[16534] | 1 | #include "./EnthalpyAnalysis.h"
|
---|
| 2 | #include "../toolkits/toolkits.h"
|
---|
| 3 | #include "../classes/classes.h"
|
---|
| 4 | #include "../shared/shared.h"
|
---|
| 5 | #include "../modules/modules.h"
|
---|
[18591] | 6 | #include "../solutionsequences/solutionsequences.h"
|
---|
[21721] | 7 | #include "../cores/cores.h"
|
---|
[16534] | 8 |
|
---|
| 9 | /*Model processing*/
|
---|
[18930] | 10 | void EnthalpyAnalysis::CreateConstraints(Constraints* constraints,IoModel* iomodel){/*{{{*/
|
---|
[16604] | 11 |
|
---|
[18930] | 12 | /*Intermediary*/
|
---|
| 13 | int count;
|
---|
| 14 | int M,N;
|
---|
| 15 | bool spcpresent = false;
|
---|
[21546] | 16 | int finiteelement;
|
---|
[18930] | 17 | IssmDouble heatcapacity;
|
---|
| 18 | IssmDouble referencetemperature;
|
---|
[16604] | 19 |
|
---|
[18930] | 20 | /*Output*/
|
---|
| 21 | IssmDouble *spcvector = NULL;
|
---|
[22484] | 22 | IssmDouble *spcvectorstatic = NULL;
|
---|
[18930] | 23 | IssmDouble* times=NULL;
|
---|
| 24 | IssmDouble* values=NULL;
|
---|
[22484] | 25 | IssmDouble* issurface = NULL;
|
---|
[16604] | 26 |
|
---|
[18930] | 27 | /*Fetch parameters: */
|
---|
[20690] | 28 | iomodel->FindConstant(&heatcapacity,"md.materials.heatcapacity");
|
---|
| 29 | iomodel->FindConstant(&referencetemperature,"md.constants.referencetemperature");
|
---|
[21546] | 30 | iomodel->FindConstant(&finiteelement,"md.thermal.fe");
|
---|
[18732] | 31 |
|
---|
[18930] | 32 | /*return if 2d mesh*/
|
---|
| 33 | if(iomodel->domaintype==Domain2DhorizontalEnum) return;
|
---|
| 34 |
|
---|
| 35 | /*Fetch data: */
|
---|
[22484] | 36 | iomodel->FetchData(&issurface,&M,&N,"md.mesh.vertexonsurface"); _assert_(N>0); _assert_(M==iomodel->numberofvertices);
|
---|
[20690] | 37 | iomodel->FetchData(&spcvector,&M,&N,"md.thermal.spctemperature");
|
---|
[22484] | 38 | iomodel->FetchData(&spcvectorstatic,&M,&N,"md.thermal.spctemperature");
|
---|
[18930] | 39 |
|
---|
[21548] | 40 | /*Specific case for PDD, we want the constaints to be updated by the PDD scheme itself*/
|
---|
| 41 | bool isdynamic = false;
|
---|
| 42 | if (iomodel->solution_enum==TransientSolutionEnum){
|
---|
| 43 | int smb_model;
|
---|
| 44 | iomodel->FindConstant(&smb_model,"md.smb.model");
|
---|
[23317] | 45 | if(smb_model==SMBpddEnum) isdynamic=true;
|
---|
| 46 | if(smb_model==SMBd18opddEnum) isdynamic=true;
|
---|
| 47 | if(smb_model==SMBpddSicopolisEnum) isdynamic=true;
|
---|
[21548] | 48 | }
|
---|
| 49 |
|
---|
[22484] | 50 | /*Convert spcs from temperatures to enthalpy*/
|
---|
| 51 | _assert_(N>0); _assert_(M>=iomodel->numberofvertices);
|
---|
| 52 | for(int i=0;i<iomodel->numberofvertices;i++){
|
---|
| 53 | for(int j=0;j<N;j++){
|
---|
| 54 | if (isdynamic){
|
---|
| 55 | if (issurface[i]==1){
|
---|
| 56 | spcvector[i*N+j] = heatcapacity*(spcvector[i*N+j]-referencetemperature);
|
---|
[22485] | 57 | spcvectorstatic[i*N+j] = NAN;
|
---|
[22484] | 58 | }
|
---|
| 59 | else{
|
---|
[22485] | 60 | spcvector[i*N+j] = NAN;
|
---|
[22484] | 61 | spcvectorstatic[i*N+j] = heatcapacity*(spcvectorstatic[i*N+j]-referencetemperature);
|
---|
| 62 | }
|
---|
| 63 | }
|
---|
| 64 | else{
|
---|
| 65 | spcvector[i*N+j] = heatcapacity*(spcvector[i*N+j]-referencetemperature);
|
---|
| 66 | }
|
---|
| 67 | }
|
---|
| 68 | }
|
---|
| 69 |
|
---|
[21548] | 70 | if(isdynamic){
|
---|
[22484] | 71 | IoModelToDynamicConstraintsx(constraints,iomodel,spcvector,iomodel->numberofvertices,1,EnthalpyAnalysisEnum,finiteelement);
|
---|
| 72 | IoModelToConstraintsx(constraints,iomodel,spcvectorstatic,M,N,EnthalpyAnalysisEnum,finiteelement);
|
---|
[21548] | 73 | }
|
---|
| 74 | else{
|
---|
| 75 | IoModelToConstraintsx(constraints,iomodel,spcvector,M,N,EnthalpyAnalysisEnum,finiteelement);
|
---|
| 76 | }
|
---|
| 77 |
|
---|
[18930] | 78 | /*Free ressources:*/
|
---|
[20690] | 79 | iomodel->DeleteData(spcvector,"md.thermal.spctemperature");
|
---|
[22484] | 80 | iomodel->DeleteData(spcvectorstatic,"md.thermal.spctemperature");
|
---|
| 81 | iomodel->DeleteData(issurface,"md.mesh.vertexonsurface");
|
---|
[18930] | 82 | xDelete<IssmDouble>(times);
|
---|
| 83 | xDelete<IssmDouble>(values);
|
---|
[16539] | 84 | }/*}}}*/
|
---|
[18930] | 85 | void EnthalpyAnalysis::CreateLoads(Loads* loads, IoModel* iomodel){/*{{{*/
|
---|
| 86 |
|
---|
| 87 | /*No loads */
|
---|
| 88 | }/*}}}*/
|
---|
[23585] | 89 | void EnthalpyAnalysis::CreateNodes(Nodes* nodes,IoModel* iomodel,bool isamr){/*{{{*/
|
---|
[18930] | 90 |
|
---|
[21542] | 91 | int finiteelement;
|
---|
| 92 | iomodel->FindConstant(&finiteelement,"md.thermal.fe");
|
---|
| 93 |
|
---|
[20690] | 94 | if(iomodel->domaintype==Domain3DEnum) iomodel->FetchData(2,"md.mesh.vertexonbase","md.mesh.vertexonsurface");
|
---|
[21542] | 95 | ::CreateNodes(nodes,iomodel,EnthalpyAnalysisEnum,finiteelement);
|
---|
[20690] | 96 | iomodel->DeleteData(2,"md.mesh.vertexonbase","md.mesh.vertexonsurface");
|
---|
[18930] | 97 | }/*}}}*/
|
---|
| 98 | int EnthalpyAnalysis::DofsPerNode(int** doflist,int domaintype,int approximation){/*{{{*/
|
---|
| 99 | return 1;
|
---|
| 100 | }/*}}}*/
|
---|
[24335] | 101 | void EnthalpyAnalysis::UpdateElements(Elements* elements,Inputs2* inputs2,IoModel* iomodel,int analysis_counter,int analysis_type){/*{{{*/
|
---|
[16539] | 102 |
|
---|
[20459] | 103 | bool dakota_analysis,ismovingfront,isenthalpy;
|
---|
[21382] | 104 | int frictionlaw,basalforcing_model,materialstype;
|
---|
[19161] | 105 | int FrictionCoupling;
|
---|
[23066] | 106 |
|
---|
[16539] | 107 | /*Now, is the model 3d? otherwise, do nothing: */
|
---|
[17700] | 108 | if(iomodel->domaintype==Domain2DhorizontalEnum)return;
|
---|
[16539] | 109 |
|
---|
| 110 | /*Is enthalpy requested?*/
|
---|
[20690] | 111 | iomodel->FindConstant(&isenthalpy,"md.thermal.isenthalpy");
|
---|
[16539] | 112 | if(!isenthalpy) return;
|
---|
| 113 |
|
---|
| 114 | /*Fetch data needed: */
|
---|
[20690] | 115 | iomodel->FetchData(3,"md.initialization.temperature","md.initialization.waterfraction","md.initialization.pressure");
|
---|
[16539] | 116 |
|
---|
[21542] | 117 | /*Finite element type*/
|
---|
| 118 | int finiteelement;
|
---|
| 119 | iomodel->FindConstant(&finiteelement,"md.thermal.fe");
|
---|
| 120 |
|
---|
[16539] | 121 | /*Update elements: */
|
---|
| 122 | int counter=0;
|
---|
| 123 | for(int i=0;i<iomodel->numberofelements;i++){
|
---|
| 124 | if(iomodel->my_elements[i]){
|
---|
| 125 | Element* element=(Element*)elements->GetObjectByOffset(counter);
|
---|
[24335] | 126 | element->Update(inputs2,i,iomodel,analysis_counter,analysis_type,finiteelement);
|
---|
[16539] | 127 | counter++;
|
---|
| 128 | }
|
---|
| 129 | }
|
---|
| 130 |
|
---|
[20690] | 131 | iomodel->FindConstant(&dakota_analysis,"md.qmu.isdakota");
|
---|
| 132 | iomodel->FindConstant(&ismovingfront,"md.transient.ismovingfront");
|
---|
| 133 | iomodel->FindConstant(&frictionlaw,"md.friction.law");
|
---|
[21382] | 134 | iomodel->FindConstant(&materialstype,"md.materials.type");
|
---|
[16539] | 135 |
|
---|
[24335] | 136 | iomodel->FetchDataToInput(inputs2,elements,"md.geometry.thickness",ThicknessEnum);
|
---|
| 137 | iomodel->FetchDataToInput(inputs2,elements,"md.geometry.surface",SurfaceEnum);
|
---|
| 138 | iomodel->FetchDataToInput(inputs2,elements,"md.slr.sealevel",SealevelEnum,0);
|
---|
| 139 | iomodel->FetchDataToInput(inputs2,elements,"md.geometry.base",BaseEnum);
|
---|
| 140 | iomodel->FetchDataToInput(inputs2,elements,"md.mask.ice_levelset",MaskIceLevelsetEnum);
|
---|
| 141 | iomodel->FetchDataToInput(inputs2,elements,"md.mask.groundedice_levelset",MaskGroundediceLevelsetEnum);
|
---|
[17886] | 142 | if(iomodel->domaintype!=Domain2DhorizontalEnum){
|
---|
[24335] | 143 | iomodel->FetchDataToInput(inputs2,elements,"md.mesh.vertexonbase",MeshVertexonbaseEnum);
|
---|
| 144 | iomodel->FetchDataToInput(inputs2,elements,"md.mesh.vertexonsurface",MeshVertexonsurfaceEnum);
|
---|
[17886] | 145 | }
|
---|
[24335] | 146 | iomodel->FetchDataToInput(inputs2,elements,"md.initialization.pressure",PressureEnum);
|
---|
| 147 | iomodel->FetchDataToInput(inputs2,elements,"md.initialization.temperature",TemperatureEnum);
|
---|
| 148 | iomodel->FetchDataToInput(inputs2,elements,"md.initialization.waterfraction",WaterfractionEnum);
|
---|
| 149 | iomodel->FetchDataToInput(inputs2,elements,"md.initialization.enthalpy",EnthalpyEnum);
|
---|
| 150 | iomodel->FetchDataToInput(inputs2,elements,"md.initialization.watercolumn",WatercolumnEnum);
|
---|
| 151 | iomodel->FetchDataToInput(inputs2,elements,"md.basalforcings.groundedice_melting_rate",BasalforcingsGroundediceMeltingRateEnum);
|
---|
| 152 | iomodel->FetchDataToInput(inputs2,elements,"md.initialization.vx",VxEnum);
|
---|
| 153 | iomodel->FetchDataToInput(inputs2,elements,"md.initialization.vy",VyEnum);
|
---|
| 154 | iomodel->FetchDataToInput(inputs2,elements,"md.initialization.vz",VzEnum);
|
---|
| 155 | InputUpdateFromConstantx(inputs2,elements,0.,VxMeshEnum);
|
---|
| 156 | InputUpdateFromConstantx(inputs2,elements,0.,VyMeshEnum);
|
---|
| 157 | InputUpdateFromConstantx(inputs2,elements,0.,VzMeshEnum);
|
---|
[20459] | 158 | if(ismovingfront){
|
---|
[24335] | 159 | iomodel->FetchDataToInput(inputs2,elements,"md.mesh.vertexonbase",MeshVertexonbaseEnum); // required for updating active nodes
|
---|
[17434] | 160 | }
|
---|
[20020] | 161 |
|
---|
| 162 | /*Basal forcings variables*/
|
---|
[20690] | 163 | iomodel->FindConstant(&basalforcing_model,"md.basalforcings.model");
|
---|
[20020] | 164 | switch(basalforcing_model){
|
---|
| 165 | case MantlePlumeGeothermalFluxEnum:
|
---|
| 166 | break;
|
---|
| 167 | default:
|
---|
[24335] | 168 | iomodel->FetchDataToInput(inputs2,elements,"md.basalforcings.geothermalflux",BasalforcingsGeothermalfluxEnum);
|
---|
[20020] | 169 | break;
|
---|
| 170 | }
|
---|
[21382] | 171 |
|
---|
| 172 | /*Rheology type*/
|
---|
[24335] | 173 | iomodel->FetchDataToInput(inputs2,elements,"md.materials.rheology_B",MaterialsRheologyBEnum);
|
---|
[21382] | 174 | switch(materialstype){
|
---|
[21389] | 175 | case MatenhancediceEnum:
|
---|
[24335] | 176 | iomodel->FetchDataToInput(inputs2,elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
|
---|
| 177 | iomodel->FetchDataToInput(inputs2,elements,"md.materials.rheology_E",MaterialsRheologyEEnum);
|
---|
[21389] | 178 | break;
|
---|
[21382] | 179 | case MatdamageiceEnum:
|
---|
[24335] | 180 | iomodel->FetchDataToInput(inputs2,elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
|
---|
[21382] | 181 | break;
|
---|
| 182 | case MatestarEnum:
|
---|
[24335] | 183 | iomodel->FetchDataToInput(inputs2,elements,"md.materials.rheology_Ec",MaterialsRheologyEcEnum);
|
---|
| 184 | iomodel->FetchDataToInput(inputs2,elements,"md.materials.rheology_Es",MaterialsRheologyEsEnum);
|
---|
[21382] | 185 | break;
|
---|
| 186 | case MaticeEnum:
|
---|
[24335] | 187 | iomodel->FetchDataToInput(inputs2,elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
|
---|
[21382] | 188 | break;
|
---|
| 189 | default:
|
---|
| 190 | _error_("not supported");
|
---|
| 191 | }
|
---|
[23066] | 192 |
|
---|
[17952] | 193 | /*Friction law variables*/
|
---|
| 194 | switch(frictionlaw){
|
---|
| 195 | case 1:
|
---|
[21740] | 196 | iomodel->FindConstant(&FrictionCoupling,"md.friction.coupling");
|
---|
[24335] | 197 | iomodel->FetchDataToInput(inputs2,elements,"md.friction.coefficient",FrictionCoefficientEnum);
|
---|
| 198 | iomodel->FetchDataToInput(inputs2,elements,"md.friction.p",FrictionPEnum);
|
---|
| 199 | iomodel->FetchDataToInput(inputs2,elements,"md.friction.q",FrictionQEnum);
|
---|
[23620] | 200 | if (FrictionCoupling==3){
|
---|
[24335] | 201 | iomodel->FetchDataToInput(inputs2,elements,"md.friction.effective_pressure",FrictionEffectivePressureEnum);}
|
---|
[23620] | 202 | else if(FrictionCoupling==4){
|
---|
[24335] | 203 | iomodel->FetchDataToInput(inputs2,elements,"md.friction.effective_pressure",EffectivePressureEnum);
|
---|
[21740] | 204 | }
|
---|
[17952] | 205 | break;
|
---|
| 206 | case 2:
|
---|
[24335] | 207 | iomodel->FetchDataToInput(inputs2,elements,"md.friction.C",FrictionCEnum);
|
---|
| 208 | iomodel->FetchDataToInput(inputs2,elements,"md.friction.m",FrictionMEnum);
|
---|
[17952] | 209 | break;
|
---|
[18778] | 210 | case 3:
|
---|
[20690] | 211 | iomodel->FindConstant(&FrictionCoupling,"md.friction.coupling");
|
---|
[24335] | 212 | iomodel->FetchDataToInput(inputs2,elements,"md.friction.C",FrictionCEnum);
|
---|
| 213 | iomodel->FetchDataToInput(inputs2,elements,"md.friction.As",FrictionAsEnum);
|
---|
| 214 | iomodel->FetchDataToInput(inputs2,elements,"md.friction.q",FrictionQEnum);
|
---|
[23620] | 215 | if (FrictionCoupling==3){
|
---|
[24335] | 216 | iomodel->FetchDataToInput(inputs2,elements,"md.friction.effective_pressure",FrictionEffectivePressureEnum);}
|
---|
[23620] | 217 | else if(FrictionCoupling==4){
|
---|
[24335] | 218 | iomodel->FetchDataToInput(inputs2,elements,"md.friction.effective_pressure",EffectivePressureEnum);
|
---|
[19161] | 219 | }
|
---|
[18778] | 220 | break;
|
---|
[18732] | 221 | case 4:
|
---|
[24335] | 222 | iomodel->FetchDataToInput(inputs2,elements,"md.friction.coefficient",FrictionCoefficientEnum);
|
---|
| 223 | iomodel->FetchDataToInput(inputs2,elements,"md.friction.p",FrictionPEnum);
|
---|
| 224 | iomodel->FetchDataToInput(inputs2,elements,"md.friction.q",FrictionQEnum);
|
---|
| 225 | iomodel->FetchDataToInput(inputs2,elements,"md.initialization.pressure",PressureEnum);
|
---|
| 226 | iomodel->FetchDataToInput(inputs2,elements,"md.initialization.temperature",TemperatureEnum);
|
---|
[23475] | 227 | iomodel->FindConstant(&FrictionCoupling,"md.friction.coupling");
|
---|
[18732] | 228 | break;
|
---|
[18772] | 229 | case 5:
|
---|
[24335] | 230 | iomodel->FetchDataToInput(inputs2,elements,"md.friction.coefficient",FrictionCoefficientEnum);
|
---|
| 231 | iomodel->FetchDataToInput(inputs2,elements,"md.friction.p",FrictionPEnum);
|
---|
| 232 | iomodel->FetchDataToInput(inputs2,elements,"md.friction.q",FrictionQEnum);
|
---|
| 233 | iomodel->FetchDataToInput(inputs2,elements,"md.friction.water_layer",FrictionWaterLayerEnum);
|
---|
[18772] | 234 | break;
|
---|
[18804] | 235 | case 6:
|
---|
[24335] | 236 | iomodel->FetchDataToInput(inputs2,elements,"md.friction.C",FrictionCEnum);
|
---|
| 237 | iomodel->FetchDataToInput(inputs2,elements,"md.friction.m",FrictionMEnum);
|
---|
| 238 | iomodel->FetchDataToInput(inputs2,elements,"md.initialization.pressure",PressureEnum);
|
---|
| 239 | iomodel->FetchDataToInput(inputs2,elements,"md.initialization.temperature",TemperatureEnum);
|
---|
[18804] | 240 | break;
|
---|
[22048] | 241 | case 7:
|
---|
| 242 | iomodel->FindConstant(&FrictionCoupling,"md.friction.coupling");
|
---|
[24335] | 243 | iomodel->FetchDataToInput(inputs2,elements,"md.friction.coefficient",FrictionCoefficientEnum);
|
---|
| 244 | iomodel->FetchDataToInput(inputs2,elements,"md.friction.coefficientcoulomb",FrictionCoefficientcoulombEnum);
|
---|
| 245 | iomodel->FetchDataToInput(inputs2,elements,"md.friction.p",FrictionPEnum);
|
---|
| 246 | iomodel->FetchDataToInput(inputs2,elements,"md.friction.q",FrictionQEnum);
|
---|
[23620] | 247 | if (FrictionCoupling==3){
|
---|
[24335] | 248 | iomodel->FetchDataToInput(inputs2,elements,"md.friction.effective_pressure",FrictionEffectivePressureEnum);}
|
---|
[23620] | 249 | else if(FrictionCoupling==4){
|
---|
[24335] | 250 | iomodel->FetchDataToInput(inputs2,elements,"md.friction.effective_pressure",EffectivePressureEnum);
|
---|
[22048] | 251 | }
|
---|
| 252 | break;
|
---|
[21556] | 253 | case 9:
|
---|
[24335] | 254 | iomodel->FetchDataToInput(inputs2,elements,"md.friction.coefficient",FrictionCoefficientEnum);
|
---|
| 255 | iomodel->FetchDataToInput(inputs2,elements,"md.friction.pressure_adjusted_temperature",FrictionPressureAdjustedTemperatureEnum);
|
---|
| 256 | InputUpdateFromConstantx(inputs2,elements,1.,FrictionPEnum);
|
---|
| 257 | InputUpdateFromConstantx(inputs2,elements,1.,FrictionQEnum);
|
---|
[21556] | 258 | break;
|
---|
[17952] | 259 | default:
|
---|
[21873] | 260 | _error_("friction law not supported");
|
---|
[17952] | 261 | }
|
---|
[20690] | 262 |
|
---|
[16539] | 263 | /*Free data: */
|
---|
[20690] | 264 | iomodel->DeleteData(3,"md.initialization.temperature","md.initialization.waterfraction","md.initialization.pressure");
|
---|
| 265 |
|
---|
[16539] | 266 | }/*}}}*/
|
---|
[18930] | 267 | void EnthalpyAnalysis::UpdateParameters(Parameters* parameters,IoModel* iomodel,int solution_enum,int analysis_enum){/*{{{*/
|
---|
[16539] | 268 |
|
---|
[18930] | 269 | int numoutputs;
|
---|
| 270 | char** requestedoutputs = NULL;
|
---|
| 271 |
|
---|
[20690] | 272 | parameters->AddObject(iomodel->CopyConstantObject("md.thermal.stabilization",ThermalStabilizationEnum));
|
---|
| 273 | parameters->AddObject(iomodel->CopyConstantObject("md.thermal.maxiter",ThermalMaxiterEnum));
|
---|
| 274 | parameters->AddObject(iomodel->CopyConstantObject("md.thermal.reltol",ThermalReltolEnum));
|
---|
| 275 | parameters->AddObject(iomodel->CopyConstantObject("md.thermal.isenthalpy",ThermalIsenthalpyEnum));
|
---|
| 276 | parameters->AddObject(iomodel->CopyConstantObject("md.thermal.isdynamicbasalspc",ThermalIsdynamicbasalspcEnum));
|
---|
[24140] | 277 | parameters->AddObject(iomodel->CopyConstantObject("md.thermal.isdrainicecolumn",ThermalIsdrainicecolumnEnum));
|
---|
| 278 | parameters->AddObject(iomodel->CopyConstantObject("md.thermal.watercolumn_upperlimit",ThermalWatercolumnUpperlimitEnum));
|
---|
[20690] | 279 | parameters->AddObject(iomodel->CopyConstantObject("md.friction.law",FrictionLawEnum));
|
---|
[18930] | 280 |
|
---|
[20690] | 281 | iomodel->FindConstant(&requestedoutputs,&numoutputs,"md.thermal.requested_outputs");
|
---|
[18930] | 282 | parameters->AddObject(new IntParam(ThermalNumRequestedOutputsEnum,numoutputs));
|
---|
| 283 | if(numoutputs)parameters->AddObject(new StringArrayParam(ThermalRequestedOutputsEnum,requestedoutputs,numoutputs));
|
---|
[20690] | 284 | iomodel->DeleteData(&requestedoutputs,numoutputs,"md.thermal.requested_outputs");
|
---|
[18930] | 285 |
|
---|
| 286 | /*Deal with friction parameters*/
|
---|
| 287 | int frictionlaw;
|
---|
[20690] | 288 | iomodel->FindConstant(&frictionlaw,"md.friction.law");
|
---|
[21776] | 289 | if(frictionlaw==4 || frictionlaw==6){
|
---|
| 290 | parameters->AddObject(iomodel->CopyConstantObject("md.friction.gamma",FrictionGammaEnum));
|
---|
| 291 | }
|
---|
[22048] | 292 | if(frictionlaw==3 || frictionlaw==1 || frictionlaw==7){
|
---|
[21776] | 293 | parameters->AddObject(iomodel->CopyConstantObject("md.friction.coupling",FrictionCouplingEnum));
|
---|
| 294 | }
|
---|
| 295 | if(frictionlaw==9){
|
---|
| 296 | parameters->AddObject(iomodel->CopyConstantObject("md.friction.gamma",FrictionGammaEnum));
|
---|
[21778] | 297 | parameters->AddObject(new IntParam(FrictionCouplingEnum,0));
|
---|
[21776] | 298 | }
|
---|
[16539] | 299 | }/*}}}*/
|
---|
| 300 |
|
---|
[18930] | 301 | /*Finite Element Analysis*/
|
---|
| 302 | void EnthalpyAnalysis::ApplyBasalConstraints(IssmDouble* serial_spc,Element* element){/*{{{*/
|
---|
[16539] | 303 |
|
---|
[21481] | 304 | /* Do not check if ice in element, this may lead to inconsistencies between cpu partitions */
|
---|
[20213] | 305 | /* Only update constraints at the base. */
|
---|
| 306 | if(!(element->IsOnBase())) return;
|
---|
[16539] | 307 |
|
---|
[18930] | 308 | /*Intermediary*/
|
---|
| 309 | bool isdynamicbasalspc;
|
---|
| 310 | int numindices;
|
---|
| 311 | int *indices = NULL;
|
---|
| 312 | Node* node = NULL;
|
---|
| 313 | IssmDouble pressure;
|
---|
[16539] | 314 |
|
---|
[18930] | 315 | /*Check wether dynamic basal boundary conditions are activated */
|
---|
| 316 | element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
|
---|
| 317 | if(!isdynamicbasalspc) return;
|
---|
[16539] | 318 |
|
---|
[18930] | 319 | /*Get parameters and inputs: */
|
---|
[24335] | 320 | Input2* pressure_input = element->GetInput2(PressureEnum); _assert_(pressure_input);
|
---|
[16539] | 321 |
|
---|
[18930] | 322 | /*Fetch indices of basal & surface nodes for this finite element*/
|
---|
| 323 | Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
|
---|
| 324 | penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
|
---|
[16539] | 325 |
|
---|
[18930] | 326 | GaussPenta* gauss=new GaussPenta();
|
---|
| 327 | for(int i=0;i<numindices;i++){
|
---|
| 328 | gauss->GaussNode(element->GetElementType(),indices[i]);
|
---|
[16539] | 329 |
|
---|
[18930] | 330 | pressure_input->GetInputValue(&pressure,gauss);
|
---|
[16539] | 331 |
|
---|
[18930] | 332 | /*apply or release spc*/
|
---|
| 333 | node=element->GetNode(indices[i]);
|
---|
[21481] | 334 | if(!node->IsActive()) continue;
|
---|
[18930] | 335 | if(serial_spc[node->Sid()]==1.){
|
---|
| 336 | pressure_input->GetInputValue(&pressure, gauss);
|
---|
| 337 | node->ApplyConstraint(0,PureIceEnthalpy(element,pressure));
|
---|
[16539] | 338 | }
|
---|
[21481] | 339 | else {
|
---|
[18930] | 340 | node->DofInFSet(0);
|
---|
[21481] | 341 | }
|
---|
[16539] | 342 | }
|
---|
| 343 |
|
---|
[18930] | 344 | /*Free ressources:*/
|
---|
| 345 | xDelete<int>(indices);
|
---|
| 346 | delete gauss;
|
---|
| 347 | }/*}}}*/
|
---|
| 348 | void EnthalpyAnalysis::ComputeBasalMeltingrate(FemModel* femmodel){/*{{{*/
|
---|
| 349 | /*Compute basal melting rates: */
|
---|
| 350 | for(int i=0;i<femmodel->elements->Size();i++){
|
---|
| 351 | Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
|
---|
| 352 | ComputeBasalMeltingrate(element);
|
---|
| 353 | }
|
---|
[21895] | 354 |
|
---|
| 355 | /*extrude inputs*/
|
---|
[21894] | 356 | femmodel->parameters->SetParam(BasalforcingsGroundediceMeltingRateEnum,InputToExtrudeEnum);
|
---|
| 357 | extrudefrombase_core(femmodel);
|
---|
[18930] | 358 | }/*}}}*/
|
---|
| 359 | void EnthalpyAnalysis::ComputeBasalMeltingrate(Element* element){/*{{{*/
|
---|
| 360 | /*Calculate the basal melt rates of the enthalpy model after Aschwanden 2012*/
|
---|
| 361 | /* melting rate is positive when melting, negative when refreezing*/
|
---|
[16539] | 362 |
|
---|
[18930] | 363 | /* Check if ice in element */
|
---|
| 364 | if(!element->IsIceInElement()) return;
|
---|
[16539] | 365 |
|
---|
[18930] | 366 | /* Only compute melt rates at the base of grounded ice*/
|
---|
| 367 | if(!element->IsOnBase() || element->IsFloating()) return;
|
---|
[16539] | 368 |
|
---|
[18930] | 369 | /* Intermediaries */
|
---|
| 370 | bool converged;
|
---|
| 371 | const int dim=3;
|
---|
| 372 | int i,is,state;
|
---|
[21718] | 373 | int nodedown,nodeup,numnodes,numsegments;
|
---|
[18930] | 374 | int enthalpy_enum;
|
---|
| 375 | IssmDouble vec_heatflux[dim],normal_base[dim],d1enthalpy[dim],d1pressure[dim];
|
---|
| 376 | IssmDouble basalfriction,alpha2,geothermalflux,heatflux;
|
---|
| 377 | IssmDouble dt,yts;
|
---|
| 378 | IssmDouble melting_overshoot,lambda;
|
---|
| 379 | IssmDouble vx,vy,vz;
|
---|
| 380 | IssmDouble *xyz_list = NULL;
|
---|
| 381 | IssmDouble *xyz_list_base = NULL;
|
---|
| 382 | int *pairindices = NULL;
|
---|
[16539] | 383 |
|
---|
[18930] | 384 | /*Fetch parameters*/
|
---|
| 385 | element->GetVerticesCoordinates(&xyz_list);
|
---|
| 386 | element->GetVerticesCoordinatesBase(&xyz_list_base);
|
---|
| 387 | element->GetInputValue(&converged,ConvergedEnum);
|
---|
| 388 | element->FindParam(&dt,TimesteppingTimeStepEnum);
|
---|
| 389 | element->FindParam(&yts, ConstantsYtsEnum);
|
---|
| 390 |
|
---|
| 391 | if(dt==0. && !converged) enthalpy_enum=EnthalpyPicardEnum;
|
---|
| 392 | else enthalpy_enum=EnthalpyEnum;
|
---|
| 393 |
|
---|
[23644] | 394 | IssmDouble latentheat = element->FindParam(MaterialsLatentheatEnum);
|
---|
| 395 | IssmDouble rho_ice = element->FindParam(MaterialsRhoIceEnum);
|
---|
| 396 | IssmDouble rho_water = element->FindParam(MaterialsRhoFreshwaterEnum);
|
---|
| 397 | IssmDouble beta = element->FindParam(MaterialsBetaEnum);
|
---|
[18930] | 398 | IssmDouble kappa = EnthalpyDiffusionParameterVolume(element,enthalpy_enum); _assert_(kappa>=0.);
|
---|
| 399 | IssmDouble kappa_mix;
|
---|
| 400 |
|
---|
| 401 | /*retrieve inputs*/
|
---|
[24335] | 402 | Input2* enthalpy_input = element->GetInput2(enthalpy_enum); _assert_(enthalpy_input);
|
---|
| 403 | Input2* pressure_input = element->GetInput2(PressureEnum); _assert_(pressure_input);
|
---|
| 404 | Input2* geothermalflux_input = element->GetInput2(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input);
|
---|
| 405 | Input2* vx_input = element->GetInput2(VxEnum); _assert_(vx_input);
|
---|
| 406 | Input2* vy_input = element->GetInput2(VyEnum); _assert_(vy_input);
|
---|
| 407 | Input2* vz_input = element->GetInput2(VzEnum); _assert_(vz_input);
|
---|
[18930] | 408 |
|
---|
| 409 | /*Build friction element, needed later: */
|
---|
| 410 | Friction* friction=new Friction(element,dim);
|
---|
| 411 |
|
---|
| 412 | /******** MELTING RATES ************************************//*{{{*/
|
---|
| 413 | element->NormalBase(&normal_base[0],xyz_list_base);
|
---|
[21718] | 414 | element->VerticalSegmentIndicesBase(&pairindices,&numsegments);
|
---|
[18930] | 415 | IssmDouble* meltingrate_enthalpy = xNew<IssmDouble>(numsegments);
|
---|
[24240] | 416 | IssmDouble* heating = xNew<IssmDouble>(numsegments);
|
---|
[18930] | 417 |
|
---|
[21718] | 418 | numnodes=element->GetNumberOfNodes();
|
---|
| 419 | IssmDouble* enthalpies = xNew<IssmDouble>(numnodes);
|
---|
| 420 | IssmDouble* pressures = xNew<IssmDouble>(numnodes);
|
---|
| 421 | IssmDouble* watercolumns = xNew<IssmDouble>(numnodes);
|
---|
| 422 | IssmDouble* basalmeltingrates = xNew<IssmDouble>(numnodes);
|
---|
| 423 | element->GetInputListOnNodes(enthalpies,enthalpy_enum);
|
---|
| 424 | element->GetInputListOnNodes(pressures,PressureEnum);
|
---|
| 425 | element->GetInputListOnNodes(watercolumns,WatercolumnEnum);
|
---|
| 426 | element->GetInputListOnNodes(basalmeltingrates,BasalforcingsGroundediceMeltingRateEnum);
|
---|
[18930] | 427 |
|
---|
[24140] | 428 | IssmDouble watercolumnupperlimit = element->FindParam(ThermalWatercolumnUpperlimitEnum);
|
---|
| 429 |
|
---|
[18930] | 430 | Gauss* gauss=element->NewGauss();
|
---|
| 431 | for(is=0;is<numsegments;is++){
|
---|
[21718] | 432 | nodedown = pairindices[is*2+0];
|
---|
| 433 | nodeup = pairindices[is*2+1];
|
---|
| 434 | gauss->GaussNode(element->GetElementType(),nodedown);
|
---|
[18930] | 435 |
|
---|
[21718] | 436 | state=GetThermalBasalCondition(element, enthalpies[nodedown], enthalpies[nodeup], pressures[nodedown], pressures[nodeup], watercolumns[nodedown], basalmeltingrates[nodedown]);
|
---|
[18930] | 437 | switch (state) {
|
---|
| 438 | case 0:
|
---|
| 439 | // cold, dry base: apply basal surface forcing
|
---|
| 440 | for(i=0;i<3;i++) vec_heatflux[i]=0.;
|
---|
| 441 | break;
|
---|
[24240] | 442 | case 1: case 2: case 3:
|
---|
| 443 | // case 1 : cold, wet base: keep at pressure melting point
|
---|
[18930] | 444 | // case 2: temperate, thin refreezing base: release spc
|
---|
| 445 | // case 3: temperate, thin melting base: set spc
|
---|
| 446 | enthalpy_input->GetInputDerivativeValue(&d1enthalpy[0],xyz_list,gauss);
|
---|
| 447 | for(i=0;i<3;i++) vec_heatflux[i]=-kappa*d1enthalpy[i];
|
---|
| 448 | break;
|
---|
| 449 | case 4:
|
---|
| 450 | // temperate, thick melting base: set grad H*n=0
|
---|
[21718] | 451 | kappa_mix=GetWetIceConductivity(element, enthalpies[nodedown], pressures[nodedown]);
|
---|
[18930] | 452 | pressure_input->GetInputDerivativeValue(&d1pressure[0],xyz_list,gauss);
|
---|
| 453 | for(i=0;i<3;i++) vec_heatflux[i]=kappa_mix*beta*d1pressure[i];
|
---|
| 454 | break;
|
---|
| 455 | default:
|
---|
| 456 | _printf0_(" unknown thermal basal state found!");
|
---|
| 457 | }
|
---|
| 458 | if(state==0) meltingrate_enthalpy[is]=0.;
|
---|
| 459 | else{
|
---|
| 460 | /*heat flux along normal*/
|
---|
| 461 | heatflux=0.;
|
---|
| 462 | for(i=0;i<3;i++) heatflux+=(vec_heatflux[i])*normal_base[i];
|
---|
| 463 |
|
---|
| 464 | /*basal friction*/
|
---|
| 465 | friction->GetAlpha2(&alpha2,gauss);
|
---|
| 466 | vx_input->GetInputValue(&vx,gauss); vy_input->GetInputValue(&vy,gauss); vz_input->GetInputValue(&vz,gauss);
|
---|
| 467 | basalfriction=alpha2*(vx*vx + vy*vy + vz*vz);
|
---|
| 468 | geothermalflux_input->GetInputValue(&geothermalflux,gauss);
|
---|
| 469 | /* -Mb= Fb-(q-q_geo)/((1-w)*L*rho), and (1-w)*rho=rho_ice, cf Aschwanden 2012, eqs.1, 2, 66*/
|
---|
| 470 | heating[is]=(heatflux+basalfriction+geothermalflux);
|
---|
| 471 | meltingrate_enthalpy[is]=heating[is]/(latentheat*rho_ice); // m/s water equivalent
|
---|
| 472 | }
|
---|
| 473 | }/*}}}*/
|
---|
| 474 |
|
---|
| 475 | /******** UPDATE MELTINGRATES AND WATERCOLUMN **************//*{{{*/
|
---|
| 476 | for(is=0;is<numsegments;is++){
|
---|
[21718] | 477 | nodedown = pairindices[is*2+0];
|
---|
| 478 | nodeup = pairindices[is*2+1];
|
---|
[18930] | 479 | if(dt!=0.){
|
---|
[24240] | 480 | if(watercolumns[nodedown]+meltingrate_enthalpy[is]*dt<0.){ // prevent too much freeze on
|
---|
[21718] | 481 | lambda = -watercolumns[nodedown]/(dt*meltingrate_enthalpy[is]); _assert_(lambda>=0.); _assert_(lambda<1.);
|
---|
| 482 | watercolumns[nodedown]=0.;
|
---|
| 483 | basalmeltingrates[nodedown]=lambda*meltingrate_enthalpy[is]; // restrict freeze on only to size of watercolumn
|
---|
| 484 | enthalpies[nodedown]+=(1.-lambda)*dt/yts*meltingrate_enthalpy[is]*latentheat*rho_ice; // use rest of energy to cool down base: dE=L*m, m=(1-lambda)*meltingrate*rho_ice
|
---|
[16539] | 485 | }
|
---|
[18930] | 486 | else{
|
---|
[21718] | 487 | basalmeltingrates[nodedown]=meltingrate_enthalpy[is];
|
---|
[24240] | 488 | watercolumns[nodedown]+=dt*meltingrate_enthalpy[is];
|
---|
[18930] | 489 | }
|
---|
[24140] | 490 | if(watercolumns[nodedown]>watercolumnupperlimit) watercolumns[nodedown]=watercolumnupperlimit;
|
---|
[16539] | 491 | }
|
---|
[18930] | 492 | else{
|
---|
[21718] | 493 | basalmeltingrates[nodedown]=meltingrate_enthalpy[is];
|
---|
| 494 | if(watercolumns[nodedown]+meltingrate_enthalpy[is]<0.)
|
---|
| 495 | watercolumns[nodedown]=0.;
|
---|
[18930] | 496 | else
|
---|
[21718] | 497 | watercolumns[nodedown]+=meltingrate_enthalpy[is];
|
---|
[24240] | 498 | }
|
---|
[21718] | 499 | basalmeltingrates[nodedown]*=rho_water/rho_ice; // convert meltingrate from water to ice equivalent
|
---|
| 500 | _assert_(watercolumns[nodedown]>=0.);
|
---|
[18930] | 501 | }/*}}}*/
|
---|
| 502 |
|
---|
| 503 | /*feed updated variables back into model*/
|
---|
[24486] | 504 | int finite_element = element->GetElementType(); if(finite_element==P1Enum) finite_element = P1DGEnum;
|
---|
[18930] | 505 | if(dt!=0.){
|
---|
[24486] | 506 | element->AddInput2(enthalpy_enum,enthalpies,finite_element);
|
---|
| 507 | element->AddInput2(WatercolumnEnum,watercolumns,finite_element);
|
---|
[16539] | 508 | }
|
---|
[24486] | 509 | element->AddInput2(BasalforcingsGroundediceMeltingRateEnum,basalmeltingrates,finite_element);
|
---|
[16539] | 510 |
|
---|
[18930] | 511 | /*Clean up and return*/
|
---|
| 512 | delete gauss;
|
---|
| 513 | delete friction;
|
---|
| 514 | xDelete<int>(pairindices);
|
---|
| 515 | xDelete<IssmDouble>(enthalpies);
|
---|
| 516 | xDelete<IssmDouble>(pressures);
|
---|
| 517 | xDelete<IssmDouble>(watercolumns);
|
---|
| 518 | xDelete<IssmDouble>(basalmeltingrates);
|
---|
| 519 | xDelete<IssmDouble>(meltingrate_enthalpy);
|
---|
| 520 | xDelete<IssmDouble>(heating);
|
---|
| 521 | xDelete<IssmDouble>(xyz_list);
|
---|
| 522 | xDelete<IssmDouble>(xyz_list_base);
|
---|
[16539] | 523 | }/*}}}*/
|
---|
[18930] | 524 | void EnthalpyAnalysis::Core(FemModel* femmodel){/*{{{*/
|
---|
[21160] | 525 |
|
---|
| 526 | IssmDouble dt;
|
---|
| 527 | bool isdynamicbasalspc;
|
---|
| 528 |
|
---|
| 529 | femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
|
---|
| 530 | femmodel->parameters->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
|
---|
| 531 |
|
---|
[18591] | 532 | if(VerboseSolution()) _printf0_(" computing enthalpy\n");
|
---|
| 533 | femmodel->SetCurrentConfiguration(EnthalpyAnalysisEnum);
|
---|
[21160] | 534 | if((dt>0.) && isdynamicbasalspc) UpdateBasalConstraints(femmodel);
|
---|
[18591] | 535 | solutionsequence_thermal_nonlinear(femmodel);
|
---|
| 536 |
|
---|
| 537 | /*transfer enthalpy to enthalpy picard for the next step: */
|
---|
| 538 | InputDuplicatex(femmodel,EnthalpyEnum,EnthalpyPicardEnum);
|
---|
| 539 |
|
---|
[21161] | 540 | PostProcessing(femmodel);
|
---|
[18591] | 541 |
|
---|
[17005] | 542 | }/*}}}*/
|
---|
[17000] | 543 | ElementVector* EnthalpyAnalysis::CreateDVector(Element* element){/*{{{*/
|
---|
| 544 | /*Default, return NULL*/
|
---|
| 545 | return NULL;
|
---|
| 546 | }/*}}}*/
|
---|
[16992] | 547 | ElementMatrix* EnthalpyAnalysis::CreateJacobianMatrix(Element* element){/*{{{*/
|
---|
| 548 | _error_("Not implemented");
|
---|
| 549 | }/*}}}*/
|
---|
[16782] | 550 | ElementMatrix* EnthalpyAnalysis::CreateKMatrix(Element* element){/*{{{*/
|
---|
[16888] | 551 |
|
---|
[17434] | 552 | /* Check if ice in element */
|
---|
| 553 | if(!element->IsIceInElement()) return NULL;
|
---|
| 554 |
|
---|
[16888] | 555 | /*compute all stiffness matrices for this element*/
|
---|
| 556 | ElementMatrix* Ke1=CreateKMatrixVolume(element);
|
---|
| 557 | ElementMatrix* Ke2=CreateKMatrixShelf(element);
|
---|
| 558 | ElementMatrix* Ke =new ElementMatrix(Ke1,Ke2);
|
---|
| 559 |
|
---|
| 560 | /*clean-up and return*/
|
---|
| 561 | delete Ke1;
|
---|
| 562 | delete Ke2;
|
---|
| 563 | return Ke;
|
---|
[16782] | 564 | }/*}}}*/
|
---|
[16888] | 565 | ElementMatrix* EnthalpyAnalysis::CreateKMatrixVolume(Element* element){/*{{{*/
|
---|
| 566 |
|
---|
[17434] | 567 | /* Check if ice in element */
|
---|
| 568 | if(!element->IsIceInElement()) return NULL;
|
---|
| 569 |
|
---|
[16888] | 570 | /*Intermediaries */
|
---|
| 571 | int stabilization;
|
---|
| 572 | IssmDouble Jdet,dt,u,v,w,um,vm,wm,vel;
|
---|
| 573 | IssmDouble h,hx,hy,hz,vx,vy,vz;
|
---|
| 574 | IssmDouble tau_parameter,diameter;
|
---|
[24136] | 575 | IssmDouble tau_parameter_anisotropic[2],tau_parameter_hor,tau_parameter_ver;
|
---|
[16888] | 576 | IssmDouble D_scalar;
|
---|
| 577 | IssmDouble* xyz_list = NULL;
|
---|
| 578 |
|
---|
| 579 | /*Fetch number of nodes and dof for this finite element*/
|
---|
| 580 | int numnodes = element->GetNumberOfNodes();
|
---|
| 581 |
|
---|
| 582 | /*Initialize Element vector and other vectors*/
|
---|
| 583 | ElementMatrix* Ke = element->NewElementMatrix();
|
---|
| 584 | IssmDouble* basis = xNew<IssmDouble>(numnodes);
|
---|
| 585 | IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
|
---|
| 586 | IssmDouble* Bprime = xNew<IssmDouble>(3*numnodes);
|
---|
| 587 | IssmDouble K[3][3];
|
---|
| 588 |
|
---|
| 589 | /*Retrieve all inputs and parameters*/
|
---|
| 590 | element->GetVerticesCoordinates(&xyz_list);
|
---|
| 591 | element->FindParam(&dt,TimesteppingTimeStepEnum);
|
---|
| 592 | element->FindParam(&stabilization,ThermalStabilizationEnum);
|
---|
[23644] | 593 | IssmDouble rho_water = element->FindParam(MaterialsRhoSeawaterEnum);
|
---|
| 594 | IssmDouble rho_ice = element->FindParam(MaterialsRhoIceEnum);
|
---|
| 595 | IssmDouble gravity = element->FindParam(ConstantsGEnum);
|
---|
| 596 | IssmDouble heatcapacity = element->FindParam(MaterialsHeatcapacityEnum);
|
---|
| 597 | IssmDouble thermalconductivity = element->FindParam(MaterialsThermalconductivityEnum);
|
---|
[24335] | 598 | Input2* vx_input = element->GetInput2(VxEnum); _assert_(vx_input);
|
---|
| 599 | Input2* vy_input = element->GetInput2(VyEnum); _assert_(vy_input);
|
---|
| 600 | Input2* vz_input = element->GetInput2(VzEnum); _assert_(vz_input);
|
---|
| 601 | Input2* vxm_input = element->GetInput2(VxMeshEnum); _assert_(vxm_input);
|
---|
| 602 | Input2* vym_input = element->GetInput2(VyMeshEnum); _assert_(vym_input);
|
---|
| 603 | Input2* vzm_input = element->GetInput2(VzMeshEnum); _assert_(vzm_input);
|
---|
[16888] | 604 |
|
---|
| 605 | /*Enthalpy diffusion parameter*/
|
---|
[17027] | 606 | IssmDouble kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
|
---|
[16888] | 607 |
|
---|
| 608 | /* Start looping on the number of gaussian points: */
|
---|
[19637] | 609 | Gauss* gauss=element->NewGauss(4);
|
---|
[16888] | 610 | for(int ig=gauss->begin();ig<gauss->end();ig++){
|
---|
| 611 | gauss->GaussPoint(ig);
|
---|
| 612 |
|
---|
| 613 | element->JacobianDeterminant(&Jdet,xyz_list,gauss);
|
---|
[22511] | 614 | element->NodalFunctions(basis,gauss);
|
---|
| 615 | element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
|
---|
| 616 |
|
---|
[16888] | 617 | D_scalar=gauss->weight*Jdet;
|
---|
| 618 | if(dt!=0.) D_scalar=D_scalar*dt;
|
---|
| 619 |
|
---|
| 620 | /*Conduction: */
|
---|
[22511] | 621 | for(int i=0;i<numnodes;i++){
|
---|
| 622 | for(int j=0;j<numnodes;j++){
|
---|
| 623 | Ke->values[i*numnodes+j] += D_scalar*kappa/rho_ice*(
|
---|
| 624 | dbasis[0*numnodes+j]*dbasis[0*numnodes+i] + dbasis[1*numnodes+j]*dbasis[1*numnodes+i] + dbasis[2*numnodes+j]*dbasis[2*numnodes+i]
|
---|
| 625 | );
|
---|
| 626 | }
|
---|
| 627 | }
|
---|
[16888] | 628 |
|
---|
| 629 | /*Advection: */
|
---|
| 630 | vx_input->GetInputValue(&u,gauss); vxm_input->GetInputValue(&um,gauss); vx=u-um;
|
---|
| 631 | vy_input->GetInputValue(&v,gauss); vym_input->GetInputValue(&vm,gauss); vy=v-vm;
|
---|
| 632 | vz_input->GetInputValue(&w,gauss); vzm_input->GetInputValue(&wm,gauss); vz=w-wm;
|
---|
[22511] | 633 | for(int i=0;i<numnodes;i++){
|
---|
| 634 | for(int j=0;j<numnodes;j++){
|
---|
| 635 | Ke->values[i*numnodes+j] += D_scalar*(
|
---|
| 636 | vx*dbasis[0*numnodes+j]*basis[i] + vy*dbasis[1*numnodes+j]*basis[i] +vz*dbasis[2*numnodes+j]*basis[i]
|
---|
| 637 | );
|
---|
| 638 | }
|
---|
| 639 | }
|
---|
[16888] | 640 |
|
---|
| 641 | /*Transient: */
|
---|
| 642 | if(dt!=0.){
|
---|
| 643 | D_scalar=gauss->weight*Jdet;
|
---|
[22511] | 644 | for(int i=0;i<numnodes;i++){
|
---|
| 645 | for(int j=0;j<numnodes;j++){
|
---|
| 646 | Ke->values[i*numnodes+j] += D_scalar*basis[j]*basis[i];
|
---|
| 647 | }
|
---|
| 648 | }
|
---|
[16888] | 649 | D_scalar=D_scalar*dt;
|
---|
| 650 | }
|
---|
| 651 |
|
---|
[21382] | 652 | /*Artificial diffusivity*/
|
---|
[16888] | 653 | if(stabilization==1){
|
---|
| 654 | element->ElementSizes(&hx,&hy,&hz);
|
---|
| 655 | vel=sqrt(vx*vx + vy*vy + vz*vz)+1.e-14;
|
---|
| 656 | h=sqrt( pow(hx*vx/vel,2) + pow(hy*vy/vel,2) + pow(hz*vz/vel,2));
|
---|
[18484] | 657 | K[0][0]=h/(2.*vel)*fabs(vx*vx); K[0][1]=h/(2.*vel)*fabs(vx*vy); K[0][2]=h/(2.*vel)*fabs(vx*vz);
|
---|
| 658 | K[1][0]=h/(2.*vel)*fabs(vy*vx); K[1][1]=h/(2.*vel)*fabs(vy*vy); K[1][2]=h/(2.*vel)*fabs(vy*vz);
|
---|
| 659 | K[2][0]=h/(2.*vel)*fabs(vz*vx); K[2][1]=h/(2.*vel)*fabs(vz*vy); K[2][2]=h/(2.*vel)*fabs(vz*vz);
|
---|
[16888] | 660 | for(int i=0;i<3;i++) for(int j=0;j<3;j++) K[i][j] = D_scalar*K[i][j];
|
---|
| 661 |
|
---|
[24240] | 662 | GetBAdvecprime(Bprime,element,xyz_list,gauss);
|
---|
[16888] | 663 | TripleMultiply(Bprime,3,numnodes,1,
|
---|
| 664 | &K[0][0],3,3,0,
|
---|
| 665 | Bprime,3,numnodes,0,
|
---|
| 666 | &Ke->values[0],1);
|
---|
| 667 | }
|
---|
[24136] | 668 | /*SUPG*/
|
---|
[16888] | 669 | else if(stabilization==2){
|
---|
| 670 | element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
|
---|
[24136] | 671 | diameter=element->MinEdgeLength(xyz_list);
|
---|
[16888] | 672 | tau_parameter=element->StabilizationParameter(u-um,v-vm,w-wm,diameter,kappa/rho_ice);
|
---|
| 673 | for(int i=0;i<numnodes;i++){
|
---|
| 674 | for(int j=0;j<numnodes;j++){
|
---|
| 675 | Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*
|
---|
[24136] | 676 | ((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i])*
|
---|
| 677 | ((u-um)*dbasis[0*numnodes+j]+(v-vm)*dbasis[1*numnodes+j]+(w-wm)*dbasis[2*numnodes+j]);
|
---|
[16888] | 678 | }
|
---|
| 679 | }
|
---|
| 680 | if(dt!=0.){
|
---|
[16896] | 681 | D_scalar=gauss->weight*Jdet;
|
---|
[16888] | 682 | for(int i=0;i<numnodes;i++){
|
---|
| 683 | for(int j=0;j<numnodes;j++){
|
---|
[16895] | 684 | Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*basis[j]*((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i]);
|
---|
[16888] | 685 | }
|
---|
| 686 | }
|
---|
| 687 | }
|
---|
| 688 | }
|
---|
[24136] | 689 | /*anisotropic SUPG*/
|
---|
| 690 | else if(stabilization==3){
|
---|
| 691 | element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
|
---|
| 692 | element->ElementSizes(&hx,&hy,&hz);
|
---|
| 693 | element->StabilizationParameterAnisotropic(&tau_parameter_anisotropic[0],u-um,v-vm,w-wm,hx,hy,hz,kappa/rho_ice);
|
---|
| 694 | tau_parameter_hor=tau_parameter_anisotropic[0];
|
---|
| 695 | tau_parameter_ver=tau_parameter_anisotropic[1];
|
---|
| 696 | for(int i=0;i<numnodes;i++){
|
---|
| 697 | for(int j=0;j<numnodes;j++){
|
---|
| 698 | Ke->values[i*numnodes+j]+=D_scalar*
|
---|
| 699 | (sqrt(tau_parameter_hor)*(u-um)*dbasis[0*numnodes+i]+sqrt(tau_parameter_hor)*(v-vm)*dbasis[1*numnodes+i]+sqrt(tau_parameter_ver)*(w-wm)*dbasis[2*numnodes+i])*
|
---|
| 700 | (sqrt(tau_parameter_hor)*(u-um)*dbasis[0*numnodes+j]+sqrt(tau_parameter_hor)*(v-vm)*dbasis[1*numnodes+j]+sqrt(tau_parameter_ver)*(w-wm)*dbasis[2*numnodes+j]);
|
---|
| 701 | }
|
---|
| 702 | }
|
---|
| 703 | }
|
---|
[16888] | 704 | }
|
---|
| 705 |
|
---|
| 706 | /*Clean up and return*/
|
---|
| 707 | xDelete<IssmDouble>(xyz_list);
|
---|
| 708 | xDelete<IssmDouble>(basis);
|
---|
| 709 | xDelete<IssmDouble>(dbasis);
|
---|
| 710 | xDelete<IssmDouble>(Bprime);
|
---|
| 711 | delete gauss;
|
---|
| 712 | return Ke;
|
---|
| 713 | }/*}}}*/
|
---|
| 714 | ElementMatrix* EnthalpyAnalysis::CreateKMatrixShelf(Element* element){/*{{{*/
|
---|
| 715 |
|
---|
[17434] | 716 | /* Check if ice in element */
|
---|
| 717 | if(!element->IsIceInElement()) return NULL;
|
---|
| 718 |
|
---|
[16888] | 719 | /*Initialize Element matrix and return if necessary*/
|
---|
[17585] | 720 | if(!element->IsOnBase() || !element->IsFloating()) return NULL;
|
---|
[16888] | 721 |
|
---|
[16986] | 722 | /*Intermediaries*/
|
---|
[16888] | 723 | IssmDouble dt,Jdet,D;
|
---|
| 724 | IssmDouble *xyz_list_base = NULL;
|
---|
| 725 |
|
---|
| 726 | /*Fetch number of nodes for this finite element*/
|
---|
| 727 | int numnodes = element->GetNumberOfNodes();
|
---|
| 728 |
|
---|
| 729 | /*Initialize vectors*/
|
---|
| 730 | ElementMatrix* Ke = element->NewElementMatrix();
|
---|
| 731 | IssmDouble* basis = xNew<IssmDouble>(numnodes);
|
---|
| 732 |
|
---|
| 733 | /*Retrieve all inputs and parameters*/
|
---|
| 734 | element->GetVerticesCoordinatesBase(&xyz_list_base);
|
---|
| 735 | element->FindParam(&dt,TimesteppingTimeStepEnum);
|
---|
[23644] | 736 | IssmDouble gravity = element->FindParam(ConstantsGEnum);
|
---|
| 737 | IssmDouble rho_water = element->FindParam(MaterialsRhoSeawaterEnum);
|
---|
| 738 | IssmDouble rho_ice = element->FindParam(MaterialsRhoIceEnum);
|
---|
| 739 | IssmDouble heatcapacity = element->FindParam(MaterialsHeatcapacityEnum);
|
---|
| 740 | IssmDouble mixed_layer_capacity= element->FindParam(MaterialsMixedLayerCapacityEnum);
|
---|
| 741 | IssmDouble thermal_exchange_vel= element->FindParam(MaterialsThermalExchangeVelocityEnum);
|
---|
[16888] | 742 |
|
---|
| 743 | /* Start looping on the number of gaussian points: */
|
---|
[19637] | 744 | Gauss* gauss=element->NewGaussBase(4);
|
---|
[16888] | 745 | for(int ig=gauss->begin();ig<gauss->end();ig++){
|
---|
| 746 | gauss->GaussPoint(ig);
|
---|
| 747 |
|
---|
| 748 | element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
|
---|
| 749 | element->NodalFunctions(basis,gauss);
|
---|
| 750 |
|
---|
| 751 | D=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel/(heatcapacity*rho_ice);
|
---|
| 752 | if(reCast<bool,IssmDouble>(dt)) D=dt*D;
|
---|
| 753 | TripleMultiply(basis,numnodes,1,0,
|
---|
| 754 | &D,1,1,0,
|
---|
| 755 | basis,1,numnodes,0,
|
---|
| 756 | &Ke->values[0],1);
|
---|
| 757 |
|
---|
| 758 | }
|
---|
| 759 |
|
---|
| 760 | /*Clean up and return*/
|
---|
| 761 | delete gauss;
|
---|
| 762 | xDelete<IssmDouble>(basis);
|
---|
| 763 | xDelete<IssmDouble>(xyz_list_base);
|
---|
| 764 | return Ke;
|
---|
| 765 | }/*}}}*/
|
---|
[16782] | 766 | ElementVector* EnthalpyAnalysis::CreatePVector(Element* element){/*{{{*/
|
---|
[16812] | 767 |
|
---|
[17434] | 768 | /* Check if ice in element */
|
---|
| 769 | if(!element->IsIceInElement()) return NULL;
|
---|
| 770 |
|
---|
[16812] | 771 | /*compute all load vectors for this element*/
|
---|
| 772 | ElementVector* pe1=CreatePVectorVolume(element);
|
---|
| 773 | ElementVector* pe2=CreatePVectorSheet(element);
|
---|
| 774 | ElementVector* pe3=CreatePVectorShelf(element);
|
---|
| 775 | ElementVector* pe =new ElementVector(pe1,pe2,pe3);
|
---|
| 776 |
|
---|
| 777 | /*clean-up and return*/
|
---|
| 778 | delete pe1;
|
---|
| 779 | delete pe2;
|
---|
| 780 | delete pe3;
|
---|
| 781 | return pe;
|
---|
[16782] | 782 | }/*}}}*/
|
---|
[16812] | 783 | ElementVector* EnthalpyAnalysis::CreatePVectorVolume(Element* element){/*{{{*/
|
---|
| 784 |
|
---|
[17434] | 785 | /* Check if ice in element */
|
---|
| 786 | if(!element->IsIceInElement()) return NULL;
|
---|
| 787 |
|
---|
[16812] | 788 | /*Intermediaries*/
|
---|
[17014] | 789 | int i, stabilization;
|
---|
[16812] | 790 | IssmDouble Jdet,phi,dt;
|
---|
[17014] | 791 | IssmDouble enthalpy, Hpmp;
|
---|
| 792 | IssmDouble enthalpypicard, d1enthalpypicard[3];
|
---|
| 793 | IssmDouble pressure, d1pressure[3], d2pressure;
|
---|
| 794 | IssmDouble waterfractionpicard;
|
---|
[24136] | 795 | IssmDouble kappa,tau_parameter,diameter,hx,hy,hz,kappa_w;
|
---|
| 796 | IssmDouble tau_parameter_anisotropic[2],tau_parameter_hor,tau_parameter_ver;
|
---|
[16812] | 797 | IssmDouble u,v,w;
|
---|
[17014] | 798 | IssmDouble scalar_def, scalar_sens ,scalar_transient;
|
---|
[16812] | 799 | IssmDouble* xyz_list = NULL;
|
---|
[17014] | 800 | IssmDouble d1H_d1P, d1P2;
|
---|
[16812] | 801 |
|
---|
| 802 | /*Fetch number of nodes and dof for this finite element*/
|
---|
| 803 | int numnodes = element->GetNumberOfNodes();
|
---|
| 804 | int numvertices = element->GetNumberOfVertices();
|
---|
| 805 |
|
---|
| 806 | /*Initialize Element vector*/
|
---|
| 807 | ElementVector* pe = element->NewElementVector();
|
---|
| 808 | IssmDouble* basis = xNew<IssmDouble>(numnodes);
|
---|
| 809 | IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
|
---|
| 810 |
|
---|
| 811 | /*Retrieve all inputs and parameters*/
|
---|
| 812 | element->GetVerticesCoordinates(&xyz_list);
|
---|
[23644] | 813 | IssmDouble rho_ice = element->FindParam(MaterialsRhoIceEnum);
|
---|
| 814 | IssmDouble heatcapacity = element->FindParam(MaterialsHeatcapacityEnum);
|
---|
| 815 | IssmDouble thermalconductivity = element->FindParam(MaterialsThermalconductivityEnum);
|
---|
| 816 | IssmDouble temperateiceconductivity = element->FindParam(MaterialsTemperateiceconductivityEnum);
|
---|
| 817 | IssmDouble beta = element->FindParam(MaterialsBetaEnum);
|
---|
| 818 | IssmDouble latentheat = element->FindParam(MaterialsLatentheatEnum);
|
---|
[16812] | 819 | element->FindParam(&dt,TimesteppingTimeStepEnum);
|
---|
| 820 | element->FindParam(&stabilization,ThermalStabilizationEnum);
|
---|
[24335] | 821 | Input2* vx_input=element->GetInput2(VxEnum); _assert_(vx_input);
|
---|
| 822 | Input2* vy_input=element->GetInput2(VyEnum); _assert_(vy_input);
|
---|
| 823 | Input2* vz_input=element->GetInput2(VzEnum); _assert_(vz_input);
|
---|
| 824 | Input2* enthalpypicard_input=element->GetInput2(EnthalpyPicardEnum); _assert_(enthalpypicard_input);
|
---|
| 825 | Input2* pressure_input=element->GetInput2(PressureEnum); _assert_(pressure_input);
|
---|
| 826 | Input2* enthalpy_input=NULL;
|
---|
| 827 | if(reCast<bool,IssmDouble>(dt)){enthalpy_input = element->GetInput2(EnthalpyEnum); _assert_(enthalpy_input);}
|
---|
[16812] | 828 |
|
---|
| 829 | /* Start looping on the number of gaussian points: */
|
---|
[19637] | 830 | Gauss* gauss=element->NewGauss(4);
|
---|
[16812] | 831 | for(int ig=gauss->begin();ig<gauss->end();ig++){
|
---|
| 832 | gauss->GaussPoint(ig);
|
---|
| 833 |
|
---|
| 834 | element->JacobianDeterminant(&Jdet,xyz_list,gauss);
|
---|
| 835 | element->NodalFunctions(basis,gauss);
|
---|
[23066] | 836 |
|
---|
[17014] | 837 | /*viscous dissipation*/
|
---|
[16812] | 838 | element->ViscousHeating(&phi,xyz_list,gauss,vx_input,vy_input,vz_input);
|
---|
| 839 |
|
---|
| 840 | scalar_def=phi/rho_ice*Jdet*gauss->weight;
|
---|
[16895] | 841 | if(dt!=0.) scalar_def=scalar_def*dt;
|
---|
[16812] | 842 |
|
---|
[17014] | 843 | for(i=0;i<numnodes;i++) pe->values[i]+=scalar_def*basis[i];
|
---|
[16812] | 844 |
|
---|
[17014] | 845 | /*sensible heat flux in temperate ice*/
|
---|
| 846 | enthalpypicard_input->GetInputValue(&enthalpypicard,gauss);
|
---|
| 847 | pressure_input->GetInputValue(&pressure,gauss);
|
---|
| 848 | Hpmp=this->PureIceEnthalpy(element, pressure);
|
---|
| 849 |
|
---|
| 850 | if(enthalpypicard>=Hpmp){
|
---|
| 851 | enthalpypicard_input->GetInputDerivativeValue(&d1enthalpypicard[0],xyz_list,gauss);
|
---|
| 852 | pressure_input->GetInputDerivativeValue(&d1pressure[0],xyz_list,gauss);
|
---|
| 853 | d2pressure=0.; // for linear elements, 2nd derivative is zero
|
---|
[23066] | 854 |
|
---|
[17014] | 855 | d1H_d1P=0.;
|
---|
| 856 | for(i=0;i<3;i++) d1H_d1P+=d1enthalpypicard[i]*d1pressure[i];
|
---|
| 857 | d1P2=0.;
|
---|
| 858 | for(i=0;i<3;i++) d1P2+=pow(d1pressure[i],2.);
|
---|
| 859 |
|
---|
| 860 | scalar_sens=-beta*((temperateiceconductivity - thermalconductivity)/latentheat*(d1H_d1P + beta*heatcapacity*d1P2))/rho_ice;
|
---|
| 861 | if(dt!=0.) scalar_sens=scalar_sens*dt;
|
---|
| 862 | for(i=0;i<numnodes;i++) pe->values[i]+=scalar_sens*basis[i];
|
---|
[24240] | 863 | }
|
---|
[17014] | 864 |
|
---|
[16812] | 865 | /* Build transient now */
|
---|
| 866 | if(reCast<bool,IssmDouble>(dt)){
|
---|
| 867 | enthalpy_input->GetInputValue(&enthalpy, gauss);
|
---|
| 868 | scalar_transient=enthalpy*Jdet*gauss->weight;
|
---|
[17014] | 869 | for(i=0;i<numnodes;i++) pe->values[i]+=scalar_transient*basis[i];
|
---|
[16812] | 870 | }
|
---|
[24136] | 871 |
|
---|
| 872 | /* SUPG */
|
---|
[16812] | 873 | if(stabilization==2){
|
---|
| 874 | element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
|
---|
[24136] | 875 | diameter=element->MinEdgeLength(xyz_list);
|
---|
| 876 | kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
|
---|
[16812] | 877 | vx_input->GetInputValue(&u,gauss);
|
---|
| 878 | vy_input->GetInputValue(&v,gauss);
|
---|
| 879 | vz_input->GetInputValue(&w,gauss);
|
---|
[16895] | 880 | tau_parameter=element->StabilizationParameter(u,v,w,diameter,kappa/rho_ice);
|
---|
[16812] | 881 |
|
---|
[17014] | 882 | for(i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_def*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]);
|
---|
[16895] | 883 |
|
---|
| 884 | if(dt!=0.){
|
---|
[17014] | 885 | for(i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_transient*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]);
|
---|
[16812] | 886 | }
|
---|
| 887 | }
|
---|
[24136] | 888 | /* anisotropic SUPG */
|
---|
| 889 | else if(stabilization==3){
|
---|
| 890 | element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
|
---|
| 891 | element->ElementSizes(&hx,&hy,&hz);
|
---|
| 892 | kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
|
---|
| 893 | vx_input->GetInputValue(&u,gauss);
|
---|
| 894 | vy_input->GetInputValue(&v,gauss);
|
---|
| 895 | vz_input->GetInputValue(&w,gauss);
|
---|
| 896 | element->StabilizationParameterAnisotropic(&tau_parameter_anisotropic[0],u,v,w,hx,hy,hz,kappa/rho_ice);
|
---|
| 897 | tau_parameter_hor=tau_parameter_anisotropic[0];
|
---|
| 898 | tau_parameter_ver=tau_parameter_anisotropic[1];
|
---|
| 899 |
|
---|
| 900 | for(i=0;i<numnodes;i++) pe->values[i]+=scalar_def*(tau_parameter_hor*u*dbasis[0*numnodes+i]+tau_parameter_hor*v*dbasis[1*numnodes+i]+tau_parameter_ver*w*dbasis[2*numnodes+i]);
|
---|
| 901 | }
|
---|
[16812] | 902 | }
|
---|
| 903 |
|
---|
| 904 | /*Clean up and return*/
|
---|
| 905 | xDelete<IssmDouble>(basis);
|
---|
| 906 | xDelete<IssmDouble>(dbasis);
|
---|
| 907 | xDelete<IssmDouble>(xyz_list);
|
---|
| 908 | delete gauss;
|
---|
| 909 | return pe;
|
---|
| 910 |
|
---|
| 911 | }/*}}}*/
|
---|
| 912 | ElementVector* EnthalpyAnalysis::CreatePVectorSheet(Element* element){/*{{{*/
|
---|
[16888] | 913 |
|
---|
[17434] | 914 | /* Check if ice in element */
|
---|
| 915 | if(!element->IsIceInElement()) return NULL;
|
---|
| 916 |
|
---|
[17014] | 917 | /* implementation of the basal condition decision chart of Aschwanden 2012, Fig.5 */
|
---|
[17585] | 918 | if(!element->IsOnBase() || element->IsFloating()) return NULL;
|
---|
[16888] | 919 |
|
---|
[20272] | 920 | bool converged, isdynamicbasalspc;
|
---|
[18612] | 921 | int i, state;
|
---|
[20272] | 922 | int enthalpy_enum;
|
---|
[18612] | 923 | IssmDouble dt,Jdet,scalar;
|
---|
| 924 | IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
|
---|
| 925 | IssmDouble vx,vy,vz;
|
---|
| 926 | IssmDouble alpha2,basalfriction,geothermalflux,heatflux;
|
---|
[16888] | 927 | IssmDouble *xyz_list_base = NULL;
|
---|
| 928 |
|
---|
| 929 | /*Fetch number of nodes for this finite element*/
|
---|
| 930 | int numnodes = element->GetNumberOfNodes();
|
---|
| 931 |
|
---|
| 932 | /*Initialize vectors*/
|
---|
| 933 | ElementVector* pe = element->NewElementVector();
|
---|
| 934 | IssmDouble* basis = xNew<IssmDouble>(numnodes);
|
---|
| 935 |
|
---|
| 936 | /*Retrieve all inputs and parameters*/
|
---|
| 937 | element->GetVerticesCoordinatesBase(&xyz_list_base);
|
---|
| 938 | element->FindParam(&dt,TimesteppingTimeStepEnum);
|
---|
[18622] | 939 | element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
|
---|
[20272] | 940 | element->GetInputValue(&converged,ConvergedEnum);
|
---|
| 941 | if(dt==0. && !converged) enthalpy_enum=EnthalpyPicardEnum; // use enthalpy from last iteration
|
---|
| 942 | else enthalpy_enum=EnthalpyEnum; // use enthalpy from last time step
|
---|
[24335] | 943 | Input2* vx_input = element->GetInput2(VxEnum); _assert_(vx_input);
|
---|
| 944 | Input2* vy_input = element->GetInput2(VyEnum); _assert_(vy_input);
|
---|
| 945 | Input2* vz_input = element->GetInput2(VzEnum); _assert_(vz_input);
|
---|
| 946 | Input2* enthalpy_input = element->GetInput2(enthalpy_enum); _assert_(enthalpy_input);
|
---|
| 947 | Input2* pressure_input = element->GetInput2(PressureEnum); _assert_(pressure_input);
|
---|
| 948 | Input2* watercolumn_input = element->GetInput2(WatercolumnEnum); _assert_(watercolumn_input);
|
---|
| 949 | Input2* meltingrate_input = element->GetInput2(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
|
---|
| 950 | Input2* geothermalflux_input = element->GetInput2(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input);
|
---|
[23644] | 951 | IssmDouble rho_ice = element->FindParam(MaterialsRhoIceEnum);
|
---|
[16888] | 952 |
|
---|
| 953 | /*Build friction element, needed later: */
|
---|
| 954 | Friction* friction=new Friction(element,3);
|
---|
| 955 |
|
---|
| 956 | /* Start looping on the number of gaussian points: */
|
---|
[19637] | 957 | Gauss* gauss=element->NewGaussBase(4);
|
---|
| 958 | Gauss* gaussup=element->NewGaussTop(4);
|
---|
[16888] | 959 | for(int ig=gauss->begin();ig<gauss->end();ig++){
|
---|
| 960 | gauss->GaussPoint(ig);
|
---|
[18665] | 961 | gaussup->GaussPoint(ig);
|
---|
[16888] | 962 |
|
---|
| 963 | element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
|
---|
| 964 | element->NodalFunctions(basis,gauss);
|
---|
| 965 |
|
---|
[18622] | 966 | if(isdynamicbasalspc){
|
---|
| 967 | enthalpy_input->GetInputValue(&enthalpy,gauss);
|
---|
| 968 | enthalpy_input->GetInputValue(&enthalpyup,gaussup);
|
---|
| 969 | pressure_input->GetInputValue(&pressure,gauss);
|
---|
| 970 | pressure_input->GetInputValue(&pressureup,gaussup);
|
---|
| 971 | watercolumn_input->GetInputValue(&watercolumn,gauss);
|
---|
| 972 | meltingrate_input->GetInputValue(&meltingrate,gauss);
|
---|
| 973 | state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
|
---|
| 974 | }
|
---|
| 975 | else
|
---|
| 976 | state=0;
|
---|
[16888] | 977 |
|
---|
[18612] | 978 | switch (state) {
|
---|
[20272] | 979 | case 0: case 1: case 2: case 3:
|
---|
[24240] | 980 | // cold, dry base; cold, wet base; refreezing temperate base; thin temperate base:
|
---|
[20272] | 981 | // Apply basal surface forcing.
|
---|
[24240] | 982 | // Interpolated values of enthalpy on gauss nodes may indicate cold base,
|
---|
[20272] | 983 | // although one node might have become temperate. So keep heat flux switched on.
|
---|
[18612] | 984 | geothermalflux_input->GetInputValue(&geothermalflux,gauss);
|
---|
| 985 | friction->GetAlpha2(&alpha2,gauss);
|
---|
| 986 | vx_input->GetInputValue(&vx,gauss);
|
---|
| 987 | vy_input->GetInputValue(&vy,gauss);
|
---|
| 988 | vz_input->GetInputValue(&vz,gauss);
|
---|
| 989 | basalfriction=alpha2*(vx*vx+vy*vy+vz*vz);
|
---|
| 990 | heatflux=(basalfriction+geothermalflux)/(rho_ice);
|
---|
| 991 | scalar=gauss->weight*Jdet*heatflux;
|
---|
| 992 | if(dt!=0.) scalar=dt*scalar;
|
---|
[24240] | 993 | for(i=0;i<numnodes;i++)
|
---|
[18612] | 994 | pe->values[i]+=scalar*basis[i];
|
---|
| 995 | break;
|
---|
| 996 | case 4:
|
---|
| 997 | // temperate, thick melting base: set grad H*n=0
|
---|
[24240] | 998 | for(i=0;i<numnodes;i++)
|
---|
[18612] | 999 | pe->values[i]+=0.;
|
---|
| 1000 | break;
|
---|
| 1001 | default:
|
---|
| 1002 | _printf0_(" unknown thermal basal state found!");
|
---|
[16888] | 1003 | }
|
---|
| 1004 | }
|
---|
| 1005 |
|
---|
| 1006 | /*Clean up and return*/
|
---|
| 1007 | delete gauss;
|
---|
| 1008 | delete gaussup;
|
---|
| 1009 | delete friction;
|
---|
| 1010 | xDelete<IssmDouble>(basis);
|
---|
| 1011 | xDelete<IssmDouble>(xyz_list_base);
|
---|
| 1012 | return pe;
|
---|
| 1013 |
|
---|
[16812] | 1014 | }/*}}}*/
|
---|
| 1015 | ElementVector* EnthalpyAnalysis::CreatePVectorShelf(Element* element){/*{{{*/
|
---|
| 1016 |
|
---|
[17434] | 1017 | /* Check if ice in element */
|
---|
| 1018 | if(!element->IsIceInElement()) return NULL;
|
---|
| 1019 |
|
---|
[16888] | 1020 | /*Get basal element*/
|
---|
[17585] | 1021 | if(!element->IsOnBase() || !element->IsFloating()) return NULL;
|
---|
[16888] | 1022 |
|
---|
[18612] | 1023 | IssmDouble Hpmp,dt,Jdet,scalar_ocean,pressure;
|
---|
[16812] | 1024 | IssmDouble *xyz_list_base = NULL;
|
---|
| 1025 |
|
---|
| 1026 | /*Fetch number of nodes for this finite element*/
|
---|
| 1027 | int numnodes = element->GetNumberOfNodes();
|
---|
| 1028 |
|
---|
| 1029 | /*Initialize vectors*/
|
---|
| 1030 | ElementVector* pe = element->NewElementVector();
|
---|
| 1031 | IssmDouble* basis = xNew<IssmDouble>(numnodes);
|
---|
| 1032 |
|
---|
| 1033 | /*Retrieve all inputs and parameters*/
|
---|
| 1034 | element->GetVerticesCoordinatesBase(&xyz_list_base);
|
---|
| 1035 | element->FindParam(&dt,TimesteppingTimeStepEnum);
|
---|
[24335] | 1036 | Input2* pressure_input=element->GetInput2(PressureEnum); _assert_(pressure_input);
|
---|
[23644] | 1037 | IssmDouble gravity = element->FindParam(ConstantsGEnum);
|
---|
| 1038 | IssmDouble rho_water = element->FindParam(MaterialsRhoSeawaterEnum);
|
---|
| 1039 | IssmDouble rho_ice = element->FindParam(MaterialsRhoIceEnum);
|
---|
| 1040 | IssmDouble heatcapacity = element->FindParam(MaterialsHeatcapacityEnum);
|
---|
| 1041 | IssmDouble mixed_layer_capacity= element->FindParam(MaterialsMixedLayerCapacityEnum);
|
---|
| 1042 | IssmDouble thermal_exchange_vel= element->FindParam(MaterialsThermalExchangeVelocityEnum);
|
---|
[16812] | 1043 |
|
---|
| 1044 | /* Start looping on the number of gaussian points: */
|
---|
[19637] | 1045 | Gauss* gauss=element->NewGaussBase(4);
|
---|
[16812] | 1046 | for(int ig=gauss->begin();ig<gauss->end();ig++){
|
---|
| 1047 | gauss->GaussPoint(ig);
|
---|
| 1048 |
|
---|
| 1049 | element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
|
---|
| 1050 | element->NodalFunctions(basis,gauss);
|
---|
| 1051 |
|
---|
| 1052 | pressure_input->GetInputValue(&pressure,gauss);
|
---|
[18612] | 1053 | Hpmp=element->PureIceEnthalpy(pressure);
|
---|
[16812] | 1054 |
|
---|
[18612] | 1055 | scalar_ocean=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel*Hpmp/(heatcapacity*rho_ice);
|
---|
[16812] | 1056 | if(reCast<bool,IssmDouble>(dt)) scalar_ocean=dt*scalar_ocean;
|
---|
| 1057 |
|
---|
| 1058 | for(int i=0;i<numnodes;i++) pe->values[i]+=scalar_ocean*basis[i];
|
---|
| 1059 | }
|
---|
| 1060 |
|
---|
| 1061 | /*Clean up and return*/
|
---|
| 1062 | delete gauss;
|
---|
| 1063 | xDelete<IssmDouble>(basis);
|
---|
| 1064 | xDelete<IssmDouble>(xyz_list_base);
|
---|
| 1065 | return pe;
|
---|
| 1066 | }/*}}}*/
|
---|
[18930] | 1067 | void EnthalpyAnalysis::DrainWaterfraction(FemModel* femmodel){/*{{{*/
|
---|
| 1068 | /*Drain excess water fraction in ice column: */
|
---|
[21721] | 1069 | ComputeWaterfractionDrainage(femmodel);
|
---|
| 1070 | DrainageUpdateWatercolumn(femmodel);
|
---|
| 1071 | DrainageUpdateEnthalpy(femmodel);
|
---|
[17002] | 1072 | }/*}}}*/
|
---|
[21721] | 1073 | void EnthalpyAnalysis::ComputeWaterfractionDrainage(FemModel* femmodel){/*{{{*/
|
---|
[17002] | 1074 |
|
---|
[21721] | 1075 | int i,k,numnodes;
|
---|
| 1076 | IssmDouble dt;
|
---|
| 1077 | Element* element= NULL;
|
---|
[17434] | 1078 |
|
---|
[21721] | 1079 | femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
|
---|
[17434] | 1080 |
|
---|
[21721] | 1081 | for(i=0;i<femmodel->elements->Size();i++){
|
---|
| 1082 | element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
|
---|
| 1083 | numnodes=element->GetNumberOfNodes();
|
---|
| 1084 | IssmDouble* waterfractions= xNew<IssmDouble>(numnodes);
|
---|
| 1085 | IssmDouble* drainage= xNew<IssmDouble>(numnodes);
|
---|
[17014] | 1086 |
|
---|
[21721] | 1087 | element->GetInputListOnNodes(waterfractions,WaterfractionEnum);
|
---|
| 1088 | for(k=0; k<numnodes;k++){
|
---|
| 1089 | drainage[k]=DrainageFunctionWaterfraction(waterfractions[k], dt);
|
---|
| 1090 | }
|
---|
[24486] | 1091 | int finite_element = element->GetElementType(); if(finite_element==P1Enum) finite_element = P1DGEnum;
|
---|
| 1092 | element->AddInput2(WaterfractionDrainageEnum,drainage,finite_element);
|
---|
[18930] | 1093 |
|
---|
[21721] | 1094 | xDelete<IssmDouble>(waterfractions);
|
---|
| 1095 | xDelete<IssmDouble>(drainage);
|
---|
[18930] | 1096 | }
|
---|
[21721] | 1097 | }/*}}}*/
|
---|
| 1098 | void EnthalpyAnalysis::DrainageUpdateWatercolumn(FemModel* femmodel){/*{{{*/
|
---|
| 1099 |
|
---|
| 1100 | int i,k,numnodes, numbasalnodes;
|
---|
| 1101 | IssmDouble dt;
|
---|
| 1102 | int* basalnodeindices=NULL;
|
---|
| 1103 | Element* element= NULL;
|
---|
[23066] | 1104 |
|
---|
[21721] | 1105 | femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
|
---|
[18667] | 1106 |
|
---|
[21721] | 1107 | /*depth-integrate the drained water fraction */
|
---|
| 1108 | femmodel->parameters->SetParam(WaterfractionDrainageEnum,InputToDepthaverageInEnum);
|
---|
| 1109 | femmodel->parameters->SetParam(WaterfractionDrainageIntegratedEnum,InputToDepthaverageOutEnum);
|
---|
| 1110 | depthaverage_core(femmodel);
|
---|
| 1111 | femmodel->parameters->SetParam(WaterfractionDrainageIntegratedEnum,InputToExtrudeEnum);
|
---|
| 1112 | extrudefrombase_core(femmodel);
|
---|
| 1113 | /*multiply depth-average by ice thickness*/
|
---|
| 1114 | for(i=0;i<femmodel->elements->Size();i++){
|
---|
| 1115 | element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
|
---|
| 1116 | numnodes=element->GetNumberOfNodes();
|
---|
| 1117 | IssmDouble* drainage_int= xNew<IssmDouble>(numnodes);
|
---|
| 1118 | IssmDouble* thicknesses= xNew<IssmDouble>(numnodes);
|
---|
[17014] | 1119 |
|
---|
[21721] | 1120 | element->GetInputListOnNodes(drainage_int,WaterfractionDrainageIntegratedEnum);
|
---|
| 1121 | element->GetInputListOnNodes(thicknesses,ThicknessEnum);
|
---|
| 1122 | for(k=0;k<numnodes;k++){
|
---|
| 1123 | drainage_int[k]*=thicknesses[k];
|
---|
| 1124 | }
|
---|
[24486] | 1125 | int finite_element = element->GetElementType(); if(finite_element==P1Enum) finite_element = P1DGEnum;
|
---|
| 1126 | element->AddInput2(WaterfractionDrainageIntegratedEnum, drainage_int,finite_element);
|
---|
[17166] | 1127 |
|
---|
[21721] | 1128 | xDelete<IssmDouble>(drainage_int);
|
---|
| 1129 | xDelete<IssmDouble>(thicknesses);
|
---|
| 1130 | }
|
---|
[17434] | 1131 |
|
---|
[21721] | 1132 | /*update water column*/
|
---|
| 1133 | for(i=0;i<femmodel->elements->Size();i++){
|
---|
| 1134 | element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
|
---|
| 1135 | /* Check if ice in element */
|
---|
| 1136 | if(!element->IsIceInElement()) continue;
|
---|
[24240] | 1137 | if(!element->IsOnBase()) continue;
|
---|
[17166] | 1138 |
|
---|
[21721] | 1139 | numnodes=element->GetNumberOfNodes();
|
---|
| 1140 | IssmDouble* watercolumn= xNew<IssmDouble>(numnodes);
|
---|
| 1141 | IssmDouble* drainage_int= xNew<IssmDouble>(numnodes);
|
---|
| 1142 | element->GetInputListOnNodes(watercolumn,WatercolumnEnum);
|
---|
| 1143 | element->GetInputListOnNodes(drainage_int,WaterfractionDrainageIntegratedEnum);
|
---|
[17166] | 1144 |
|
---|
[21721] | 1145 | element->BasalNodeIndices(&numbasalnodes,&basalnodeindices,element->GetElementType());
|
---|
| 1146 | for(k=0;k<numbasalnodes;k++){
|
---|
| 1147 | watercolumn[basalnodeindices[k]]+=dt*drainage_int[basalnodeindices[k]];
|
---|
| 1148 | }
|
---|
[24486] | 1149 | int finite_element = element->GetElementType(); if(finite_element==P1Enum) finite_element = P1DGEnum;
|
---|
| 1150 | element->AddInput2(WatercolumnEnum, watercolumn,finite_element);
|
---|
[17166] | 1151 |
|
---|
[21721] | 1152 | xDelete<IssmDouble>(watercolumn);
|
---|
| 1153 | xDelete<IssmDouble>(drainage_int);
|
---|
[21779] | 1154 | xDelete<int>(basalnodeindices);
|
---|
[21721] | 1155 | }
|
---|
| 1156 | }/*}}}*/
|
---|
| 1157 | void EnthalpyAnalysis::DrainageUpdateEnthalpy(FemModel* femmodel){/*{{{*/
|
---|
[17166] | 1158 |
|
---|
[21721] | 1159 | int i,k,numnodes;
|
---|
| 1160 | IssmDouble dt;
|
---|
| 1161 | Element* element= NULL;
|
---|
| 1162 | femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
|
---|
[17166] | 1163 |
|
---|
[21721] | 1164 | for(i=0;i<femmodel->elements->Size();i++){
|
---|
| 1165 | element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
|
---|
| 1166 | numnodes=element->GetNumberOfNodes();
|
---|
| 1167 | IssmDouble* enthalpies= xNew<IssmDouble>(numnodes);
|
---|
| 1168 | IssmDouble* pressures= xNew<IssmDouble>(numnodes);
|
---|
| 1169 | IssmDouble* temperatures= xNew<IssmDouble>(numnodes);
|
---|
| 1170 | IssmDouble* waterfractions= xNew<IssmDouble>(numnodes);
|
---|
| 1171 | IssmDouble* drainage= xNew<IssmDouble>(numnodes);
|
---|
[21653] | 1172 |
|
---|
[21721] | 1173 | element->GetInputListOnNodes(pressures,PressureEnum);
|
---|
| 1174 | element->GetInputListOnNodes(temperatures,TemperatureEnum);
|
---|
| 1175 | element->GetInputListOnNodes(waterfractions,WaterfractionEnum);
|
---|
| 1176 | element->GetInputListOnNodes(drainage,WaterfractionDrainageEnum);
|
---|
[21653] | 1177 |
|
---|
[21721] | 1178 | for(k=0;k<numnodes;k++){
|
---|
[24140] | 1179 | if(dt==0.)
|
---|
| 1180 | waterfractions[k]-=drainage[k];
|
---|
| 1181 | else
|
---|
| 1182 | waterfractions[k]-=dt*drainage[k];
|
---|
| 1183 |
|
---|
[21721] | 1184 | element->ThermalToEnthalpy(&enthalpies[k], temperatures[k], waterfractions[k], pressures[k]);
|
---|
| 1185 | }
|
---|
[24486] | 1186 | int finite_element = element->GetElementType(); if(finite_element==P1Enum) finite_element = P1DGEnum;
|
---|
| 1187 | element->AddInput2(WaterfractionEnum,waterfractions,finite_element);
|
---|
| 1188 | element->AddInput2(EnthalpyEnum,enthalpies,finite_element);
|
---|
[17166] | 1189 |
|
---|
[21721] | 1190 | xDelete<IssmDouble>(enthalpies);
|
---|
| 1191 | xDelete<IssmDouble>(pressures);
|
---|
| 1192 | xDelete<IssmDouble>(temperatures);
|
---|
| 1193 | xDelete<IssmDouble>(waterfractions);
|
---|
| 1194 | xDelete<IssmDouble>(drainage);
|
---|
| 1195 | }
|
---|
[17002] | 1196 | }/*}}}*/
|
---|
[18930] | 1197 | IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameter(Element* element,IssmDouble enthalpy,IssmDouble pressure){/*{{{*/
|
---|
[17014] | 1198 |
|
---|
[23644] | 1199 | IssmDouble heatcapacity = element->FindParam(MaterialsHeatcapacityEnum);
|
---|
| 1200 | IssmDouble temperateiceconductivity = element->FindParam(MaterialsTemperateiceconductivityEnum);
|
---|
| 1201 | IssmDouble thermalconductivity = element->FindParam(MaterialsThermalconductivityEnum);
|
---|
[17434] | 1202 |
|
---|
[24140] | 1203 | if(enthalpy < PureIceEnthalpy(element,pressure))
|
---|
[18930] | 1204 | return thermalconductivity/heatcapacity;
|
---|
[24140] | 1205 | else
|
---|
[18930] | 1206 | return temperateiceconductivity/heatcapacity;
|
---|
| 1207 | }/*}}}*/
|
---|
| 1208 | IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameterVolume(Element* element,int enthalpy_enum){/*{{{*/
|
---|
[17014] | 1209 |
|
---|
[18930] | 1210 | int iv;
|
---|
| 1211 | IssmDouble lambda; /* fraction of cold ice */
|
---|
| 1212 | IssmDouble kappa,kappa_c,kappa_t; /* enthalpy conductivities */
|
---|
| 1213 | IssmDouble Hc,Ht;
|
---|
[17014] | 1214 |
|
---|
[18930] | 1215 | /*Get pressures and enthalpies on vertices*/
|
---|
| 1216 | int numvertices = element->GetNumberOfVertices();
|
---|
[23697] | 1217 | int effectiveconductivity_averaging;
|
---|
[18930] | 1218 | IssmDouble* pressures = xNew<IssmDouble>(numvertices);
|
---|
| 1219 | IssmDouble* enthalpies = xNew<IssmDouble>(numvertices);
|
---|
| 1220 | IssmDouble* PIE = xNew<IssmDouble>(numvertices);
|
---|
| 1221 | IssmDouble* dHpmp = xNew<IssmDouble>(numvertices);
|
---|
[17014] | 1222 | element->GetInputListOnVertices(pressures,PressureEnum);
|
---|
[18930] | 1223 | element->GetInputListOnVertices(enthalpies,enthalpy_enum);
|
---|
[23697] | 1224 | element->FindParam(&effectiveconductivity_averaging,MaterialsEffectiveconductivityAveragingEnum);
|
---|
| 1225 |
|
---|
[18930] | 1226 | for(iv=0;iv<numvertices;iv++){
|
---|
| 1227 | PIE[iv] = PureIceEnthalpy(element,pressures[iv]);
|
---|
| 1228 | dHpmp[iv] = enthalpies[iv]-PIE[iv];
|
---|
| 1229 | }
|
---|
[17014] | 1230 |
|
---|
[18930] | 1231 | bool allequalsign = true;
|
---|
| 1232 | if(dHpmp[0]<0.){
|
---|
| 1233 | for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]<0.));
|
---|
[17014] | 1234 | }
|
---|
[18930] | 1235 | else{
|
---|
| 1236 | for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]>=0.));
|
---|
[17014] | 1237 | }
|
---|
| 1238 |
|
---|
[18930] | 1239 | if(allequalsign){
|
---|
| 1240 | kappa = EnthalpyDiffusionParameter(element,enthalpies[0],pressures[0]);
|
---|
[17014] | 1241 | }
|
---|
[18930] | 1242 | else{
|
---|
| 1243 | kappa_c = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)-1.,0.);
|
---|
| 1244 | kappa_t = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)+1.,0.);
|
---|
[23697] | 1245 |
|
---|
[18930] | 1246 | Hc=0.; Ht=0.;
|
---|
| 1247 | for(iv=0; iv<numvertices;iv++){
|
---|
| 1248 | if(enthalpies[iv]<PIE[iv])
|
---|
| 1249 | Hc+=(PIE[iv]-enthalpies[iv]);
|
---|
| 1250 | else
|
---|
| 1251 | Ht+=(enthalpies[iv]-PIE[iv]);
|
---|
| 1252 | }
|
---|
| 1253 | _assert_((Hc+Ht)>0.);
|
---|
| 1254 | lambda = Hc/(Hc+Ht);
|
---|
[23317] | 1255 | _assert_(lambda>=0.);
|
---|
| 1256 | _assert_(lambda<=1.);
|
---|
[23697] | 1257 |
|
---|
| 1258 | if(effectiveconductivity_averaging==0){
|
---|
| 1259 | /* return arithmetic mean (volume average) of thermal conductivities, weighted by fraction of cold/temperate ice */
|
---|
| 1260 | kappa=kappa_c*lambda+(1.-lambda)*kappa_t;
|
---|
| 1261 | }
|
---|
| 1262 | else if(effectiveconductivity_averaging==1){
|
---|
| 1263 | /* return harmonic mean (reciprocal avarage) of thermal conductivities, weighted by fraction of cold/temperate ice, cf Patankar 1980, pp44 */
|
---|
[24240] | 1264 | kappa=kappa_c*kappa_t/(lambda*kappa_t+(1.-lambda)*kappa_c);
|
---|
[23697] | 1265 | }
|
---|
| 1266 | else if(effectiveconductivity_averaging==2){
|
---|
| 1267 | /* return geometric mean (power law) of thermal conductivities, weighted by fraction of cold/temperate ice */
|
---|
[24240] | 1268 | kappa=pow(kappa_c,lambda)*pow(kappa_t,1.-lambda);
|
---|
[23697] | 1269 | }
|
---|
| 1270 | else{
|
---|
| 1271 | _error_("effectiveconductivity_averaging not supported yet");
|
---|
| 1272 | }
|
---|
[24240] | 1273 | }
|
---|
[17014] | 1274 |
|
---|
| 1275 | /*Clean up and return*/
|
---|
[18930] | 1276 | xDelete<IssmDouble>(PIE);
|
---|
| 1277 | xDelete<IssmDouble>(dHpmp);
|
---|
| 1278 | xDelete<IssmDouble>(pressures);
|
---|
[17014] | 1279 | xDelete<IssmDouble>(enthalpies);
|
---|
[18930] | 1280 | return kappa;
|
---|
[17002] | 1281 | }/*}}}*/
|
---|
[18930] | 1282 | void EnthalpyAnalysis::GetBAdvec(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
|
---|
[24240] | 1283 | /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
|
---|
[18930] | 1284 | * For node i, Bi' can be expressed in the actual coordinate system
|
---|
[24240] | 1285 | * by:
|
---|
[18930] | 1286 | * Bi_advec =[ h ]
|
---|
| 1287 | * [ h ]
|
---|
| 1288 | * [ h ]
|
---|
| 1289 | * where h is the interpolation function for node i.
|
---|
| 1290 | *
|
---|
| 1291 | * We assume B has been allocated already, of size: 3x(NDOF1*NUMNODESP1)
|
---|
| 1292 | */
|
---|
[18659] | 1293 |
|
---|
[18930] | 1294 | /*Fetch number of nodes for this finite element*/
|
---|
| 1295 | int numnodes = element->GetNumberOfNodes();
|
---|
[18659] | 1296 |
|
---|
[18930] | 1297 | /*Get nodal functions*/
|
---|
| 1298 | IssmDouble* basis=xNew<IssmDouble>(numnodes);
|
---|
| 1299 | element->NodalFunctions(basis,gauss);
|
---|
[18659] | 1300 |
|
---|
[18930] | 1301 | /*Build B: */
|
---|
| 1302 | for(int i=0;i<numnodes;i++){
|
---|
| 1303 | B[numnodes*0+i] = basis[i];
|
---|
| 1304 | B[numnodes*1+i] = basis[i];
|
---|
| 1305 | B[numnodes*2+i] = basis[i];
|
---|
[18659] | 1306 | }
|
---|
| 1307 |
|
---|
[18930] | 1308 | /*Clean-up*/
|
---|
| 1309 | xDelete<IssmDouble>(basis);
|
---|
[18612] | 1310 | }/*}}}*/
|
---|
[18930] | 1311 | void EnthalpyAnalysis::GetBAdvecprime(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
|
---|
[24240] | 1312 | /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
|
---|
[18930] | 1313 | * For node i, Bi' can be expressed in the actual coordinate system
|
---|
[24240] | 1314 | * by:
|
---|
[18930] | 1315 | * Biprime_advec=[ dh/dx ]
|
---|
| 1316 | * [ dh/dy ]
|
---|
| 1317 | * [ dh/dz ]
|
---|
| 1318 | * where h is the interpolation function for node i.
|
---|
| 1319 | *
|
---|
| 1320 | * We assume B has been allocated already, of size: 3x(NDOF1*numnodes)
|
---|
| 1321 | */
|
---|
[17002] | 1322 |
|
---|
[18930] | 1323 | /*Fetch number of nodes for this finite element*/
|
---|
| 1324 | int numnodes = element->GetNumberOfNodes();
|
---|
[17434] | 1325 |
|
---|
[18930] | 1326 | /*Get nodal functions derivatives*/
|
---|
| 1327 | IssmDouble* dbasis=xNew<IssmDouble>(3*numnodes);
|
---|
| 1328 | element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
|
---|
[17434] | 1329 |
|
---|
[18930] | 1330 | /*Build B: */
|
---|
| 1331 | for(int i=0;i<numnodes;i++){
|
---|
| 1332 | B[numnodes*0+i] = dbasis[0*numnodes+i];
|
---|
| 1333 | B[numnodes*1+i] = dbasis[1*numnodes+i];
|
---|
| 1334 | B[numnodes*2+i] = dbasis[2*numnodes+i];
|
---|
[18659] | 1335 | }
|
---|
| 1336 |
|
---|
[18930] | 1337 | /*Clean-up*/
|
---|
| 1338 | xDelete<IssmDouble>(dbasis);
|
---|
[18659] | 1339 | }/*}}}*/
|
---|
[18930] | 1340 | void EnthalpyAnalysis::GetBasalConstraints(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
|
---|
[18659] | 1341 |
|
---|
| 1342 | /*Intermediary*/
|
---|
| 1343 | bool isdynamicbasalspc;
|
---|
[18612] | 1344 | IssmDouble dt;
|
---|
| 1345 |
|
---|
| 1346 | /*Check wether dynamic basal boundary conditions are activated */
|
---|
| 1347 | element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
|
---|
| 1348 | if(!isdynamicbasalspc) return;
|
---|
| 1349 |
|
---|
| 1350 | element->FindParam(&dt,TimesteppingTimeStepEnum);
|
---|
| 1351 | if(dt==0.){
|
---|
[18659] | 1352 | GetBasalConstraintsSteadystate(vec_spc,element);
|
---|
[18612] | 1353 | }
|
---|
| 1354 | else{
|
---|
[18659] | 1355 | GetBasalConstraintsTransient(vec_spc,element);
|
---|
[18612] | 1356 | }
|
---|
| 1357 | }/*}}}*/
|
---|
[18930] | 1358 | void EnthalpyAnalysis::GetBasalConstraintsSteadystate(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
|
---|
[18612] | 1359 |
|
---|
| 1360 | /* Check if ice in element */
|
---|
| 1361 | if(!element->IsIceInElement()) return;
|
---|
| 1362 |
|
---|
[24240] | 1363 | /* Only update constraints at the base.
|
---|
[20213] | 1364 | * Floating ice is not affected by basal BC decision chart. */
|
---|
[18612] | 1365 | if(!(element->IsOnBase()) || element->IsFloating()) return;
|
---|
| 1366 |
|
---|
| 1367 | /*Intermediary*/
|
---|
| 1368 | int numindices, numindicesup, state;
|
---|
[17027] | 1369 | int *indices = NULL, *indicesup = NULL;
|
---|
[18612] | 1370 | IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
|
---|
[17014] | 1371 |
|
---|
[18612] | 1372 | /*Get parameters and inputs: */
|
---|
[24335] | 1373 | Input2* enthalpy_input = element->GetInput2(EnthalpyPicardEnum); _assert_(enthalpy_input);
|
---|
| 1374 | Input2* pressure_input = element->GetInput2(PressureEnum); _assert_(pressure_input);
|
---|
| 1375 | Input2* watercolumn_input = element->GetInput2(WatercolumnEnum); _assert_(watercolumn_input);
|
---|
| 1376 | Input2* meltingrate_input = element->GetInput2(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
|
---|
[18612] | 1377 |
|
---|
[17027] | 1378 | /*Fetch indices of basal & surface nodes for this finite element*/
|
---|
| 1379 | Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
|
---|
| 1380 | penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
|
---|
[18612] | 1381 | penta->SurfaceNodeIndices(&numindicesup,&indicesup,element->GetElementType()); _assert_(numindices==numindicesup);
|
---|
[17014] | 1382 |
|
---|
[18612] | 1383 | GaussPenta* gauss=new GaussPenta();
|
---|
| 1384 | GaussPenta* gaussup=new GaussPenta();
|
---|
| 1385 | for(int i=0;i<numindices;i++){
|
---|
| 1386 | gauss->GaussNode(element->GetElementType(),indices[i]);
|
---|
| 1387 | gaussup->GaussNode(element->GetElementType(),indicesup[i]);
|
---|
[18930] | 1388 |
|
---|
[18612] | 1389 | enthalpy_input->GetInputValue(&enthalpy,gauss);
|
---|
| 1390 | enthalpy_input->GetInputValue(&enthalpyup,gaussup);
|
---|
| 1391 | pressure_input->GetInputValue(&pressure,gauss);
|
---|
| 1392 | pressure_input->GetInputValue(&pressureup,gaussup);
|
---|
| 1393 | watercolumn_input->GetInputValue(&watercolumn,gauss);
|
---|
| 1394 | meltingrate_input->GetInputValue(&meltingrate,gauss);
|
---|
| 1395 |
|
---|
| 1396 | state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
|
---|
| 1397 | switch (state) {
|
---|
| 1398 | case 0:
|
---|
| 1399 | // cold, dry base: apply basal surface forcing
|
---|
[18659] | 1400 | vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
|
---|
[18612] | 1401 | break;
|
---|
| 1402 | case 1:
|
---|
[24240] | 1403 | // cold, wet base: keep at pressure melting point
|
---|
[18659] | 1404 | vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
|
---|
[18612] | 1405 | break;
|
---|
| 1406 | case 2:
|
---|
[24240] | 1407 | // temperate, thin refreezing base:
|
---|
[20098] | 1408 | vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
|
---|
[18612] | 1409 | break;
|
---|
| 1410 | case 3:
|
---|
| 1411 | // temperate, thin melting base: set spc
|
---|
[18659] | 1412 | vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
|
---|
[18612] | 1413 | break;
|
---|
| 1414 | case 4:
|
---|
[20098] | 1415 | // temperate, thick melting base:
|
---|
[18930] | 1416 | vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
|
---|
[18612] | 1417 | break;
|
---|
| 1418 | default:
|
---|
| 1419 | _printf0_(" unknown thermal basal state found!");
|
---|
| 1420 | }
|
---|
| 1421 | }
|
---|
| 1422 |
|
---|
| 1423 | /*Free ressources:*/
|
---|
| 1424 | xDelete<int>(indices);
|
---|
| 1425 | xDelete<int>(indicesup);
|
---|
| 1426 | delete gauss;
|
---|
| 1427 | delete gaussup;
|
---|
| 1428 | }/*}}}*/
|
---|
[18930] | 1429 | void EnthalpyAnalysis::GetBasalConstraintsTransient(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
|
---|
[18612] | 1430 |
|
---|
| 1431 | /* Check if ice in element */
|
---|
| 1432 | if(!element->IsIceInElement()) return;
|
---|
| 1433 |
|
---|
[24240] | 1434 | /* Only update constraints at the base.
|
---|
[20213] | 1435 | * Floating ice is not affected by basal BC decision chart.*/
|
---|
[18612] | 1436 | if(!(element->IsOnBase()) || element->IsFloating()) return;
|
---|
| 1437 |
|
---|
| 1438 | /*Intermediary*/
|
---|
| 1439 | int numindices, numindicesup, state;
|
---|
| 1440 | int *indices = NULL, *indicesup = NULL;
|
---|
| 1441 | IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
|
---|
| 1442 |
|
---|
[17027] | 1443 | /*Get parameters and inputs: */
|
---|
[24335] | 1444 | Input2* enthalpy_input = element->GetInput2(EnthalpyEnum); _assert_(enthalpy_input); //TODO: check EnthalpyPicard?
|
---|
| 1445 | Input2* pressure_input = element->GetInput2(PressureEnum); _assert_(pressure_input);
|
---|
| 1446 | Input2* watercolumn_input = element->GetInput2(WatercolumnEnum); _assert_(watercolumn_input);
|
---|
| 1447 | Input2* meltingrate_input = element->GetInput2(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
|
---|
[17014] | 1448 |
|
---|
[18612] | 1449 | /*Fetch indices of basal & surface nodes for this finite element*/
|
---|
| 1450 | Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
|
---|
| 1451 | penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
|
---|
| 1452 | penta->SurfaceNodeIndices(&numindicesup,&indicesup,element->GetElementType()); _assert_(numindices==numindicesup);
|
---|
| 1453 |
|
---|
[17027] | 1454 | GaussPenta* gauss=new GaussPenta();
|
---|
| 1455 | GaussPenta* gaussup=new GaussPenta();
|
---|
[18930] | 1456 |
|
---|
[17027] | 1457 | for(int i=0;i<numindices;i++){
|
---|
| 1458 | gauss->GaussNode(element->GetElementType(),indices[i]);
|
---|
| 1459 | gaussup->GaussNode(element->GetElementType(),indicesup[i]);
|
---|
[23066] | 1460 |
|
---|
[18612] | 1461 | enthalpy_input->GetInputValue(&enthalpy,gauss);
|
---|
| 1462 | enthalpy_input->GetInputValue(&enthalpyup,gaussup);
|
---|
| 1463 | pressure_input->GetInputValue(&pressure,gauss);
|
---|
| 1464 | pressure_input->GetInputValue(&pressureup,gaussup);
|
---|
[17027] | 1465 | watercolumn_input->GetInputValue(&watercolumn,gauss);
|
---|
[18612] | 1466 | meltingrate_input->GetInputValue(&meltingrate,gauss);
|
---|
| 1467 |
|
---|
| 1468 | state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
|
---|
[18930] | 1469 |
|
---|
[18612] | 1470 | switch (state) {
|
---|
| 1471 | case 0:
|
---|
| 1472 | // cold, dry base: apply basal surface forcing
|
---|
[18659] | 1473 | vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
|
---|
[18612] | 1474 | break;
|
---|
| 1475 | case 1:
|
---|
[24240] | 1476 | // cold, wet base: keep at pressure melting point
|
---|
[18659] | 1477 | vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
|
---|
[18612] | 1478 | break;
|
---|
| 1479 | case 2:
|
---|
| 1480 | // temperate, thin refreezing base: release spc
|
---|
[18659] | 1481 | vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
|
---|
[18612] | 1482 | break;
|
---|
| 1483 | case 3:
|
---|
| 1484 | // temperate, thin melting base: set spc
|
---|
[18659] | 1485 | vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
|
---|
[18612] | 1486 | break;
|
---|
| 1487 | case 4:
|
---|
[18930] | 1488 | // temperate, thick melting base: set grad H*n=0
|
---|
| 1489 | vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
|
---|
[18612] | 1490 | break;
|
---|
| 1491 | default:
|
---|
| 1492 | _printf0_(" unknown thermal basal state found!");
|
---|
[17027] | 1493 | }
|
---|
[18930] | 1494 |
|
---|
[17027] | 1495 | }
|
---|
[17014] | 1496 |
|
---|
[17027] | 1497 | /*Free ressources:*/
|
---|
| 1498 | xDelete<int>(indices);
|
---|
| 1499 | xDelete<int>(indicesup);
|
---|
| 1500 | delete gauss;
|
---|
| 1501 | delete gaussup;
|
---|
[17002] | 1502 | }/*}}}*/
|
---|
[18930] | 1503 | void EnthalpyAnalysis::GetBConduct(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
|
---|
[24240] | 1504 | /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
|
---|
[18930] | 1505 | * For node i, Bi' can be expressed in the actual coordinate system
|
---|
[24240] | 1506 | * by:
|
---|
[18930] | 1507 | * Bi_conduct=[ dh/dx ]
|
---|
| 1508 | * [ dh/dy ]
|
---|
| 1509 | * [ dh/dz ]
|
---|
| 1510 | * where h is the interpolation function for node i.
|
---|
| 1511 | *
|
---|
| 1512 | * We assume B has been allocated already, of size: 3x(NDOF1*numnodes)
|
---|
| 1513 | */
|
---|
[17002] | 1514 |
|
---|
[18930] | 1515 | /*Fetch number of nodes for this finite element*/
|
---|
| 1516 | int numnodes = element->GetNumberOfNodes();
|
---|
| 1517 |
|
---|
| 1518 | /*Get nodal functions derivatives*/
|
---|
| 1519 | IssmDouble* dbasis=xNew<IssmDouble>(3*numnodes);
|
---|
| 1520 | element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
|
---|
| 1521 |
|
---|
| 1522 | /*Build B: */
|
---|
| 1523 | for(int i=0;i<numnodes;i++){
|
---|
| 1524 | B[numnodes*0+i] = dbasis[0*numnodes+i];
|
---|
| 1525 | B[numnodes*1+i] = dbasis[1*numnodes+i];
|
---|
| 1526 | B[numnodes*2+i] = dbasis[2*numnodes+i];
|
---|
| 1527 | }
|
---|
| 1528 |
|
---|
| 1529 | /*Clean-up*/
|
---|
| 1530 | xDelete<IssmDouble>(dbasis);
|
---|
| 1531 | }/*}}}*/
|
---|
| 1532 | void EnthalpyAnalysis::GetSolutionFromInputs(Vector<IssmDouble>* solution,Element* element){/*{{{*/
|
---|
| 1533 | element->GetSolutionFromInputsOneDof(solution,EnthalpyEnum);
|
---|
| 1534 | }/*}}}*/
|
---|
| 1535 | int EnthalpyAnalysis::GetThermalBasalCondition(Element* element, IssmDouble enthalpy, IssmDouble enthalpyup, IssmDouble pressure, IssmDouble pressureup, IssmDouble watercolumn, IssmDouble meltingrate){/*{{{*/
|
---|
| 1536 |
|
---|
[18612] | 1537 | /* Check if ice in element */
|
---|
| 1538 | if(!element->IsIceInElement()) return -1;
|
---|
| 1539 |
|
---|
| 1540 | /* Only update Constraints at the base of grounded ice*/
|
---|
| 1541 | if(!(element->IsOnBase())) return -1;
|
---|
| 1542 |
|
---|
| 1543 | /*Intermediary*/
|
---|
| 1544 | int state=-1;
|
---|
| 1545 | IssmDouble dt;
|
---|
| 1546 |
|
---|
| 1547 | /*Get parameters and inputs: */
|
---|
| 1548 | element->FindParam(&dt,TimesteppingTimeStepEnum);
|
---|
| 1549 |
|
---|
[18620] | 1550 | if(enthalpy<PureIceEnthalpy(element,pressure)){
|
---|
| 1551 | if(watercolumn<=0.) state=0; // cold, dry base
|
---|
| 1552 | else state=1; // cold, wet base (refreezing)
|
---|
[18612] | 1553 | }
|
---|
[18620] | 1554 | else{
|
---|
| 1555 | if(enthalpyup<PureIceEnthalpy(element,pressureup)){
|
---|
| 1556 | if((dt==0.) && (meltingrate<0.)) state=2; // refreezing temperate base (non-physical, only for steadystate solver)
|
---|
| 1557 | else state=3; // temperate base, but no temperate layer
|
---|
[18612] | 1558 | }
|
---|
[18620] | 1559 | else state=4; // temperate layer with positive thickness
|
---|
[18612] | 1560 | }
|
---|
| 1561 |
|
---|
| 1562 | _assert_(state>=0);
|
---|
| 1563 | return state;
|
---|
| 1564 | }/*}}}*/
|
---|
[18930] | 1565 | IssmDouble EnthalpyAnalysis::GetWetIceConductivity(Element* element, IssmDouble enthalpy, IssmDouble pressure){/*{{{*/
|
---|
[18612] | 1566 |
|
---|
| 1567 | IssmDouble temperature, waterfraction;
|
---|
| 1568 | IssmDouble kappa_w = 0.6; // thermal conductivity of water (in W/m/K)
|
---|
[23644] | 1569 | IssmDouble kappa_i = element->FindParam(MaterialsThermalconductivityEnum);
|
---|
[18612] | 1570 | element->EnthalpyToThermal(&temperature, &waterfraction, enthalpy, pressure);
|
---|
| 1571 |
|
---|
| 1572 | return (1.-waterfraction)*kappa_i + waterfraction*kappa_w;
|
---|
| 1573 | }/*}}}*/
|
---|
[18930] | 1574 | void EnthalpyAnalysis::GradientJ(Vector<IssmDouble>* gradient,Element* element,int control_type,int control_index){/*{{{*/
|
---|
| 1575 | _error_("Not implemented yet");
|
---|
| 1576 | }/*}}}*/
|
---|
| 1577 | void EnthalpyAnalysis::InputUpdateFromSolution(IssmDouble* solution,Element* element){/*{{{*/
|
---|
[18612] | 1578 |
|
---|
[18930] | 1579 | bool converged;
|
---|
| 1580 | int i,rheology_law;
|
---|
| 1581 | IssmDouble B_average,s_average,T_average=0.,P_average=0.;
|
---|
| 1582 | int *doflist = NULL;
|
---|
| 1583 | IssmDouble *xyz_list = NULL;
|
---|
[16888] | 1584 |
|
---|
[18930] | 1585 | /*Fetch number of nodes and dof for this finite element*/
|
---|
| 1586 | int numnodes = element->GetNumberOfNodes();
|
---|
[16888] | 1587 |
|
---|
[18930] | 1588 | /*Fetch dof list and allocate solution vector*/
|
---|
[23629] | 1589 | element->GetDofListLocal(&doflist,NoneApproximationEnum,GsetEnum);
|
---|
[18930] | 1590 | IssmDouble* values = xNew<IssmDouble>(numnodes);
|
---|
| 1591 | IssmDouble* pressure = xNew<IssmDouble>(numnodes);
|
---|
| 1592 | IssmDouble* surface = xNew<IssmDouble>(numnodes);
|
---|
| 1593 | IssmDouble* B = xNew<IssmDouble>(numnodes);
|
---|
| 1594 | IssmDouble* temperature = xNew<IssmDouble>(numnodes);
|
---|
| 1595 | IssmDouble* waterfraction = xNew<IssmDouble>(numnodes);
|
---|
[16888] | 1596 |
|
---|
[18930] | 1597 | /*Use the dof list to index into the solution vector: */
|
---|
| 1598 | for(i=0;i<numnodes;i++){
|
---|
| 1599 | values[i]=solution[doflist[i]];
|
---|
[16888] | 1600 |
|
---|
[18930] | 1601 | /*Check solution*/
|
---|
| 1602 | if(xIsNan<IssmDouble>(values[i])) _error_("NaN found in solution vector");
|
---|
[20669] | 1603 | if(xIsInf<IssmDouble>(values[i])) _error_("Inf found in solution vector");
|
---|
[16888] | 1604 | }
|
---|
| 1605 |
|
---|
[18930] | 1606 | /*Get all inputs and parameters*/
|
---|
| 1607 | element->GetInputValue(&converged,ConvergedEnum);
|
---|
| 1608 | element->GetInputListOnNodes(&pressure[0],PressureEnum);
|
---|
[24486] | 1609 | int finite_element = element->GetElementType(); if(finite_element==P1Enum) finite_element = P1DGEnum;
|
---|
[18930] | 1610 | if(converged){
|
---|
| 1611 | for(i=0;i<numnodes;i++){
|
---|
| 1612 | element->EnthalpyToThermal(&temperature[i],&waterfraction[i],values[i],pressure[i]);
|
---|
| 1613 | if(waterfraction[i]<0.) _error_("Negative water fraction found in solution vector");
|
---|
| 1614 | //if(waterfraction[i]>1.) _error_("Water fraction >1 found in solution vector");
|
---|
| 1615 | }
|
---|
[24486] | 1616 | element->AddInput2(EnthalpyEnum,values,finite_element);
|
---|
| 1617 | element->AddInput2(WaterfractionEnum,waterfraction,finite_element);
|
---|
| 1618 | element->AddInput2(TemperatureEnum,temperature,finite_element);
|
---|
[18930] | 1619 |
|
---|
[23644] | 1620 | IssmDouble* n = xNew<IssmDouble>(numnodes);
|
---|
[23645] | 1621 | if(element->material->ObjectEnum()==MatestarEnum){
|
---|
[23644] | 1622 | for(i=0;i<numnodes;i++) n[i]=3.;
|
---|
| 1623 | }
|
---|
| 1624 | else{
|
---|
| 1625 | element->GetInputListOnNodes(&n[0],MaterialsRheologyNEnum);
|
---|
| 1626 | }
|
---|
| 1627 |
|
---|
[18930] | 1628 | /*Update Rheology only if converged (we must make sure that the temperature is below melting point
|
---|
| 1629 | * otherwise the rheology could be negative*/
|
---|
[23644] | 1630 | element->FindParam(&rheology_law,MaterialsRheologyLawEnum);
|
---|
[18930] | 1631 | element->GetInputListOnNodes(&surface[0],SurfaceEnum);
|
---|
| 1632 | switch(rheology_law){
|
---|
| 1633 | case NoneEnum:
|
---|
| 1634 | /*Do nothing: B is not temperature dependent*/
|
---|
| 1635 | break;
|
---|
[21377] | 1636 | case BuddJackaEnum:
|
---|
| 1637 | for(i=0;i<numnodes;i++) B[i]=BuddJacka(temperature[i]);
|
---|
[24486] | 1638 | element->AddInput2(MaterialsRheologyBEnum,&B[0],finite_element);
|
---|
[21377] | 1639 | break;
|
---|
[18930] | 1640 | case CuffeyEnum:
|
---|
| 1641 | for(i=0;i<numnodes;i++) B[i]=Cuffey(temperature[i]);
|
---|
[24486] | 1642 | element->AddInput2(MaterialsRheologyBEnum,&B[0],finite_element);
|
---|
[18930] | 1643 | break;
|
---|
[20625] | 1644 | case CuffeyTemperateEnum:
|
---|
[23644] | 1645 | for(i=0;i<numnodes;i++) B[i]=CuffeyTemperate(temperature[i], waterfraction[i],n[i]);
|
---|
[24486] | 1646 | element->AddInput2(MaterialsRheologyBEnum,&B[0],finite_element);
|
---|
[20625] | 1647 | break;
|
---|
[18930] | 1648 | case PatersonEnum:
|
---|
| 1649 | for(i=0;i<numnodes;i++) B[i]=Paterson(temperature[i]);
|
---|
[24486] | 1650 | element->AddInput2(MaterialsRheologyBEnum,&B[0],finite_element);
|
---|
[18930] | 1651 | break;
|
---|
[24060] | 1652 | case NyeH2OEnum:
|
---|
| 1653 | for(i=0;i<numnodes;i++) B[i]=NyeH2O(values[i]);
|
---|
[24486] | 1654 | element->AddInput2(MaterialsRheologyBEnum,&B[0],finite_element);
|
---|
[24060] | 1655 | break;
|
---|
| 1656 | case NyeCO2Enum:
|
---|
| 1657 | for(i=0;i<numnodes;i++) B[i]=NyeCO2(values[i]);
|
---|
[24486] | 1658 | element->AddInput2(MaterialsRheologyBEnum,&B[0],finite_element);
|
---|
[24060] | 1659 | break;
|
---|
[23644] | 1660 | case ArrheniusEnum:{
|
---|
[18930] | 1661 | element->GetVerticesCoordinates(&xyz_list);
|
---|
[23644] | 1662 | for(i=0;i<numnodes;i++) B[i]=Arrhenius(temperature[i],surface[i]-xyz_list[i*3+2],n[i]);
|
---|
[24486] | 1663 | element->AddInput2(MaterialsRheologyBEnum,&B[0],finite_element);
|
---|
[18930] | 1664 | break;
|
---|
[23644] | 1665 | }
|
---|
| 1666 | case LliboutryDuvalEnum:{
|
---|
[24335] | 1667 | for(i=0;i<numnodes;i++) B[i]=LliboutryDuval(values[i],pressure[i],n[i],element->FindParam(MaterialsBetaEnum),element->FindParam(ConstantsReferencetemperatureEnum),element->FindParam(MaterialsHeatcapacityEnum),element->FindParam(MaterialsLatentheatEnum));
|
---|
[24486] | 1668 | element->AddInput2(MaterialsRheologyBEnum,&B[0],finite_element);
|
---|
[24335] | 1669 | break;
|
---|
[23644] | 1670 | }
|
---|
[18930] | 1671 | default: _error_("Rheology law " << EnumToStringx(rheology_law) << " not supported yet");
|
---|
| 1672 | }
|
---|
[23644] | 1673 | xDelete<IssmDouble>(n);
|
---|
[16888] | 1674 | }
|
---|
| 1675 | else{
|
---|
[24486] | 1676 | element->AddInput2(EnthalpyPicardEnum,values,finite_element);
|
---|
[16888] | 1677 | }
|
---|
| 1678 |
|
---|
[18930] | 1679 | /*Free ressources:*/
|
---|
| 1680 | xDelete<IssmDouble>(values);
|
---|
| 1681 | xDelete<IssmDouble>(pressure);
|
---|
| 1682 | xDelete<IssmDouble>(surface);
|
---|
| 1683 | xDelete<IssmDouble>(B);
|
---|
| 1684 | xDelete<IssmDouble>(temperature);
|
---|
| 1685 | xDelete<IssmDouble>(waterfraction);
|
---|
| 1686 | xDelete<IssmDouble>(xyz_list);
|
---|
| 1687 | xDelete<int>(doflist);
|
---|
| 1688 | }/*}}}*/
|
---|
| 1689 | void EnthalpyAnalysis::PostProcessing(FemModel* femmodel){/*{{{*/
|
---|
[16888] | 1690 |
|
---|
[18930] | 1691 | /*Intermediaries*/
|
---|
| 1692 | bool computebasalmeltingrates=true;
|
---|
[24140] | 1693 | bool isdrainicecolumn;
|
---|
[18930] | 1694 | IssmDouble dt;
|
---|
| 1695 |
|
---|
| 1696 | femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
|
---|
[24140] | 1697 | femmodel->parameters->FindParam(&isdrainicecolumn,ThermalIsdrainicecolumnEnum);
|
---|
[18930] | 1698 |
|
---|
[24335] | 1699 | if(isdrainicecolumn){
|
---|
| 1700 | DrainWaterfraction(femmodel);
|
---|
| 1701 | }
|
---|
| 1702 | if(computebasalmeltingrates){
|
---|
| 1703 | ComputeBasalMeltingrate(femmodel);
|
---|
| 1704 | }
|
---|
[18930] | 1705 |
|
---|
[17027] | 1706 | }/*}}}*/
|
---|
[18930] | 1707 | IssmDouble EnthalpyAnalysis::PureIceEnthalpy(Element* element,IssmDouble pressure){/*{{{*/
|
---|
[16888] | 1708 |
|
---|
[23644] | 1709 | IssmDouble heatcapacity = element->FindParam(MaterialsHeatcapacityEnum);
|
---|
| 1710 | IssmDouble referencetemperature = element->FindParam(ConstantsReferencetemperatureEnum);
|
---|
[16888] | 1711 |
|
---|
| 1712 | return heatcapacity*(TMeltingPoint(element,pressure)-referencetemperature);
|
---|
| 1713 | }/*}}}*/
|
---|
[18930] | 1714 | IssmDouble EnthalpyAnalysis::TMeltingPoint(Element* element,IssmDouble pressure){/*{{{*/
|
---|
[16888] | 1715 |
|
---|
[23644] | 1716 | IssmDouble meltingpoint = element->FindParam(MaterialsMeltingpointEnum);
|
---|
| 1717 | IssmDouble beta = element->FindParam(MaterialsBetaEnum);
|
---|
[16888] | 1718 |
|
---|
| 1719 | return meltingpoint-beta*pressure;
|
---|
| 1720 | }/*}}}*/
|
---|
[18930] | 1721 | void EnthalpyAnalysis::UpdateBasalConstraints(FemModel* femmodel){/*{{{*/
|
---|
| 1722 |
|
---|
| 1723 | /*Update basal dirichlet BCs for enthalpy: */
|
---|
| 1724 | Vector<IssmDouble>* spc = NULL;
|
---|
| 1725 | IssmDouble* serial_spc = NULL;
|
---|
| 1726 |
|
---|
[23587] | 1727 | spc=new Vector<IssmDouble>(femmodel->nodes->NumberOfNodes());
|
---|
[18930] | 1728 | /*First create a vector to figure out what elements should be constrained*/
|
---|
| 1729 | for(int i=0;i<femmodel->elements->Size();i++){
|
---|
| 1730 | Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
|
---|
| 1731 | GetBasalConstraints(spc,element);
|
---|
| 1732 | }
|
---|
| 1733 |
|
---|
| 1734 | /*Assemble and serialize*/
|
---|
| 1735 | spc->Assemble();
|
---|
| 1736 | serial_spc=spc->ToMPISerial();
|
---|
| 1737 | delete spc;
|
---|
| 1738 |
|
---|
| 1739 | /*Then update basal constraints nodes accordingly*/
|
---|
| 1740 | for(int i=0;i<femmodel->elements->Size();i++){
|
---|
| 1741 | Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
|
---|
| 1742 | ApplyBasalConstraints(serial_spc,element);
|
---|
| 1743 | }
|
---|
| 1744 |
|
---|
| 1745 | femmodel->UpdateConstraintsx();
|
---|
| 1746 |
|
---|
| 1747 | /*Delete*/
|
---|
| 1748 | xDelete<IssmDouble>(serial_spc);
|
---|
| 1749 | }/*}}}*/
|
---|
| 1750 | void EnthalpyAnalysis::UpdateConstraints(FemModel* femmodel){/*{{{*/
|
---|
[20453] | 1751 | SetActiveNodesLSMx(femmodel);
|
---|
[18930] | 1752 | }/*}}}*/
|
---|