum);
865
866 return meltingpoint-beta*pressure;
867}/*}}}*/
Note: See TracBrowser for help on using the repository browser.