[16534] | 1 | #include "./EnthalpyAnalysis.h"
|
---|
| 2 | #include "../toolkits/toolkits.h"
|
---|
| 3 | #include "../classes/classes.h"
|
---|
| 4 | #include "../shared/shared.h"
|
---|
| 5 | #include "../modules/modules.h"
|
---|
[18591] | 6 | #include "../solutionsequences/solutionsequences.h"
|
---|
[16534] | 7 |
|
---|
| 8 | /*Model processing*/
|
---|
[18930] | 9 | void EnthalpyAnalysis::CreateConstraints(Constraints* constraints,IoModel* iomodel){/*{{{*/
|
---|
[16604] | 10 |
|
---|
[18930] | 11 | /*Intermediary*/
|
---|
| 12 | int count;
|
---|
| 13 | int M,N;
|
---|
| 14 | bool spcpresent = false;
|
---|
[21546] | 15 | int finiteelement;
|
---|
[18930] | 16 | IssmDouble heatcapacity;
|
---|
| 17 | IssmDouble referencetemperature;
|
---|
[16604] | 18 |
|
---|
[18930] | 19 | /*Output*/
|
---|
| 20 | IssmDouble *spcvector = NULL;
|
---|
| 21 | IssmDouble* times=NULL;
|
---|
| 22 | IssmDouble* values=NULL;
|
---|
[16604] | 23 |
|
---|
[18930] | 24 | /*Fetch parameters: */
|
---|
[20690] | 25 | iomodel->FindConstant(&heatcapacity,"md.materials.heatcapacity");
|
---|
| 26 | iomodel->FindConstant(&referencetemperature,"md.constants.referencetemperature");
|
---|
[21546] | 27 | iomodel->FindConstant(&finiteelement,"md.thermal.fe");
|
---|
[18732] | 28 |
|
---|
[18930] | 29 | /*return if 2d mesh*/
|
---|
| 30 | if(iomodel->domaintype==Domain2DhorizontalEnum) return;
|
---|
| 31 |
|
---|
| 32 | /*Fetch data: */
|
---|
[20690] | 33 | iomodel->FetchData(&spcvector,&M,&N,"md.thermal.spctemperature");
|
---|
[18930] | 34 |
|
---|
[21546] | 35 | /*Convert spcs from temperatures to enthalpy*/
|
---|
| 36 | _assert_(N>0); _assert_(M>=iomodel->numberofvertices);
|
---|
| 37 | for(int i=0;i<iomodel->numberofvertices;i++){
|
---|
| 38 | for(int j=0;i<N;j++){
|
---|
| 39 | spcvector[i*N+j] = heatcapacity*(spcvector[i]-referencetemperature);
|
---|
[18930] | 40 | }
|
---|
| 41 | }
|
---|
[21546] | 42 | IoModelToConstraintsx(constraints,iomodel,spcvector,M,N,EnthalpyAnalysisEnum,finiteelement,2);
|
---|
[18930] | 43 |
|
---|
| 44 | /*Free ressources:*/
|
---|
[20690] | 45 | iomodel->DeleteData(spcvector,"md.thermal.spctemperature");
|
---|
[18930] | 46 | xDelete<IssmDouble>(times);
|
---|
| 47 | xDelete<IssmDouble>(values);
|
---|
[16539] | 48 | }/*}}}*/
|
---|
[18930] | 49 | void EnthalpyAnalysis::CreateLoads(Loads* loads, IoModel* iomodel){/*{{{*/
|
---|
| 50 |
|
---|
| 51 | /*No loads */
|
---|
| 52 | }/*}}}*/
|
---|
| 53 | void EnthalpyAnalysis::CreateNodes(Nodes* nodes,IoModel* iomodel){/*{{{*/
|
---|
| 54 |
|
---|
[21542] | 55 | int finiteelement;
|
---|
| 56 | iomodel->FindConstant(&finiteelement,"md.thermal.fe");
|
---|
| 57 |
|
---|
[20690] | 58 | if(iomodel->domaintype==Domain3DEnum) iomodel->FetchData(2,"md.mesh.vertexonbase","md.mesh.vertexonsurface");
|
---|
[21542] | 59 | ::CreateNodes(nodes,iomodel,EnthalpyAnalysisEnum,finiteelement);
|
---|
[20690] | 60 | iomodel->DeleteData(2,"md.mesh.vertexonbase","md.mesh.vertexonsurface");
|
---|
[18930] | 61 | }/*}}}*/
|
---|
| 62 | int EnthalpyAnalysis::DofsPerNode(int** doflist,int domaintype,int approximation){/*{{{*/
|
---|
| 63 | return 1;
|
---|
| 64 | }/*}}}*/
|
---|
[16539] | 65 | void EnthalpyAnalysis::UpdateElements(Elements* elements,IoModel* iomodel,int analysis_counter,int analysis_type){/*{{{*/
|
---|
| 66 |
|
---|
[20459] | 67 | bool dakota_analysis,ismovingfront,isenthalpy;
|
---|
[21382] | 68 | int frictionlaw,basalforcing_model,materialstype;
|
---|
[19161] | 69 | int FrictionCoupling;
|
---|
| 70 |
|
---|
[16539] | 71 | /*Now, is the model 3d? otherwise, do nothing: */
|
---|
[17700] | 72 | if(iomodel->domaintype==Domain2DhorizontalEnum)return;
|
---|
[16539] | 73 |
|
---|
| 74 | /*Is enthalpy requested?*/
|
---|
[20690] | 75 | iomodel->FindConstant(&isenthalpy,"md.thermal.isenthalpy");
|
---|
[16539] | 76 | if(!isenthalpy) return;
|
---|
| 77 |
|
---|
| 78 | /*Fetch data needed: */
|
---|
[20690] | 79 | iomodel->FetchData(3,"md.initialization.temperature","md.initialization.waterfraction","md.initialization.pressure");
|
---|
[16539] | 80 |
|
---|
[21542] | 81 | /*Finite element type*/
|
---|
| 82 | int finiteelement;
|
---|
| 83 | iomodel->FindConstant(&finiteelement,"md.thermal.fe");
|
---|
| 84 |
|
---|
[16539] | 85 | /*Update elements: */
|
---|
| 86 | int counter=0;
|
---|
| 87 | for(int i=0;i<iomodel->numberofelements;i++){
|
---|
| 88 | if(iomodel->my_elements[i]){
|
---|
| 89 | Element* element=(Element*)elements->GetObjectByOffset(counter);
|
---|
[21542] | 90 | element->Update(i,iomodel,analysis_counter,analysis_type,finiteelement);
|
---|
[16539] | 91 | counter++;
|
---|
| 92 | }
|
---|
| 93 | }
|
---|
| 94 |
|
---|
[20690] | 95 | iomodel->FindConstant(&dakota_analysis,"md.qmu.isdakota");
|
---|
| 96 | iomodel->FindConstant(&ismovingfront,"md.transient.ismovingfront");
|
---|
| 97 | iomodel->FindConstant(&frictionlaw,"md.friction.law");
|
---|
[21382] | 98 | iomodel->FindConstant(&materialstype,"md.materials.type");
|
---|
[16539] | 99 |
|
---|
[20690] | 100 | iomodel->FetchDataToInput(elements,"md.geometry.thickness",ThicknessEnum);
|
---|
| 101 | iomodel->FetchDataToInput(elements,"md.geometry.surface",SurfaceEnum);
|
---|
| 102 | iomodel->FetchDataToInput(elements,"md.slr.sealevel",SealevelEnum,0);
|
---|
| 103 | iomodel->FetchDataToInput(elements,"md.geometry.base",BaseEnum);
|
---|
| 104 | iomodel->FetchDataToInput(elements,"md.mask.ice_levelset",MaskIceLevelsetEnum);
|
---|
| 105 | iomodel->FetchDataToInput(elements,"md.mask.groundedice_levelset",MaskGroundediceLevelsetEnum);
|
---|
[17886] | 106 | if(iomodel->domaintype!=Domain2DhorizontalEnum){
|
---|
[20690] | 107 | iomodel->FetchDataToInput(elements,"md.mesh.vertexonbase",MeshVertexonbaseEnum);
|
---|
| 108 | iomodel->FetchDataToInput(elements,"md.mesh.vertexonsurface",MeshVertexonsurfaceEnum);
|
---|
[17886] | 109 | }
|
---|
[20690] | 110 | iomodel->FetchDataToInput(elements,"md.initialization.pressure",PressureEnum);
|
---|
| 111 | iomodel->FetchDataToInput(elements,"md.initialization.temperature",TemperatureEnum);
|
---|
| 112 | iomodel->FetchDataToInput(elements,"md.initialization.waterfraction",WaterfractionEnum);
|
---|
| 113 | iomodel->FetchDataToInput(elements,"md.initialization.enthalpy",EnthalpyEnum);
|
---|
| 114 | iomodel->FetchDataToInput(elements,"md.initialization.watercolumn",WatercolumnEnum);
|
---|
| 115 | iomodel->FetchDataToInput(elements,"md.basalforcings.groundedice_melting_rate",BasalforcingsGroundediceMeltingRateEnum);
|
---|
| 116 | iomodel->FetchDataToInput(elements,"md.initialization.vx",VxEnum);
|
---|
| 117 | iomodel->FetchDataToInput(elements,"md.initialization.vy",VyEnum);
|
---|
| 118 | iomodel->FetchDataToInput(elements,"md.initialization.vz",VzEnum);
|
---|
[16539] | 119 | InputUpdateFromConstantx(elements,0.,VxMeshEnum);
|
---|
| 120 | InputUpdateFromConstantx(elements,0.,VyMeshEnum);
|
---|
| 121 | InputUpdateFromConstantx(elements,0.,VzMeshEnum);
|
---|
[20459] | 122 | if(ismovingfront){
|
---|
[20690] | 123 | iomodel->FetchDataToInput(elements,"md.mesh.vertexonbase",MeshVertexonbaseEnum); // required for updating active nodes
|
---|
[17434] | 124 | }
|
---|
[20020] | 125 |
|
---|
| 126 | /*Basal forcings variables*/
|
---|
[20690] | 127 | iomodel->FindConstant(&basalforcing_model,"md.basalforcings.model");
|
---|
[20020] | 128 | switch(basalforcing_model){
|
---|
| 129 | case MantlePlumeGeothermalFluxEnum:
|
---|
| 130 | break;
|
---|
| 131 | default:
|
---|
[20690] | 132 | iomodel->FetchDataToInput(elements,"md.basalforcings.geothermalflux",BasalforcingsGeothermalfluxEnum);
|
---|
[20020] | 133 | break;
|
---|
| 134 | }
|
---|
[21382] | 135 |
|
---|
| 136 | /*Rheology type*/
|
---|
| 137 | iomodel->FetchDataToInput(elements,"md.materials.rheology_B",MaterialsRheologyBEnum);
|
---|
| 138 | switch(materialstype){
|
---|
[21389] | 139 | case MatenhancediceEnum:
|
---|
| 140 | iomodel->FetchDataToInput(elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
|
---|
| 141 | iomodel->FetchDataToInput(elements,"md.materials.rheology_E",MaterialsRheologyEEnum);
|
---|
| 142 | break;
|
---|
[21382] | 143 | case MatdamageiceEnum:
|
---|
| 144 | iomodel->FetchDataToInput(elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
|
---|
| 145 | break;
|
---|
| 146 | case MatestarEnum:
|
---|
| 147 | iomodel->FetchDataToInput(elements,"md.materials.rheology_Ec",MaterialsRheologyEcEnum);
|
---|
| 148 | iomodel->FetchDataToInput(elements,"md.materials.rheology_Es",MaterialsRheologyEsEnum);
|
---|
| 149 | break;
|
---|
| 150 | case MaticeEnum:
|
---|
| 151 | iomodel->FetchDataToInput(elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
|
---|
| 152 | break;
|
---|
| 153 | default:
|
---|
| 154 | _error_("not supported");
|
---|
| 155 | }
|
---|
[17952] | 156 |
|
---|
| 157 | /*Friction law variables*/
|
---|
| 158 | switch(frictionlaw){
|
---|
| 159 | case 1:
|
---|
[20690] | 160 | iomodel->FetchDataToInput(elements,"md.friction.coefficient",FrictionCoefficientEnum);
|
---|
| 161 | iomodel->FetchDataToInput(elements,"md.friction.p",FrictionPEnum);
|
---|
| 162 | iomodel->FetchDataToInput(elements,"md.friction.q",FrictionQEnum);
|
---|
[17952] | 163 | break;
|
---|
| 164 | case 2:
|
---|
[20690] | 165 | iomodel->FetchDataToInput(elements,"md.friction.C",FrictionCEnum);
|
---|
| 166 | iomodel->FetchDataToInput(elements,"md.friction.m",FrictionMEnum);
|
---|
[17952] | 167 | break;
|
---|
[18778] | 168 | case 3:
|
---|
[20690] | 169 | iomodel->FindConstant(&FrictionCoupling,"md.friction.coupling");
|
---|
| 170 | iomodel->FetchDataToInput(elements,"md.friction.C",FrictionCEnum);
|
---|
| 171 | iomodel->FetchDataToInput(elements,"md.friction.As",FrictionAsEnum);
|
---|
| 172 | iomodel->FetchDataToInput(elements,"md.friction.q",FrictionQEnum);
|
---|
[19161] | 173 | if (FrictionCoupling==0){
|
---|
[20690] | 174 | iomodel->FetchDataToInput(elements,"md.friction.effective_pressure",FrictionEffectivePressureEnum);
|
---|
[19161] | 175 | }
|
---|
[18778] | 176 | break;
|
---|
[18732] | 177 | case 4:
|
---|
[20690] | 178 | iomodel->FetchDataToInput(elements,"md.friction.coefficient",FrictionCoefficientEnum);
|
---|
| 179 | iomodel->FetchDataToInput(elements,"md.friction.p",FrictionPEnum);
|
---|
| 180 | iomodel->FetchDataToInput(elements,"md.friction.q",FrictionQEnum);
|
---|
| 181 | iomodel->FetchDataToInput(elements,"md.initialization.pressure",PressureEnum);
|
---|
| 182 | iomodel->FetchDataToInput(elements,"md.initialization.temperature",TemperatureEnum);
|
---|
[18732] | 183 | break;
|
---|
[18772] | 184 | case 5:
|
---|
[20690] | 185 | iomodel->FetchDataToInput(elements,"md.friction.coefficient",FrictionCoefficientEnum);
|
---|
| 186 | iomodel->FetchDataToInput(elements,"md.friction.p",FrictionPEnum);
|
---|
| 187 | iomodel->FetchDataToInput(elements,"md.friction.q",FrictionQEnum);
|
---|
| 188 | iomodel->FetchDataToInput(elements,"md.friction.water_layer",FrictionWaterLayerEnum);
|
---|
[18772] | 189 | break;
|
---|
[18804] | 190 | case 6:
|
---|
[20690] | 191 | iomodel->FetchDataToInput(elements,"md.friction.C",FrictionCEnum);
|
---|
| 192 | iomodel->FetchDataToInput(elements,"md.friction.m",FrictionMEnum);
|
---|
| 193 | iomodel->FetchDataToInput(elements,"md.initialization.pressure",PressureEnum);
|
---|
| 194 | iomodel->FetchDataToInput(elements,"md.initialization.temperature",TemperatureEnum);
|
---|
[18804] | 195 | break;
|
---|
[17952] | 196 | default:
|
---|
| 197 | _error_("not supported");
|
---|
| 198 | }
|
---|
[20690] | 199 |
|
---|
[16539] | 200 | /*Free data: */
|
---|
[20690] | 201 | iomodel->DeleteData(3,"md.initialization.temperature","md.initialization.waterfraction","md.initialization.pressure");
|
---|
| 202 |
|
---|
[16539] | 203 | }/*}}}*/
|
---|
[18930] | 204 | void EnthalpyAnalysis::UpdateParameters(Parameters* parameters,IoModel* iomodel,int solution_enum,int analysis_enum){/*{{{*/
|
---|
[16539] | 205 |
|
---|
[18930] | 206 | int numoutputs;
|
---|
| 207 | char** requestedoutputs = NULL;
|
---|
| 208 |
|
---|
[20690] | 209 | parameters->AddObject(iomodel->CopyConstantObject("md.thermal.stabilization",ThermalStabilizationEnum));
|
---|
| 210 | parameters->AddObject(iomodel->CopyConstantObject("md.thermal.maxiter",ThermalMaxiterEnum));
|
---|
| 211 | parameters->AddObject(iomodel->CopyConstantObject("md.thermal.reltol",ThermalReltolEnum));
|
---|
| 212 | parameters->AddObject(iomodel->CopyConstantObject("md.thermal.isenthalpy",ThermalIsenthalpyEnum));
|
---|
| 213 | parameters->AddObject(iomodel->CopyConstantObject("md.thermal.isdynamicbasalspc",ThermalIsdynamicbasalspcEnum));
|
---|
| 214 | parameters->AddObject(iomodel->CopyConstantObject("md.friction.law",FrictionLawEnum));
|
---|
[18930] | 215 |
|
---|
[20690] | 216 | iomodel->FindConstant(&requestedoutputs,&numoutputs,"md.thermal.requested_outputs");
|
---|
[18930] | 217 | parameters->AddObject(new IntParam(ThermalNumRequestedOutputsEnum,numoutputs));
|
---|
| 218 | if(numoutputs)parameters->AddObject(new StringArrayParam(ThermalRequestedOutputsEnum,requestedoutputs,numoutputs));
|
---|
[20690] | 219 | iomodel->DeleteData(&requestedoutputs,numoutputs,"md.thermal.requested_outputs");
|
---|
[18930] | 220 |
|
---|
| 221 | /*Deal with friction parameters*/
|
---|
| 222 | int frictionlaw;
|
---|
[20690] | 223 | iomodel->FindConstant(&frictionlaw,"md.friction.law");
|
---|
| 224 | if(frictionlaw==4 || frictionlaw==6) parameters->AddObject(iomodel->CopyConstantObject("md.friction.gamma",FrictionGammaEnum));
|
---|
| 225 | if(frictionlaw==3) parameters->AddObject(iomodel->CopyConstantObject("md.friction.coupling",FrictionCouplingEnum));
|
---|
[16539] | 226 | }/*}}}*/
|
---|
| 227 |
|
---|
[18930] | 228 | /*Finite Element Analysis*/
|
---|
| 229 | void EnthalpyAnalysis::ApplyBasalConstraints(IssmDouble* serial_spc,Element* element){/*{{{*/
|
---|
[16539] | 230 |
|
---|
[21481] | 231 | /* Do not check if ice in element, this may lead to inconsistencies between cpu partitions */
|
---|
[20213] | 232 | /* Only update constraints at the base. */
|
---|
| 233 | if(!(element->IsOnBase())) return;
|
---|
[16539] | 234 |
|
---|
[18930] | 235 | /*Intermediary*/
|
---|
| 236 | bool isdynamicbasalspc;
|
---|
| 237 | int numindices;
|
---|
| 238 | int *indices = NULL;
|
---|
| 239 | Node* node = NULL;
|
---|
| 240 | IssmDouble pressure;
|
---|
[16539] | 241 |
|
---|
[18930] | 242 | /*Check wether dynamic basal boundary conditions are activated */
|
---|
| 243 | element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
|
---|
| 244 | if(!isdynamicbasalspc) return;
|
---|
[16539] | 245 |
|
---|
[18930] | 246 | /*Get parameters and inputs: */
|
---|
| 247 | Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
|
---|
[16539] | 248 |
|
---|
[18930] | 249 | /*Fetch indices of basal & surface nodes for this finite element*/
|
---|
| 250 | Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
|
---|
| 251 | penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
|
---|
[16539] | 252 |
|
---|
[18930] | 253 | GaussPenta* gauss=new GaussPenta();
|
---|
| 254 | for(int i=0;i<numindices;i++){
|
---|
| 255 | gauss->GaussNode(element->GetElementType(),indices[i]);
|
---|
[16539] | 256 |
|
---|
[18930] | 257 | pressure_input->GetInputValue(&pressure,gauss);
|
---|
[16539] | 258 |
|
---|
[18930] | 259 | /*apply or release spc*/
|
---|
| 260 | node=element->GetNode(indices[i]);
|
---|
[21481] | 261 | if(!node->IsActive()) continue;
|
---|
[18930] | 262 | if(serial_spc[node->Sid()]==1.){
|
---|
| 263 | pressure_input->GetInputValue(&pressure, gauss);
|
---|
| 264 | node->ApplyConstraint(0,PureIceEnthalpy(element,pressure));
|
---|
[16539] | 265 | }
|
---|
[21481] | 266 | else {
|
---|
[18930] | 267 | node->DofInFSet(0);
|
---|
[21481] | 268 | }
|
---|
[16539] | 269 | }
|
---|
| 270 |
|
---|
[18930] | 271 | /*Free ressources:*/
|
---|
| 272 | xDelete<int>(indices);
|
---|
| 273 | delete gauss;
|
---|
| 274 | }/*}}}*/
|
---|
| 275 | void EnthalpyAnalysis::ComputeBasalMeltingrate(FemModel* femmodel){/*{{{*/
|
---|
| 276 | /*Compute basal melting rates: */
|
---|
| 277 | for(int i=0;i<femmodel->elements->Size();i++){
|
---|
| 278 | Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
|
---|
| 279 | ComputeBasalMeltingrate(element);
|
---|
| 280 | }
|
---|
| 281 | }/*}}}*/
|
---|
| 282 | void EnthalpyAnalysis::ComputeBasalMeltingrate(Element* element){/*{{{*/
|
---|
| 283 | /*Calculate the basal melt rates of the enthalpy model after Aschwanden 2012*/
|
---|
| 284 | /* melting rate is positive when melting, negative when refreezing*/
|
---|
[16539] | 285 |
|
---|
[18930] | 286 | /* Check if ice in element */
|
---|
| 287 | if(!element->IsIceInElement()) return;
|
---|
[16539] | 288 |
|
---|
[18930] | 289 | /* Only compute melt rates at the base of grounded ice*/
|
---|
| 290 | if(!element->IsOnBase() || element->IsFloating()) return;
|
---|
[16539] | 291 |
|
---|
[18930] | 292 | /* Intermediaries */
|
---|
| 293 | bool converged;
|
---|
| 294 | const int dim=3;
|
---|
| 295 | int i,is,state;
|
---|
| 296 | int vertexdown,vertexup,numvertices,numsegments;
|
---|
| 297 | int enthalpy_enum;
|
---|
| 298 | IssmDouble vec_heatflux[dim],normal_base[dim],d1enthalpy[dim],d1pressure[dim];
|
---|
| 299 | IssmDouble basalfriction,alpha2,geothermalflux,heatflux;
|
---|
| 300 | IssmDouble dt,yts;
|
---|
| 301 | IssmDouble melting_overshoot,lambda;
|
---|
| 302 | IssmDouble vx,vy,vz;
|
---|
| 303 | IssmDouble *xyz_list = NULL;
|
---|
| 304 | IssmDouble *xyz_list_base = NULL;
|
---|
| 305 | int *pairindices = NULL;
|
---|
[16539] | 306 |
|
---|
[18930] | 307 | /*Fetch parameters*/
|
---|
| 308 | element->GetVerticesCoordinates(&xyz_list);
|
---|
| 309 | element->GetVerticesCoordinatesBase(&xyz_list_base);
|
---|
| 310 | element->GetInputValue(&converged,ConvergedEnum);
|
---|
| 311 | element->FindParam(&dt,TimesteppingTimeStepEnum);
|
---|
| 312 | element->FindParam(&yts, ConstantsYtsEnum);
|
---|
| 313 |
|
---|
| 314 | if(dt==0. && !converged) enthalpy_enum=EnthalpyPicardEnum;
|
---|
| 315 | else enthalpy_enum=EnthalpyEnum;
|
---|
| 316 |
|
---|
| 317 | IssmDouble latentheat = element->GetMaterialParameter(MaterialsLatentheatEnum);
|
---|
| 318 | IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
|
---|
| 319 | IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoFreshwaterEnum);
|
---|
| 320 | IssmDouble beta = element->GetMaterialParameter(MaterialsBetaEnum);
|
---|
| 321 | IssmDouble kappa = EnthalpyDiffusionParameterVolume(element,enthalpy_enum); _assert_(kappa>=0.);
|
---|
| 322 | IssmDouble kappa_mix;
|
---|
| 323 |
|
---|
| 324 | /*retrieve inputs*/
|
---|
| 325 | Input* enthalpy_input = element->GetInput(enthalpy_enum); _assert_(enthalpy_input);
|
---|
| 326 | Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
|
---|
| 327 | Input* geothermalflux_input = element->GetInput(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input);
|
---|
| 328 | Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
|
---|
| 329 | Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
|
---|
| 330 | Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
|
---|
| 331 |
|
---|
| 332 | /*Build friction element, needed later: */
|
---|
| 333 | Friction* friction=new Friction(element,dim);
|
---|
| 334 |
|
---|
| 335 | /******** MELTING RATES ************************************//*{{{*/
|
---|
| 336 | element->NormalBase(&normal_base[0],xyz_list_base);
|
---|
| 337 | element->VerticalSegmentIndices(&pairindices,&numsegments);
|
---|
| 338 | IssmDouble* meltingrate_enthalpy = xNew<IssmDouble>(numsegments);
|
---|
| 339 | IssmDouble* heating = xNew<IssmDouble>(numsegments);
|
---|
| 340 |
|
---|
| 341 | numvertices=element->GetNumberOfVertices();
|
---|
| 342 | IssmDouble* enthalpies = xNew<IssmDouble>(numvertices);
|
---|
| 343 | IssmDouble* pressures = xNew<IssmDouble>(numvertices);
|
---|
| 344 | IssmDouble* watercolumns = xNew<IssmDouble>(numvertices);
|
---|
| 345 | IssmDouble* basalmeltingrates = xNew<IssmDouble>(numvertices);
|
---|
| 346 | element->GetInputListOnVertices(enthalpies,enthalpy_enum);
|
---|
| 347 | element->GetInputListOnVertices(pressures,PressureEnum);
|
---|
| 348 | element->GetInputListOnVertices(watercolumns,WatercolumnEnum);
|
---|
| 349 | element->GetInputListOnVertices(basalmeltingrates,BasalforcingsGroundediceMeltingRateEnum);
|
---|
| 350 |
|
---|
| 351 | Gauss* gauss=element->NewGauss();
|
---|
| 352 | for(is=0;is<numsegments;is++){
|
---|
| 353 | vertexdown = pairindices[is*2+0];
|
---|
| 354 | vertexup = pairindices[is*2+1];
|
---|
| 355 | gauss->GaussVertex(vertexdown);
|
---|
| 356 |
|
---|
| 357 | state=GetThermalBasalCondition(element, enthalpies[vertexdown], enthalpies[vertexup], pressures[vertexdown], pressures[vertexup], watercolumns[vertexdown], basalmeltingrates[vertexdown]);
|
---|
| 358 | switch (state) {
|
---|
| 359 | case 0:
|
---|
| 360 | // cold, dry base: apply basal surface forcing
|
---|
| 361 | for(i=0;i<3;i++) vec_heatflux[i]=0.;
|
---|
| 362 | break;
|
---|
| 363 | case 1: case 2: case 3:
|
---|
| 364 | // case 1 : cold, wet base: keep at pressure melting point
|
---|
| 365 | // case 2: temperate, thin refreezing base: release spc
|
---|
| 366 | // case 3: temperate, thin melting base: set spc
|
---|
| 367 | enthalpy_input->GetInputDerivativeValue(&d1enthalpy[0],xyz_list,gauss);
|
---|
| 368 | for(i=0;i<3;i++) vec_heatflux[i]=-kappa*d1enthalpy[i];
|
---|
| 369 | break;
|
---|
| 370 | case 4:
|
---|
| 371 | // temperate, thick melting base: set grad H*n=0
|
---|
| 372 | kappa_mix=GetWetIceConductivity(element, enthalpies[vertexdown], pressures[vertexdown]);
|
---|
| 373 | pressure_input->GetInputDerivativeValue(&d1pressure[0],xyz_list,gauss);
|
---|
| 374 | for(i=0;i<3;i++) vec_heatflux[i]=kappa_mix*beta*d1pressure[i];
|
---|
| 375 | break;
|
---|
| 376 | default:
|
---|
| 377 | _printf0_(" unknown thermal basal state found!");
|
---|
| 378 | }
|
---|
| 379 | if(state==0) meltingrate_enthalpy[is]=0.;
|
---|
| 380 | else{
|
---|
| 381 | /*heat flux along normal*/
|
---|
| 382 | heatflux=0.;
|
---|
| 383 | for(i=0;i<3;i++) heatflux+=(vec_heatflux[i])*normal_base[i];
|
---|
| 384 |
|
---|
| 385 | /*basal friction*/
|
---|
| 386 | friction->GetAlpha2(&alpha2,gauss);
|
---|
| 387 | vx_input->GetInputValue(&vx,gauss); vy_input->GetInputValue(&vy,gauss); vz_input->GetInputValue(&vz,gauss);
|
---|
| 388 | basalfriction=alpha2*(vx*vx + vy*vy + vz*vz);
|
---|
| 389 | geothermalflux_input->GetInputValue(&geothermalflux,gauss);
|
---|
| 390 | /* -Mb= Fb-(q-q_geo)/((1-w)*L*rho), and (1-w)*rho=rho_ice, cf Aschwanden 2012, eqs.1, 2, 66*/
|
---|
| 391 | heating[is]=(heatflux+basalfriction+geothermalflux);
|
---|
| 392 | meltingrate_enthalpy[is]=heating[is]/(latentheat*rho_ice); // m/s water equivalent
|
---|
| 393 | }
|
---|
| 394 | }/*}}}*/
|
---|
| 395 |
|
---|
| 396 | /******** UPDATE MELTINGRATES AND WATERCOLUMN **************//*{{{*/
|
---|
| 397 | for(is=0;is<numsegments;is++){
|
---|
| 398 | vertexdown = pairindices[is*2+0];
|
---|
| 399 | vertexup = pairindices[is*2+1];
|
---|
| 400 | if(dt!=0.){
|
---|
| 401 | if(watercolumns[vertexdown]+meltingrate_enthalpy[is]*dt<0.){ // prevent too much freeze on
|
---|
| 402 | lambda = -watercolumns[vertexdown]/(dt*meltingrate_enthalpy[is]); _assert_(lambda>=0.); _assert_(lambda<1.);
|
---|
| 403 | watercolumns[vertexdown]=0.;
|
---|
| 404 | basalmeltingrates[vertexdown]=lambda*meltingrate_enthalpy[is]; // restrict freeze on only to size of watercolumn
|
---|
| 405 | enthalpies[vertexdown]+=(1.-lambda)*dt/yts*meltingrate_enthalpy[is]*latentheat*rho_ice; // use rest of energy to cool down base: dE=L*m, m=(1-lambda)*meltingrate*rho_ice
|
---|
[16539] | 406 | }
|
---|
[18930] | 407 | else{
|
---|
| 408 | basalmeltingrates[vertexdown]=meltingrate_enthalpy[is];
|
---|
| 409 | watercolumns[vertexdown]+=dt*meltingrate_enthalpy[is];
|
---|
| 410 | }
|
---|
[16539] | 411 | }
|
---|
[18930] | 412 | else{
|
---|
| 413 | basalmeltingrates[vertexdown]=meltingrate_enthalpy[is];
|
---|
| 414 | if(watercolumns[vertexdown]+meltingrate_enthalpy[is]<0.)
|
---|
| 415 | watercolumns[vertexdown]=0.;
|
---|
| 416 | else
|
---|
| 417 | watercolumns[vertexdown]+=meltingrate_enthalpy[is];
|
---|
| 418 | }
|
---|
| 419 | basalmeltingrates[vertexdown]*=rho_water/rho_ice; // convert meltingrate from water to ice equivalent
|
---|
| 420 | _assert_(watercolumns[vertexdown]>=0.);
|
---|
| 421 | }/*}}}*/
|
---|
| 422 |
|
---|
| 423 | /*feed updated variables back into model*/
|
---|
| 424 | if(dt!=0.){
|
---|
| 425 | element->AddInput(enthalpy_enum,enthalpies,P1Enum); //TODO: distinguis for steadystate and transient run
|
---|
| 426 | element->AddInput(WatercolumnEnum,watercolumns,P1Enum);
|
---|
[16539] | 427 | }
|
---|
[18930] | 428 | element->AddInput(BasalforcingsGroundediceMeltingRateEnum,basalmeltingrates,P1Enum);
|
---|
[16539] | 429 |
|
---|
[18930] | 430 | /*Clean up and return*/
|
---|
| 431 | delete gauss;
|
---|
| 432 | delete friction;
|
---|
| 433 | xDelete<int>(pairindices);
|
---|
| 434 | xDelete<IssmDouble>(enthalpies);
|
---|
| 435 | xDelete<IssmDouble>(pressures);
|
---|
| 436 | xDelete<IssmDouble>(watercolumns);
|
---|
| 437 | xDelete<IssmDouble>(basalmeltingrates);
|
---|
| 438 | xDelete<IssmDouble>(meltingrate_enthalpy);
|
---|
| 439 | xDelete<IssmDouble>(heating);
|
---|
| 440 | xDelete<IssmDouble>(xyz_list);
|
---|
| 441 | xDelete<IssmDouble>(xyz_list_base);
|
---|
[16539] | 442 | }/*}}}*/
|
---|
[18930] | 443 | void EnthalpyAnalysis::Core(FemModel* femmodel){/*{{{*/
|
---|
[21160] | 444 |
|
---|
| 445 | IssmDouble dt;
|
---|
| 446 | bool isdynamicbasalspc;
|
---|
| 447 |
|
---|
| 448 | femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
|
---|
| 449 | femmodel->parameters->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
|
---|
| 450 |
|
---|
[18591] | 451 | if(VerboseSolution()) _printf0_(" computing enthalpy\n");
|
---|
| 452 | femmodel->SetCurrentConfiguration(EnthalpyAnalysisEnum);
|
---|
[21160] | 453 | if((dt>0.) && isdynamicbasalspc) UpdateBasalConstraints(femmodel);
|
---|
[18591] | 454 | solutionsequence_thermal_nonlinear(femmodel);
|
---|
| 455 |
|
---|
| 456 | /*transfer enthalpy to enthalpy picard for the next step: */
|
---|
| 457 | InputDuplicatex(femmodel,EnthalpyEnum,EnthalpyPicardEnum);
|
---|
| 458 |
|
---|
[21161] | 459 | PostProcessing(femmodel);
|
---|
[18591] | 460 |
|
---|
[17005] | 461 | }/*}}}*/
|
---|
[17000] | 462 | ElementVector* EnthalpyAnalysis::CreateDVector(Element* element){/*{{{*/
|
---|
| 463 | /*Default, return NULL*/
|
---|
| 464 | return NULL;
|
---|
| 465 | }/*}}}*/
|
---|
[16992] | 466 | ElementMatrix* EnthalpyAnalysis::CreateJacobianMatrix(Element* element){/*{{{*/
|
---|
| 467 | _error_("Not implemented");
|
---|
| 468 | }/*}}}*/
|
---|
[16782] | 469 | ElementMatrix* EnthalpyAnalysis::CreateKMatrix(Element* element){/*{{{*/
|
---|
[16888] | 470 |
|
---|
[17434] | 471 | /* Check if ice in element */
|
---|
| 472 | if(!element->IsIceInElement()) return NULL;
|
---|
| 473 |
|
---|
[16888] | 474 | /*compute all stiffness matrices for this element*/
|
---|
| 475 | ElementMatrix* Ke1=CreateKMatrixVolume(element);
|
---|
| 476 | ElementMatrix* Ke2=CreateKMatrixShelf(element);
|
---|
| 477 | ElementMatrix* Ke =new ElementMatrix(Ke1,Ke2);
|
---|
| 478 |
|
---|
| 479 | /*clean-up and return*/
|
---|
| 480 | delete Ke1;
|
---|
| 481 | delete Ke2;
|
---|
| 482 | return Ke;
|
---|
[16782] | 483 | }/*}}}*/
|
---|
[16888] | 484 | ElementMatrix* EnthalpyAnalysis::CreateKMatrixVolume(Element* element){/*{{{*/
|
---|
| 485 |
|
---|
[17434] | 486 | /* Check if ice in element */
|
---|
| 487 | if(!element->IsIceInElement()) return NULL;
|
---|
| 488 |
|
---|
[16888] | 489 | /*Intermediaries */
|
---|
| 490 | int stabilization;
|
---|
| 491 | IssmDouble Jdet,dt,u,v,w,um,vm,wm,vel;
|
---|
| 492 | IssmDouble h,hx,hy,hz,vx,vy,vz;
|
---|
| 493 | IssmDouble tau_parameter,diameter;
|
---|
| 494 | IssmDouble D_scalar;
|
---|
| 495 | IssmDouble* xyz_list = NULL;
|
---|
| 496 |
|
---|
| 497 | /*Fetch number of nodes and dof for this finite element*/
|
---|
| 498 | int numnodes = element->GetNumberOfNodes();
|
---|
| 499 |
|
---|
| 500 | /*Initialize Element vector and other vectors*/
|
---|
| 501 | ElementMatrix* Ke = element->NewElementMatrix();
|
---|
| 502 | IssmDouble* basis = xNew<IssmDouble>(numnodes);
|
---|
| 503 | IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
|
---|
| 504 | IssmDouble* B = xNew<IssmDouble>(3*numnodes);
|
---|
| 505 | IssmDouble* Bprime = xNew<IssmDouble>(3*numnodes);
|
---|
| 506 | IssmDouble D[3][3] = {0.};
|
---|
| 507 | IssmDouble K[3][3];
|
---|
| 508 |
|
---|
| 509 | /*Retrieve all inputs and parameters*/
|
---|
| 510 | element->GetVerticesCoordinates(&xyz_list);
|
---|
| 511 | element->FindParam(&dt,TimesteppingTimeStepEnum);
|
---|
| 512 | element->FindParam(&stabilization,ThermalStabilizationEnum);
|
---|
[17946] | 513 | IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
|
---|
[16888] | 514 | IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
|
---|
| 515 | IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
|
---|
| 516 | IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
|
---|
| 517 | IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
|
---|
| 518 | Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
|
---|
| 519 | Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
|
---|
| 520 | Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
|
---|
| 521 | Input* vxm_input = element->GetInput(VxMeshEnum); _assert_(vxm_input);
|
---|
| 522 | Input* vym_input = element->GetInput(VyMeshEnum); _assert_(vym_input);
|
---|
| 523 | Input* vzm_input = element->GetInput(VzMeshEnum); _assert_(vzm_input);
|
---|
| 524 | if(stabilization==2) diameter=element->MinEdgeLength(xyz_list);
|
---|
| 525 |
|
---|
| 526 | /*Enthalpy diffusion parameter*/
|
---|
[17027] | 527 | IssmDouble kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
|
---|
[16888] | 528 |
|
---|
| 529 | /* Start looping on the number of gaussian points: */
|
---|
[19637] | 530 | Gauss* gauss=element->NewGauss(4);
|
---|
[16888] | 531 | for(int ig=gauss->begin();ig<gauss->end();ig++){
|
---|
| 532 | gauss->GaussPoint(ig);
|
---|
| 533 |
|
---|
| 534 | element->JacobianDeterminant(&Jdet,xyz_list,gauss);
|
---|
| 535 | D_scalar=gauss->weight*Jdet;
|
---|
| 536 | if(dt!=0.) D_scalar=D_scalar*dt;
|
---|
| 537 |
|
---|
| 538 | /*Conduction: */
|
---|
| 539 | GetBConduct(B,element,xyz_list,gauss);
|
---|
| 540 | D[0][0]=D_scalar*kappa/rho_ice;
|
---|
| 541 | D[1][1]=D_scalar*kappa/rho_ice;
|
---|
| 542 | D[2][2]=D_scalar*kappa/rho_ice;
|
---|
| 543 | TripleMultiply(B,3,numnodes,1,
|
---|
| 544 | &D[0][0],3,3,0,
|
---|
| 545 | B,3,numnodes,0,
|
---|
| 546 | &Ke->values[0],1);
|
---|
| 547 |
|
---|
| 548 | /*Advection: */
|
---|
| 549 | GetBAdvec(B,element,xyz_list,gauss);
|
---|
| 550 | GetBAdvecprime(Bprime,element,xyz_list,gauss);
|
---|
| 551 | vx_input->GetInputValue(&u,gauss); vxm_input->GetInputValue(&um,gauss); vx=u-um;
|
---|
| 552 | vy_input->GetInputValue(&v,gauss); vym_input->GetInputValue(&vm,gauss); vy=v-vm;
|
---|
| 553 | vz_input->GetInputValue(&w,gauss); vzm_input->GetInputValue(&wm,gauss); vz=w-wm;
|
---|
| 554 | D[0][0]=D_scalar*vx;
|
---|
| 555 | D[1][1]=D_scalar*vy;
|
---|
| 556 | D[2][2]=D_scalar*vz;
|
---|
| 557 | TripleMultiply(B,3,numnodes,1,
|
---|
| 558 | &D[0][0],3,3,0,
|
---|
| 559 | Bprime,3,numnodes,0,
|
---|
| 560 | &Ke->values[0],1);
|
---|
| 561 |
|
---|
| 562 | /*Transient: */
|
---|
| 563 | if(dt!=0.){
|
---|
| 564 | D_scalar=gauss->weight*Jdet;
|
---|
| 565 | element->NodalFunctions(basis,gauss);
|
---|
| 566 | TripleMultiply(basis,numnodes,1,0,
|
---|
| 567 | &D_scalar,1,1,0,
|
---|
| 568 | basis,1,numnodes,0,
|
---|
| 569 | &Ke->values[0],1);
|
---|
| 570 | D_scalar=D_scalar*dt;
|
---|
| 571 | }
|
---|
| 572 |
|
---|
[21382] | 573 | /*Artificial diffusivity*/
|
---|
[16888] | 574 | if(stabilization==1){
|
---|
| 575 | element->ElementSizes(&hx,&hy,&hz);
|
---|
| 576 | vel=sqrt(vx*vx + vy*vy + vz*vz)+1.e-14;
|
---|
| 577 | h=sqrt( pow(hx*vx/vel,2) + pow(hy*vy/vel,2) + pow(hz*vz/vel,2));
|
---|
[18484] | 578 | K[0][0]=h/(2.*vel)*fabs(vx*vx); K[0][1]=h/(2.*vel)*fabs(vx*vy); K[0][2]=h/(2.*vel)*fabs(vx*vz);
|
---|
| 579 | K[1][0]=h/(2.*vel)*fabs(vy*vx); K[1][1]=h/(2.*vel)*fabs(vy*vy); K[1][2]=h/(2.*vel)*fabs(vy*vz);
|
---|
| 580 | K[2][0]=h/(2.*vel)*fabs(vz*vx); K[2][1]=h/(2.*vel)*fabs(vz*vy); K[2][2]=h/(2.*vel)*fabs(vz*vz);
|
---|
[16888] | 581 | for(int i=0;i<3;i++) for(int j=0;j<3;j++) K[i][j] = D_scalar*K[i][j];
|
---|
| 582 |
|
---|
| 583 | GetBAdvecprime(Bprime,element,xyz_list,gauss);
|
---|
| 584 | TripleMultiply(Bprime,3,numnodes,1,
|
---|
| 585 | &K[0][0],3,3,0,
|
---|
| 586 | Bprime,3,numnodes,0,
|
---|
| 587 | &Ke->values[0],1);
|
---|
| 588 | }
|
---|
| 589 | else if(stabilization==2){
|
---|
| 590 | element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
|
---|
| 591 | tau_parameter=element->StabilizationParameter(u-um,v-vm,w-wm,diameter,kappa/rho_ice);
|
---|
| 592 | for(int i=0;i<numnodes;i++){
|
---|
| 593 | for(int j=0;j<numnodes;j++){
|
---|
| 594 | Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*
|
---|
[16895] | 595 | ((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i])*((u-um)*dbasis[0*numnodes+j]+(v-vm)*dbasis[1*numnodes+j]+(w-wm)*dbasis[2*numnodes+j]);
|
---|
[16888] | 596 | }
|
---|
| 597 | }
|
---|
| 598 | if(dt!=0.){
|
---|
[16896] | 599 | D_scalar=gauss->weight*Jdet;
|
---|
[16888] | 600 | for(int i=0;i<numnodes;i++){
|
---|
| 601 | for(int j=0;j<numnodes;j++){
|
---|
[16895] | 602 | Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*basis[j]*((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i]);
|
---|
[16888] | 603 | }
|
---|
| 604 | }
|
---|
| 605 | }
|
---|
| 606 | }
|
---|
| 607 | }
|
---|
| 608 |
|
---|
| 609 | /*Clean up and return*/
|
---|
| 610 | xDelete<IssmDouble>(xyz_list);
|
---|
| 611 | xDelete<IssmDouble>(basis);
|
---|
| 612 | xDelete<IssmDouble>(dbasis);
|
---|
| 613 | xDelete<IssmDouble>(B);
|
---|
| 614 | xDelete<IssmDouble>(Bprime);
|
---|
| 615 | delete gauss;
|
---|
| 616 | return Ke;
|
---|
| 617 | }/*}}}*/
|
---|
| 618 | ElementMatrix* EnthalpyAnalysis::CreateKMatrixShelf(Element* element){/*{{{*/
|
---|
| 619 |
|
---|
[17434] | 620 | /* Check if ice in element */
|
---|
| 621 | if(!element->IsIceInElement()) return NULL;
|
---|
| 622 |
|
---|
[16888] | 623 | /*Initialize Element matrix and return if necessary*/
|
---|
[17585] | 624 | if(!element->IsOnBase() || !element->IsFloating()) return NULL;
|
---|
[16888] | 625 |
|
---|
[16986] | 626 | /*Intermediaries*/
|
---|
[16888] | 627 | IssmDouble dt,Jdet,D;
|
---|
| 628 | IssmDouble *xyz_list_base = NULL;
|
---|
| 629 |
|
---|
| 630 | /*Fetch number of nodes for this finite element*/
|
---|
| 631 | int numnodes = element->GetNumberOfNodes();
|
---|
| 632 |
|
---|
| 633 | /*Initialize vectors*/
|
---|
| 634 | ElementMatrix* Ke = element->NewElementMatrix();
|
---|
| 635 | IssmDouble* basis = xNew<IssmDouble>(numnodes);
|
---|
| 636 |
|
---|
| 637 | /*Retrieve all inputs and parameters*/
|
---|
| 638 | element->GetVerticesCoordinatesBase(&xyz_list_base);
|
---|
| 639 | element->FindParam(&dt,TimesteppingTimeStepEnum);
|
---|
| 640 | IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
|
---|
[17946] | 641 | IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
|
---|
[16888] | 642 | IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
|
---|
| 643 | IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
|
---|
| 644 | IssmDouble mixed_layer_capacity= element->GetMaterialParameter(MaterialsMixedLayerCapacityEnum);
|
---|
| 645 | IssmDouble thermal_exchange_vel= element->GetMaterialParameter(MaterialsThermalExchangeVelocityEnum);
|
---|
| 646 |
|
---|
| 647 | /* Start looping on the number of gaussian points: */
|
---|
[19637] | 648 | Gauss* gauss=element->NewGaussBase(4);
|
---|
[16888] | 649 | for(int ig=gauss->begin();ig<gauss->end();ig++){
|
---|
| 650 | gauss->GaussPoint(ig);
|
---|
| 651 |
|
---|
| 652 | element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
|
---|
| 653 | element->NodalFunctions(basis,gauss);
|
---|
| 654 |
|
---|
| 655 | D=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel/(heatcapacity*rho_ice);
|
---|
| 656 | if(reCast<bool,IssmDouble>(dt)) D=dt*D;
|
---|
| 657 | TripleMultiply(basis,numnodes,1,0,
|
---|
| 658 | &D,1,1,0,
|
---|
| 659 | basis,1,numnodes,0,
|
---|
| 660 | &Ke->values[0],1);
|
---|
| 661 |
|
---|
| 662 | }
|
---|
| 663 |
|
---|
| 664 | /*Clean up and return*/
|
---|
| 665 | delete gauss;
|
---|
| 666 | xDelete<IssmDouble>(basis);
|
---|
| 667 | xDelete<IssmDouble>(xyz_list_base);
|
---|
| 668 | return Ke;
|
---|
| 669 | }/*}}}*/
|
---|
[16782] | 670 | ElementVector* EnthalpyAnalysis::CreatePVector(Element* element){/*{{{*/
|
---|
[16812] | 671 |
|
---|
[17434] | 672 | /* Check if ice in element */
|
---|
| 673 | if(!element->IsIceInElement()) return NULL;
|
---|
| 674 |
|
---|
[16812] | 675 | /*compute all load vectors for this element*/
|
---|
| 676 | ElementVector* pe1=CreatePVectorVolume(element);
|
---|
| 677 | ElementVector* pe2=CreatePVectorSheet(element);
|
---|
| 678 | ElementVector* pe3=CreatePVectorShelf(element);
|
---|
| 679 | ElementVector* pe =new ElementVector(pe1,pe2,pe3);
|
---|
| 680 |
|
---|
| 681 | /*clean-up and return*/
|
---|
| 682 | delete pe1;
|
---|
| 683 | delete pe2;
|
---|
| 684 | delete pe3;
|
---|
| 685 | return pe;
|
---|
[16782] | 686 | }/*}}}*/
|
---|
[16812] | 687 | ElementVector* EnthalpyAnalysis::CreatePVectorVolume(Element* element){/*{{{*/
|
---|
| 688 |
|
---|
[17434] | 689 | /* Check if ice in element */
|
---|
| 690 | if(!element->IsIceInElement()) return NULL;
|
---|
| 691 |
|
---|
[16812] | 692 | /*Intermediaries*/
|
---|
[17014] | 693 | int i, stabilization;
|
---|
[16812] | 694 | IssmDouble Jdet,phi,dt;
|
---|
[17014] | 695 | IssmDouble enthalpy, Hpmp;
|
---|
| 696 | IssmDouble enthalpypicard, d1enthalpypicard[3];
|
---|
| 697 | IssmDouble pressure, d1pressure[3], d2pressure;
|
---|
| 698 | IssmDouble waterfractionpicard;
|
---|
| 699 | IssmDouble kappa,tau_parameter,diameter,kappa_w;
|
---|
[16812] | 700 | IssmDouble u,v,w;
|
---|
[17014] | 701 | IssmDouble scalar_def, scalar_sens ,scalar_transient;
|
---|
[16812] | 702 | IssmDouble* xyz_list = NULL;
|
---|
[17014] | 703 | IssmDouble d1H_d1P, d1P2;
|
---|
[16812] | 704 |
|
---|
| 705 | /*Fetch number of nodes and dof for this finite element*/
|
---|
| 706 | int numnodes = element->GetNumberOfNodes();
|
---|
| 707 | int numvertices = element->GetNumberOfVertices();
|
---|
| 708 |
|
---|
| 709 | /*Initialize Element vector*/
|
---|
| 710 | ElementVector* pe = element->NewElementVector();
|
---|
| 711 | IssmDouble* basis = xNew<IssmDouble>(numnodes);
|
---|
| 712 | IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
|
---|
| 713 |
|
---|
| 714 | /*Retrieve all inputs and parameters*/
|
---|
| 715 | element->GetVerticesCoordinates(&xyz_list);
|
---|
| 716 | IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
|
---|
[17014] | 717 | IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
|
---|
[16812] | 718 | IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
|
---|
[17014] | 719 | IssmDouble temperateiceconductivity = element->GetMaterialParameter(MaterialsTemperateiceconductivityEnum);
|
---|
| 720 | IssmDouble beta = element->GetMaterialParameter(MaterialsBetaEnum);
|
---|
| 721 | IssmDouble latentheat = element->GetMaterialParameter(MaterialsLatentheatEnum);
|
---|
[16812] | 722 | element->FindParam(&dt,TimesteppingTimeStepEnum);
|
---|
| 723 | element->FindParam(&stabilization,ThermalStabilizationEnum);
|
---|
| 724 | Input* vx_input=element->GetInput(VxEnum); _assert_(vx_input);
|
---|
| 725 | Input* vy_input=element->GetInput(VyEnum); _assert_(vy_input);
|
---|
| 726 | Input* vz_input=element->GetInput(VzEnum); _assert_(vz_input);
|
---|
[17014] | 727 | Input* enthalpypicard_input=element->GetInput(EnthalpyPicardEnum); _assert_(enthalpypicard_input);
|
---|
| 728 | Input* pressure_input=element->GetInput(PressureEnum); _assert_(pressure_input);
|
---|
| 729 | Input* enthalpy_input=NULL;
|
---|
[16812] | 730 | if(reCast<bool,IssmDouble>(dt)){enthalpy_input = element->GetInput(EnthalpyEnum); _assert_(enthalpy_input);}
|
---|
| 731 | if(stabilization==2){
|
---|
| 732 | diameter=element->MinEdgeLength(xyz_list);
|
---|
[17027] | 733 | kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
|
---|
[16812] | 734 | }
|
---|
| 735 |
|
---|
| 736 | /* Start looping on the number of gaussian points: */
|
---|
[19637] | 737 | Gauss* gauss=element->NewGauss(4);
|
---|
[16812] | 738 | for(int ig=gauss->begin();ig<gauss->end();ig++){
|
---|
| 739 | gauss->GaussPoint(ig);
|
---|
| 740 |
|
---|
| 741 | element->JacobianDeterminant(&Jdet,xyz_list,gauss);
|
---|
| 742 | element->NodalFunctions(basis,gauss);
|
---|
[17014] | 743 |
|
---|
| 744 | /*viscous dissipation*/
|
---|
[16812] | 745 | element->ViscousHeating(&phi,xyz_list,gauss,vx_input,vy_input,vz_input);
|
---|
| 746 |
|
---|
| 747 | scalar_def=phi/rho_ice*Jdet*gauss->weight;
|
---|
[16895] | 748 | if(dt!=0.) scalar_def=scalar_def*dt;
|
---|
[16812] | 749 |
|
---|
[17014] | 750 | for(i=0;i<numnodes;i++) pe->values[i]+=scalar_def*basis[i];
|
---|
[16812] | 751 |
|
---|
[17014] | 752 | /*sensible heat flux in temperate ice*/
|
---|
| 753 | enthalpypicard_input->GetInputValue(&enthalpypicard,gauss);
|
---|
| 754 | pressure_input->GetInputValue(&pressure,gauss);
|
---|
| 755 | Hpmp=this->PureIceEnthalpy(element, pressure);
|
---|
| 756 |
|
---|
| 757 | if(enthalpypicard>=Hpmp){
|
---|
| 758 | enthalpypicard_input->GetInputDerivativeValue(&d1enthalpypicard[0],xyz_list,gauss);
|
---|
| 759 | pressure_input->GetInputDerivativeValue(&d1pressure[0],xyz_list,gauss);
|
---|
| 760 | d2pressure=0.; // for linear elements, 2nd derivative is zero
|
---|
| 761 |
|
---|
| 762 | d1H_d1P=0.;
|
---|
| 763 | for(i=0;i<3;i++) d1H_d1P+=d1enthalpypicard[i]*d1pressure[i];
|
---|
| 764 | d1P2=0.;
|
---|
| 765 | for(i=0;i<3;i++) d1P2+=pow(d1pressure[i],2.);
|
---|
| 766 |
|
---|
| 767 | scalar_sens=-beta*((temperateiceconductivity - thermalconductivity)/latentheat*(d1H_d1P + beta*heatcapacity*d1P2))/rho_ice;
|
---|
| 768 | if(dt!=0.) scalar_sens=scalar_sens*dt;
|
---|
| 769 | for(i=0;i<numnodes;i++) pe->values[i]+=scalar_sens*basis[i];
|
---|
| 770 | }
|
---|
| 771 |
|
---|
[16812] | 772 | /* Build transient now */
|
---|
| 773 | if(reCast<bool,IssmDouble>(dt)){
|
---|
| 774 | enthalpy_input->GetInputValue(&enthalpy, gauss);
|
---|
| 775 | scalar_transient=enthalpy*Jdet*gauss->weight;
|
---|
[17014] | 776 | for(i=0;i<numnodes;i++) pe->values[i]+=scalar_transient*basis[i];
|
---|
[16812] | 777 | }
|
---|
| 778 |
|
---|
| 779 | if(stabilization==2){
|
---|
| 780 | element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
|
---|
| 781 |
|
---|
| 782 | vx_input->GetInputValue(&u,gauss);
|
---|
| 783 | vy_input->GetInputValue(&v,gauss);
|
---|
| 784 | vz_input->GetInputValue(&w,gauss);
|
---|
[16895] | 785 | tau_parameter=element->StabilizationParameter(u,v,w,diameter,kappa/rho_ice);
|
---|
[16812] | 786 |
|
---|
[17014] | 787 | for(i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_def*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]);
|
---|
[16895] | 788 |
|
---|
| 789 | if(dt!=0.){
|
---|
[17014] | 790 | for(i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_transient*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]);
|
---|
[16812] | 791 | }
|
---|
| 792 | }
|
---|
| 793 | }
|
---|
| 794 |
|
---|
| 795 | /*Clean up and return*/
|
---|
| 796 | xDelete<IssmDouble>(basis);
|
---|
| 797 | xDelete<IssmDouble>(dbasis);
|
---|
| 798 | xDelete<IssmDouble>(xyz_list);
|
---|
| 799 | delete gauss;
|
---|
| 800 | return pe;
|
---|
| 801 |
|
---|
| 802 | }/*}}}*/
|
---|
| 803 | ElementVector* EnthalpyAnalysis::CreatePVectorSheet(Element* element){/*{{{*/
|
---|
[16888] | 804 |
|
---|
[17434] | 805 | /* Check if ice in element */
|
---|
| 806 | if(!element->IsIceInElement()) return NULL;
|
---|
| 807 |
|
---|
[17014] | 808 | /* implementation of the basal condition decision chart of Aschwanden 2012, Fig.5 */
|
---|
[17585] | 809 | if(!element->IsOnBase() || element->IsFloating()) return NULL;
|
---|
[16888] | 810 |
|
---|
[20272] | 811 | bool converged, isdynamicbasalspc;
|
---|
[18612] | 812 | int i, state;
|
---|
[20272] | 813 | int enthalpy_enum;
|
---|
[18612] | 814 | IssmDouble dt,Jdet,scalar;
|
---|
| 815 | IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
|
---|
| 816 | IssmDouble vx,vy,vz;
|
---|
| 817 | IssmDouble alpha2,basalfriction,geothermalflux,heatflux;
|
---|
[16888] | 818 | IssmDouble *xyz_list_base = NULL;
|
---|
| 819 |
|
---|
| 820 | /*Fetch number of nodes for this finite element*/
|
---|
| 821 | int numnodes = element->GetNumberOfNodes();
|
---|
| 822 |
|
---|
| 823 | /*Initialize vectors*/
|
---|
| 824 | ElementVector* pe = element->NewElementVector();
|
---|
| 825 | IssmDouble* basis = xNew<IssmDouble>(numnodes);
|
---|
| 826 |
|
---|
| 827 | /*Retrieve all inputs and parameters*/
|
---|
| 828 | element->GetVerticesCoordinatesBase(&xyz_list_base);
|
---|
| 829 | element->FindParam(&dt,TimesteppingTimeStepEnum);
|
---|
[18622] | 830 | element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
|
---|
[20272] | 831 | element->GetInputValue(&converged,ConvergedEnum);
|
---|
| 832 | if(dt==0. && !converged) enthalpy_enum=EnthalpyPicardEnum; // use enthalpy from last iteration
|
---|
| 833 | else enthalpy_enum=EnthalpyEnum; // use enthalpy from last time step
|
---|
[16888] | 834 | Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
|
---|
| 835 | Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
|
---|
| 836 | Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
|
---|
[20272] | 837 | Input* enthalpy_input = element->GetInput(enthalpy_enum); _assert_(enthalpy_input);
|
---|
[18612] | 838 | Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
|
---|
| 839 | Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
|
---|
| 840 | Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
|
---|
[16888] | 841 | Input* geothermalflux_input = element->GetInput(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input);
|
---|
[18612] | 842 | IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
|
---|
[16888] | 843 |
|
---|
| 844 | /*Build friction element, needed later: */
|
---|
| 845 | Friction* friction=new Friction(element,3);
|
---|
| 846 |
|
---|
| 847 | /* Start looping on the number of gaussian points: */
|
---|
[19637] | 848 | Gauss* gauss=element->NewGaussBase(4);
|
---|
| 849 | Gauss* gaussup=element->NewGaussTop(4);
|
---|
[16888] | 850 | for(int ig=gauss->begin();ig<gauss->end();ig++){
|
---|
| 851 | gauss->GaussPoint(ig);
|
---|
[18665] | 852 | gaussup->GaussPoint(ig);
|
---|
[16888] | 853 |
|
---|
| 854 | element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
|
---|
| 855 | element->NodalFunctions(basis,gauss);
|
---|
| 856 |
|
---|
[18622] | 857 | if(isdynamicbasalspc){
|
---|
| 858 | enthalpy_input->GetInputValue(&enthalpy,gauss);
|
---|
| 859 | enthalpy_input->GetInputValue(&enthalpyup,gaussup);
|
---|
| 860 | pressure_input->GetInputValue(&pressure,gauss);
|
---|
| 861 | pressure_input->GetInputValue(&pressureup,gaussup);
|
---|
| 862 | watercolumn_input->GetInputValue(&watercolumn,gauss);
|
---|
| 863 | meltingrate_input->GetInputValue(&meltingrate,gauss);
|
---|
| 864 | state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
|
---|
| 865 | }
|
---|
| 866 | else
|
---|
| 867 | state=0;
|
---|
[16888] | 868 |
|
---|
[18612] | 869 | switch (state) {
|
---|
[20272] | 870 | case 0: case 1: case 2: case 3:
|
---|
| 871 | // cold, dry base; cold, wet base; refreezing temperate base; thin temperate base:
|
---|
| 872 | // Apply basal surface forcing.
|
---|
| 873 | // Interpolated values of enthalpy on gauss nodes may indicate cold base,
|
---|
| 874 | // although one node might have become temperate. So keep heat flux switched on.
|
---|
[18612] | 875 | geothermalflux_input->GetInputValue(&geothermalflux,gauss);
|
---|
| 876 | friction->GetAlpha2(&alpha2,gauss);
|
---|
| 877 | vx_input->GetInputValue(&vx,gauss);
|
---|
| 878 | vy_input->GetInputValue(&vy,gauss);
|
---|
| 879 | vz_input->GetInputValue(&vz,gauss);
|
---|
| 880 | basalfriction=alpha2*(vx*vx+vy*vy+vz*vz);
|
---|
| 881 | heatflux=(basalfriction+geothermalflux)/(rho_ice);
|
---|
| 882 | scalar=gauss->weight*Jdet*heatflux;
|
---|
| 883 | if(dt!=0.) scalar=dt*scalar;
|
---|
| 884 | for(i=0;i<numnodes;i++)
|
---|
| 885 | pe->values[i]+=scalar*basis[i];
|
---|
| 886 | break;
|
---|
| 887 | case 4:
|
---|
| 888 | // temperate, thick melting base: set grad H*n=0
|
---|
| 889 | for(i=0;i<numnodes;i++)
|
---|
| 890 | pe->values[i]+=0.;
|
---|
| 891 | break;
|
---|
| 892 | default:
|
---|
| 893 | _printf0_(" unknown thermal basal state found!");
|
---|
[16888] | 894 | }
|
---|
| 895 | }
|
---|
| 896 |
|
---|
| 897 | /*Clean up and return*/
|
---|
| 898 | delete gauss;
|
---|
| 899 | delete gaussup;
|
---|
| 900 | delete friction;
|
---|
| 901 | xDelete<IssmDouble>(basis);
|
---|
| 902 | xDelete<IssmDouble>(xyz_list_base);
|
---|
| 903 | return pe;
|
---|
| 904 |
|
---|
[16812] | 905 | }/*}}}*/
|
---|
| 906 | ElementVector* EnthalpyAnalysis::CreatePVectorShelf(Element* element){/*{{{*/
|
---|
| 907 |
|
---|
[17434] | 908 | /* Check if ice in element */
|
---|
| 909 | if(!element->IsIceInElement()) return NULL;
|
---|
| 910 |
|
---|
[16888] | 911 | /*Get basal element*/
|
---|
[17585] | 912 | if(!element->IsOnBase() || !element->IsFloating()) return NULL;
|
---|
[16888] | 913 |
|
---|
[18612] | 914 | IssmDouble Hpmp,dt,Jdet,scalar_ocean,pressure;
|
---|
[16812] | 915 | IssmDouble *xyz_list_base = NULL;
|
---|
| 916 |
|
---|
| 917 | /*Fetch number of nodes for this finite element*/
|
---|
| 918 | int numnodes = element->GetNumberOfNodes();
|
---|
| 919 |
|
---|
| 920 | /*Initialize vectors*/
|
---|
| 921 | ElementVector* pe = element->NewElementVector();
|
---|
| 922 | IssmDouble* basis = xNew<IssmDouble>(numnodes);
|
---|
| 923 |
|
---|
| 924 | /*Retrieve all inputs and parameters*/
|
---|
| 925 | element->GetVerticesCoordinatesBase(&xyz_list_base);
|
---|
| 926 | element->FindParam(&dt,TimesteppingTimeStepEnum);
|
---|
| 927 | Input* pressure_input=element->GetInput(PressureEnum); _assert_(pressure_input);
|
---|
| 928 | IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
|
---|
[17946] | 929 | IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
|
---|
[16812] | 930 | IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
|
---|
| 931 | IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
|
---|
| 932 | IssmDouble mixed_layer_capacity= element->GetMaterialParameter(MaterialsMixedLayerCapacityEnum);
|
---|
| 933 | IssmDouble thermal_exchange_vel= element->GetMaterialParameter(MaterialsThermalExchangeVelocityEnum);
|
---|
| 934 |
|
---|
| 935 | /* Start looping on the number of gaussian points: */
|
---|
[19637] | 936 | Gauss* gauss=element->NewGaussBase(4);
|
---|
[16812] | 937 | for(int ig=gauss->begin();ig<gauss->end();ig++){
|
---|
| 938 | gauss->GaussPoint(ig);
|
---|
| 939 |
|
---|
| 940 | element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
|
---|
| 941 | element->NodalFunctions(basis,gauss);
|
---|
| 942 |
|
---|
| 943 | pressure_input->GetInputValue(&pressure,gauss);
|
---|
[18612] | 944 | Hpmp=element->PureIceEnthalpy(pressure);
|
---|
[16812] | 945 |
|
---|
[18612] | 946 | scalar_ocean=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel*Hpmp/(heatcapacity*rho_ice);
|
---|
[16812] | 947 | if(reCast<bool,IssmDouble>(dt)) scalar_ocean=dt*scalar_ocean;
|
---|
| 948 |
|
---|
| 949 | for(int i=0;i<numnodes;i++) pe->values[i]+=scalar_ocean*basis[i];
|
---|
| 950 | }
|
---|
| 951 |
|
---|
| 952 | /*Clean up and return*/
|
---|
| 953 | delete gauss;
|
---|
| 954 | xDelete<IssmDouble>(basis);
|
---|
| 955 | xDelete<IssmDouble>(xyz_list_base);
|
---|
| 956 | return pe;
|
---|
| 957 | }/*}}}*/
|
---|
[18930] | 958 | void EnthalpyAnalysis::DrainWaterfraction(FemModel* femmodel){/*{{{*/
|
---|
| 959 | /*Drain excess water fraction in ice column: */
|
---|
[18612] | 960 | for(int i=0;i<femmodel->elements->Size();i++){
|
---|
| 961 | Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
|
---|
[18930] | 962 | DrainWaterfractionIcecolumn(element);
|
---|
[17166] | 963 | }
|
---|
[17002] | 964 | }/*}}}*/
|
---|
[18930] | 965 | void EnthalpyAnalysis::DrainWaterfraction(Element* element, IssmDouble* pdrainrate_element){/*{{{*/
|
---|
[17002] | 966 |
|
---|
[17434] | 967 | /* Check if ice in element */
|
---|
| 968 | if(!element->IsIceInElement()) return;
|
---|
| 969 |
|
---|
[18930] | 970 | /*Intermediaries*/
|
---|
| 971 | int iv,is,vertexdown,vertexup,numsegments;
|
---|
| 972 | IssmDouble dt, height_element;
|
---|
| 973 | IssmDouble rho_water, rho_ice;
|
---|
| 974 | int numvertices = element->GetNumberOfVertices();
|
---|
[17434] | 975 |
|
---|
[18930] | 976 | IssmDouble* xyz_list = NULL;
|
---|
| 977 | IssmDouble* enthalpies = xNew<IssmDouble>(numvertices);
|
---|
| 978 | IssmDouble* pressures = xNew<IssmDouble>(numvertices);
|
---|
| 979 | IssmDouble* temperatures = xNew<IssmDouble>(numvertices);
|
---|
| 980 | IssmDouble* waterfractions = xNew<IssmDouble>(numvertices);
|
---|
| 981 | IssmDouble* deltawaterfractions = xNew<IssmDouble>(numvertices);
|
---|
[17014] | 982 | int *pairindices = NULL;
|
---|
[18930] | 983 |
|
---|
| 984 | rho_ice=element->GetMaterialParameter(MaterialsRhoIceEnum);
|
---|
| 985 | rho_water=element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
|
---|
[17014] | 986 |
|
---|
| 987 | element->GetVerticesCoordinates(&xyz_list);
|
---|
[18930] | 988 | element->GetInputListOnVertices(enthalpies,EnthalpyEnum);
|
---|
| 989 | element->GetInputListOnVertices(pressures,PressureEnum);
|
---|
| 990 |
|
---|
[18667] | 991 | element->FindParam(&dt,TimesteppingTimeStepEnum);
|
---|
[18930] | 992 | for(iv=0;iv<numvertices;iv++){
|
---|
| 993 | element->EnthalpyToThermal(&temperatures[iv],&waterfractions[iv], enthalpies[iv],pressures[iv]);
|
---|
| 994 | deltawaterfractions[iv]=DrainageFunctionWaterfraction(waterfractions[iv], dt);
|
---|
| 995 | }
|
---|
| 996 |
|
---|
| 997 | /*drain waterfraction, feed updated variables back into model*/
|
---|
| 998 | for(iv=0;iv<numvertices;iv++){
|
---|
| 999 | if(reCast<bool,IssmDouble>(dt))
|
---|
| 1000 | waterfractions[iv]-=deltawaterfractions[iv]*dt;
|
---|
| 1001 | else
|
---|
| 1002 | waterfractions[iv]-=deltawaterfractions[iv];
|
---|
| 1003 | element->ThermalToEnthalpy(&enthalpies[iv], temperatures[iv], waterfractions[iv], pressures[iv]);
|
---|
| 1004 | }
|
---|
| 1005 | element->AddInput(EnthalpyEnum,enthalpies,P1Enum);
|
---|
| 1006 | element->AddInput(WaterfractionEnum,waterfractions,P1Enum);
|
---|
[18667] | 1007 |
|
---|
[18930] | 1008 | /*return meltwater column equivalent to drained water*/
|
---|
[17014] | 1009 | element->VerticalSegmentIndices(&pairindices,&numsegments);
|
---|
[18612] | 1010 | for(is=0;is<numsegments;is++){
|
---|
[17014] | 1011 | vertexdown = pairindices[is*2+0];
|
---|
| 1012 | vertexup = pairindices[is*2+1];
|
---|
[18930] | 1013 | height_element=fabs(xyz_list[vertexup*3+2]-xyz_list[vertexdown*3+2]);
|
---|
| 1014 | pdrainrate_element[is]=(deltawaterfractions[vertexdown]+deltawaterfractions[vertexup])/2.*height_element; // return water equivalent of drainage
|
---|
| 1015 | _assert_(pdrainrate_element[is]>=0.);
|
---|
[18667] | 1016 | }
|
---|
[17014] | 1017 |
|
---|
| 1018 | /*Clean up and return*/
|
---|
[17981] | 1019 | xDelete<int>(pairindices);
|
---|
[18930] | 1020 | xDelete<IssmDouble>(xyz_list);
|
---|
[18612] | 1021 | xDelete<IssmDouble>(enthalpies);
|
---|
| 1022 | xDelete<IssmDouble>(pressures);
|
---|
[18930] | 1023 | xDelete<IssmDouble>(temperatures);
|
---|
| 1024 | xDelete<IssmDouble>(waterfractions);
|
---|
| 1025 | xDelete<IssmDouble>(deltawaterfractions);
|
---|
[17166] | 1026 | }/*}}}*/
|
---|
[18930] | 1027 | void EnthalpyAnalysis::DrainWaterfractionIcecolumn(Element* element){/*{{{*/
|
---|
[17166] | 1028 |
|
---|
[17434] | 1029 | /* Check if ice in element */
|
---|
| 1030 | if(!element->IsIceInElement()) return;
|
---|
| 1031 |
|
---|
[17166] | 1032 | /* Only drain waterfraction of ice column from element at base*/
|
---|
[17585] | 1033 | if(!element->IsOnBase()) return; //FIXME: allow freeze on for floating elements
|
---|
[17166] | 1034 |
|
---|
| 1035 | /* Intermediaries*/
|
---|
| 1036 | int is, numvertices, numsegments;
|
---|
| 1037 | int *pairindices = NULL;
|
---|
| 1038 |
|
---|
| 1039 | numvertices=element->GetNumberOfVertices();
|
---|
| 1040 | element->VerticalSegmentIndices(&pairindices,&numsegments);
|
---|
| 1041 |
|
---|
| 1042 | IssmDouble* watercolumn = xNew<IssmDouble>(numvertices);
|
---|
| 1043 | IssmDouble* drainrate_column = xNew<IssmDouble>(numsegments);
|
---|
| 1044 | IssmDouble* drainrate_element = xNew<IssmDouble>(numsegments);
|
---|
| 1045 |
|
---|
| 1046 | element->GetInputListOnVertices(watercolumn,WatercolumnEnum);
|
---|
| 1047 |
|
---|
| 1048 | for(is=0;is<numsegments;is++) drainrate_column[is]=0.;
|
---|
| 1049 | Element* elementi = element;
|
---|
| 1050 | for(;;){
|
---|
| 1051 | for(is=0;is<numsegments;is++) drainrate_element[is]=0.;
|
---|
| 1052 | DrainWaterfraction(elementi,drainrate_element); // TODO: make sure every vertex is only drained once
|
---|
| 1053 | for(is=0;is<numsegments;is++) drainrate_column[is]+=drainrate_element[is];
|
---|
| 1054 |
|
---|
| 1055 | if(elementi->IsOnSurface()) break;
|
---|
| 1056 | elementi=elementi->GetUpperElement();
|
---|
| 1057 | }
|
---|
| 1058 | /* add drained water to water column*/
|
---|
| 1059 | for(is=0;is<numsegments;is++) watercolumn[is]+=drainrate_column[is];
|
---|
| 1060 | /* Feed updated water column back into model */
|
---|
| 1061 | element->AddInput(WatercolumnEnum,watercolumn,P1Enum);
|
---|
| 1062 |
|
---|
[17608] | 1063 | xDelete<int>(pairindices);
|
---|
[17014] | 1064 | xDelete<IssmDouble>(drainrate_column);
|
---|
| 1065 | xDelete<IssmDouble>(drainrate_element);
|
---|
[17166] | 1066 | xDelete<IssmDouble>(watercolumn);
|
---|
[17002] | 1067 | }/*}}}*/
|
---|
[18930] | 1068 | IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameter(Element* element,IssmDouble enthalpy,IssmDouble pressure){/*{{{*/
|
---|
[17014] | 1069 |
|
---|
[18930] | 1070 | IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
|
---|
| 1071 | IssmDouble temperateiceconductivity = element->GetMaterialParameter(MaterialsTemperateiceconductivityEnum);
|
---|
| 1072 | IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
|
---|
[17434] | 1073 |
|
---|
[18930] | 1074 | if(enthalpy < PureIceEnthalpy(element,pressure)){
|
---|
| 1075 | return thermalconductivity/heatcapacity;
|
---|
| 1076 | }
|
---|
| 1077 | else{
|
---|
| 1078 | return temperateiceconductivity/heatcapacity;
|
---|
| 1079 | }
|
---|
| 1080 | }/*}}}*/
|
---|
| 1081 | IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameterVolume(Element* element,int enthalpy_enum){/*{{{*/
|
---|
[17014] | 1082 |
|
---|
[18930] | 1083 | int iv;
|
---|
| 1084 | IssmDouble lambda; /* fraction of cold ice */
|
---|
| 1085 | IssmDouble kappa,kappa_c,kappa_t; /* enthalpy conductivities */
|
---|
| 1086 | IssmDouble Hc,Ht;
|
---|
[17014] | 1087 |
|
---|
[18930] | 1088 | /*Get pressures and enthalpies on vertices*/
|
---|
| 1089 | int numvertices = element->GetNumberOfVertices();
|
---|
| 1090 | IssmDouble* pressures = xNew<IssmDouble>(numvertices);
|
---|
| 1091 | IssmDouble* enthalpies = xNew<IssmDouble>(numvertices);
|
---|
| 1092 | IssmDouble* PIE = xNew<IssmDouble>(numvertices);
|
---|
| 1093 | IssmDouble* dHpmp = xNew<IssmDouble>(numvertices);
|
---|
[17014] | 1094 | element->GetInputListOnVertices(pressures,PressureEnum);
|
---|
[18930] | 1095 | element->GetInputListOnVertices(enthalpies,enthalpy_enum);
|
---|
| 1096 | for(iv=0;iv<numvertices;iv++){
|
---|
| 1097 | PIE[iv] = PureIceEnthalpy(element,pressures[iv]);
|
---|
| 1098 | dHpmp[iv] = enthalpies[iv]-PIE[iv];
|
---|
| 1099 | }
|
---|
[17014] | 1100 |
|
---|
[18930] | 1101 | bool allequalsign = true;
|
---|
| 1102 | if(dHpmp[0]<0.){
|
---|
| 1103 | for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]<0.));
|
---|
[17014] | 1104 | }
|
---|
[18930] | 1105 | else{
|
---|
| 1106 | for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]>=0.));
|
---|
[17014] | 1107 | }
|
---|
| 1108 |
|
---|
[18930] | 1109 | if(allequalsign){
|
---|
| 1110 | kappa = EnthalpyDiffusionParameter(element,enthalpies[0],pressures[0]);
|
---|
[17014] | 1111 | }
|
---|
[18930] | 1112 | else{
|
---|
| 1113 | /* return harmonic mean of thermal conductivities, weighted by fraction of cold/temperate ice,
|
---|
| 1114 | cf Patankar 1980, pp44 */
|
---|
| 1115 | kappa_c = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)-1.,0.);
|
---|
| 1116 | kappa_t = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)+1.,0.);
|
---|
| 1117 | Hc=0.; Ht=0.;
|
---|
| 1118 | for(iv=0; iv<numvertices;iv++){
|
---|
| 1119 | if(enthalpies[iv]<PIE[iv])
|
---|
| 1120 | Hc+=(PIE[iv]-enthalpies[iv]);
|
---|
| 1121 | else
|
---|
| 1122 | Ht+=(enthalpies[iv]-PIE[iv]);
|
---|
| 1123 | }
|
---|
| 1124 | _assert_((Hc+Ht)>0.);
|
---|
| 1125 | lambda = Hc/(Hc+Ht);
|
---|
| 1126 | kappa = kappa_c*kappa_t/(lambda*kappa_t+(1.-lambda)*kappa_c); // ==(lambda/kappa_c + (1.-lambda)/kappa_t)^-1
|
---|
| 1127 | }
|
---|
[17014] | 1128 |
|
---|
| 1129 | /*Clean up and return*/
|
---|
[18930] | 1130 | xDelete<IssmDouble>(PIE);
|
---|
| 1131 | xDelete<IssmDouble>(dHpmp);
|
---|
| 1132 | xDelete<IssmDouble>(pressures);
|
---|
[17014] | 1133 | xDelete<IssmDouble>(enthalpies);
|
---|
[18930] | 1134 | return kappa;
|
---|
[17002] | 1135 | }/*}}}*/
|
---|
[18930] | 1136 | void EnthalpyAnalysis::GetBAdvec(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
|
---|
| 1137 | /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
|
---|
| 1138 | * For node i, Bi' can be expressed in the actual coordinate system
|
---|
| 1139 | * by:
|
---|
| 1140 | * Bi_advec =[ h ]
|
---|
| 1141 | * [ h ]
|
---|
| 1142 | * [ h ]
|
---|
| 1143 | * where h is the interpolation function for node i.
|
---|
| 1144 | *
|
---|
| 1145 | * We assume B has been allocated already, of size: 3x(NDOF1*NUMNODESP1)
|
---|
| 1146 | */
|
---|
[18659] | 1147 |
|
---|
[18930] | 1148 | /*Fetch number of nodes for this finite element*/
|
---|
| 1149 | int numnodes = element->GetNumberOfNodes();
|
---|
[18659] | 1150 |
|
---|
[18930] | 1151 | /*Get nodal functions*/
|
---|
| 1152 | IssmDouble* basis=xNew<IssmDouble>(numnodes);
|
---|
| 1153 | element->NodalFunctions(basis,gauss);
|
---|
[18659] | 1154 |
|
---|
[18930] | 1155 | /*Build B: */
|
---|
| 1156 | for(int i=0;i<numnodes;i++){
|
---|
| 1157 | B[numnodes*0+i] = basis[i];
|
---|
| 1158 | B[numnodes*1+i] = basis[i];
|
---|
| 1159 | B[numnodes*2+i] = basis[i];
|
---|
[18659] | 1160 | }
|
---|
| 1161 |
|
---|
[18930] | 1162 | /*Clean-up*/
|
---|
| 1163 | xDelete<IssmDouble>(basis);
|
---|
[18612] | 1164 | }/*}}}*/
|
---|
[18930] | 1165 | void EnthalpyAnalysis::GetBAdvecprime(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
|
---|
| 1166 | /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
|
---|
| 1167 | * For node i, Bi' can be expressed in the actual coordinate system
|
---|
| 1168 | * by:
|
---|
| 1169 | * Biprime_advec=[ dh/dx ]
|
---|
| 1170 | * [ dh/dy ]
|
---|
| 1171 | * [ dh/dz ]
|
---|
| 1172 | * where h is the interpolation function for node i.
|
---|
| 1173 | *
|
---|
| 1174 | * We assume B has been allocated already, of size: 3x(NDOF1*numnodes)
|
---|
| 1175 | */
|
---|
[17002] | 1176 |
|
---|
[18930] | 1177 | /*Fetch number of nodes for this finite element*/
|
---|
| 1178 | int numnodes = element->GetNumberOfNodes();
|
---|
[17434] | 1179 |
|
---|
[18930] | 1180 | /*Get nodal functions derivatives*/
|
---|
| 1181 | IssmDouble* dbasis=xNew<IssmDouble>(3*numnodes);
|
---|
| 1182 | element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
|
---|
[17434] | 1183 |
|
---|
[18930] | 1184 | /*Build B: */
|
---|
| 1185 | for(int i=0;i<numnodes;i++){
|
---|
| 1186 | B[numnodes*0+i] = dbasis[0*numnodes+i];
|
---|
| 1187 | B[numnodes*1+i] = dbasis[1*numnodes+i];
|
---|
| 1188 | B[numnodes*2+i] = dbasis[2*numnodes+i];
|
---|
[18659] | 1189 | }
|
---|
| 1190 |
|
---|
[18930] | 1191 | /*Clean-up*/
|
---|
| 1192 | xDelete<IssmDouble>(dbasis);
|
---|
[18659] | 1193 | }/*}}}*/
|
---|
[18930] | 1194 | void EnthalpyAnalysis::GetBasalConstraints(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
|
---|
[18659] | 1195 |
|
---|
| 1196 | /*Intermediary*/
|
---|
| 1197 | bool isdynamicbasalspc;
|
---|
[18612] | 1198 | IssmDouble dt;
|
---|
| 1199 |
|
---|
| 1200 | /*Check wether dynamic basal boundary conditions are activated */
|
---|
| 1201 | element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
|
---|
| 1202 | if(!isdynamicbasalspc) return;
|
---|
| 1203 |
|
---|
| 1204 | element->FindParam(&dt,TimesteppingTimeStepEnum);
|
---|
| 1205 | if(dt==0.){
|
---|
[18659] | 1206 | GetBasalConstraintsSteadystate(vec_spc,element);
|
---|
[18612] | 1207 | }
|
---|
| 1208 | else{
|
---|
[18659] | 1209 | GetBasalConstraintsTransient(vec_spc,element);
|
---|
[18612] | 1210 | }
|
---|
| 1211 | }/*}}}*/
|
---|
[18930] | 1212 | void EnthalpyAnalysis::GetBasalConstraintsSteadystate(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
|
---|
[18612] | 1213 |
|
---|
| 1214 | /* Check if ice in element */
|
---|
| 1215 | if(!element->IsIceInElement()) return;
|
---|
| 1216 |
|
---|
[20213] | 1217 | /* Only update constraints at the base.
|
---|
| 1218 | * Floating ice is not affected by basal BC decision chart. */
|
---|
[18612] | 1219 | if(!(element->IsOnBase()) || element->IsFloating()) return;
|
---|
| 1220 |
|
---|
| 1221 | /*Intermediary*/
|
---|
| 1222 | int numindices, numindicesup, state;
|
---|
[17027] | 1223 | int *indices = NULL, *indicesup = NULL;
|
---|
[18612] | 1224 | IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
|
---|
[17014] | 1225 |
|
---|
[18612] | 1226 | /*Get parameters and inputs: */
|
---|
[18930] | 1227 | Input* enthalpy_input = element->GetInput(EnthalpyPicardEnum); _assert_(enthalpy_input);
|
---|
[18612] | 1228 | Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
|
---|
| 1229 | Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
|
---|
| 1230 | Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
|
---|
| 1231 |
|
---|
[17027] | 1232 | /*Fetch indices of basal & surface nodes for this finite element*/
|
---|
| 1233 | Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
|
---|
| 1234 | penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
|
---|
[18612] | 1235 | penta->SurfaceNodeIndices(&numindicesup,&indicesup,element->GetElementType()); _assert_(numindices==numindicesup);
|
---|
[17014] | 1236 |
|
---|
[18612] | 1237 | GaussPenta* gauss=new GaussPenta();
|
---|
| 1238 | GaussPenta* gaussup=new GaussPenta();
|
---|
| 1239 | for(int i=0;i<numindices;i++){
|
---|
| 1240 | gauss->GaussNode(element->GetElementType(),indices[i]);
|
---|
| 1241 | gaussup->GaussNode(element->GetElementType(),indicesup[i]);
|
---|
[18930] | 1242 |
|
---|
[18612] | 1243 | enthalpy_input->GetInputValue(&enthalpy,gauss);
|
---|
| 1244 | enthalpy_input->GetInputValue(&enthalpyup,gaussup);
|
---|
| 1245 | pressure_input->GetInputValue(&pressure,gauss);
|
---|
| 1246 | pressure_input->GetInputValue(&pressureup,gaussup);
|
---|
| 1247 | watercolumn_input->GetInputValue(&watercolumn,gauss);
|
---|
| 1248 | meltingrate_input->GetInputValue(&meltingrate,gauss);
|
---|
| 1249 |
|
---|
| 1250 | state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
|
---|
| 1251 | switch (state) {
|
---|
| 1252 | case 0:
|
---|
| 1253 | // cold, dry base: apply basal surface forcing
|
---|
[18659] | 1254 | vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
|
---|
[18612] | 1255 | break;
|
---|
| 1256 | case 1:
|
---|
| 1257 | // cold, wet base: keep at pressure melting point
|
---|
[18659] | 1258 | vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
|
---|
[18612] | 1259 | break;
|
---|
| 1260 | case 2:
|
---|
[20098] | 1261 | // temperate, thin refreezing base:
|
---|
| 1262 | vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
|
---|
[18612] | 1263 | break;
|
---|
| 1264 | case 3:
|
---|
| 1265 | // temperate, thin melting base: set spc
|
---|
[18659] | 1266 | vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
|
---|
[18612] | 1267 | break;
|
---|
| 1268 | case 4:
|
---|
[20098] | 1269 | // temperate, thick melting base:
|
---|
[18930] | 1270 | vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
|
---|
[18612] | 1271 | break;
|
---|
| 1272 | default:
|
---|
| 1273 | _printf0_(" unknown thermal basal state found!");
|
---|
| 1274 | }
|
---|
| 1275 | }
|
---|
| 1276 |
|
---|
| 1277 | /*Free ressources:*/
|
---|
| 1278 | xDelete<int>(indices);
|
---|
| 1279 | xDelete<int>(indicesup);
|
---|
| 1280 | delete gauss;
|
---|
| 1281 | delete gaussup;
|
---|
| 1282 | }/*}}}*/
|
---|
[18930] | 1283 | void EnthalpyAnalysis::GetBasalConstraintsTransient(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
|
---|
[18612] | 1284 |
|
---|
| 1285 | /* Check if ice in element */
|
---|
| 1286 | if(!element->IsIceInElement()) return;
|
---|
| 1287 |
|
---|
[20213] | 1288 | /* Only update constraints at the base.
|
---|
| 1289 | * Floating ice is not affected by basal BC decision chart.*/
|
---|
[18612] | 1290 | if(!(element->IsOnBase()) || element->IsFloating()) return;
|
---|
| 1291 |
|
---|
| 1292 | /*Intermediary*/
|
---|
| 1293 | int numindices, numindicesup, state;
|
---|
| 1294 | int *indices = NULL, *indicesup = NULL;
|
---|
| 1295 | IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
|
---|
| 1296 |
|
---|
[17027] | 1297 | /*Get parameters and inputs: */
|
---|
[18930] | 1298 | Input* enthalpy_input = element->GetInput(EnthalpyEnum); _assert_(enthalpy_input); //TODO: check EnthalpyPicard?
|
---|
[18612] | 1299 | Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
|
---|
| 1300 | Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
|
---|
| 1301 | Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
|
---|
[17014] | 1302 |
|
---|
[18612] | 1303 | /*Fetch indices of basal & surface nodes for this finite element*/
|
---|
| 1304 | Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
|
---|
| 1305 | penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
|
---|
| 1306 | penta->SurfaceNodeIndices(&numindicesup,&indicesup,element->GetElementType()); _assert_(numindices==numindicesup);
|
---|
| 1307 |
|
---|
[17027] | 1308 | GaussPenta* gauss=new GaussPenta();
|
---|
| 1309 | GaussPenta* gaussup=new GaussPenta();
|
---|
[18930] | 1310 |
|
---|
[17027] | 1311 | for(int i=0;i<numindices;i++){
|
---|
| 1312 | gauss->GaussNode(element->GetElementType(),indices[i]);
|
---|
| 1313 | gaussup->GaussNode(element->GetElementType(),indicesup[i]);
|
---|
[18930] | 1314 |
|
---|
[18612] | 1315 | enthalpy_input->GetInputValue(&enthalpy,gauss);
|
---|
| 1316 | enthalpy_input->GetInputValue(&enthalpyup,gaussup);
|
---|
| 1317 | pressure_input->GetInputValue(&pressure,gauss);
|
---|
| 1318 | pressure_input->GetInputValue(&pressureup,gaussup);
|
---|
[17027] | 1319 | watercolumn_input->GetInputValue(&watercolumn,gauss);
|
---|
[18612] | 1320 | meltingrate_input->GetInputValue(&meltingrate,gauss);
|
---|
| 1321 |
|
---|
| 1322 | state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
|
---|
[18930] | 1323 |
|
---|
[18612] | 1324 | switch (state) {
|
---|
| 1325 | case 0:
|
---|
| 1326 | // cold, dry base: apply basal surface forcing
|
---|
[18659] | 1327 | vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
|
---|
[18612] | 1328 | break;
|
---|
| 1329 | case 1:
|
---|
| 1330 | // cold, wet base: keep at pressure melting point
|
---|
[18659] | 1331 | vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
|
---|
[18612] | 1332 | break;
|
---|
| 1333 | case 2:
|
---|
| 1334 | // temperate, thin refreezing base: release spc
|
---|
[18659] | 1335 | vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
|
---|
[18612] | 1336 | break;
|
---|
| 1337 | case 3:
|
---|
| 1338 | // temperate, thin melting base: set spc
|
---|
[18659] | 1339 | vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
|
---|
[18612] | 1340 | break;
|
---|
| 1341 | case 4:
|
---|
[18930] | 1342 | // temperate, thick melting base: set grad H*n=0
|
---|
| 1343 | vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
|
---|
[18612] | 1344 | break;
|
---|
| 1345 | default:
|
---|
| 1346 | _printf0_(" unknown thermal basal state found!");
|
---|
[17027] | 1347 | }
|
---|
[18930] | 1348 |
|
---|
[17027] | 1349 | }
|
---|
[17014] | 1350 |
|
---|
[17027] | 1351 | /*Free ressources:*/
|
---|
| 1352 | xDelete<int>(indices);
|
---|
| 1353 | xDelete<int>(indicesup);
|
---|
| 1354 | delete gauss;
|
---|
| 1355 | delete gaussup;
|
---|
[17002] | 1356 | }/*}}}*/
|
---|
[18930] | 1357 | void EnthalpyAnalysis::GetBConduct(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
|
---|
| 1358 | /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
|
---|
| 1359 | * For node i, Bi' can be expressed in the actual coordinate system
|
---|
| 1360 | * by:
|
---|
| 1361 | * Bi_conduct=[ dh/dx ]
|
---|
| 1362 | * [ dh/dy ]
|
---|
| 1363 | * [ dh/dz ]
|
---|
| 1364 | * where h is the interpolation function for node i.
|
---|
| 1365 | *
|
---|
| 1366 | * We assume B has been allocated already, of size: 3x(NDOF1*numnodes)
|
---|
| 1367 | */
|
---|
[17002] | 1368 |
|
---|
[18930] | 1369 | /*Fetch number of nodes for this finite element*/
|
---|
| 1370 | int numnodes = element->GetNumberOfNodes();
|
---|
| 1371 |
|
---|
| 1372 | /*Get nodal functions derivatives*/
|
---|
| 1373 | IssmDouble* dbasis=xNew<IssmDouble>(3*numnodes);
|
---|
| 1374 | element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
|
---|
| 1375 |
|
---|
| 1376 | /*Build B: */
|
---|
| 1377 | for(int i=0;i<numnodes;i++){
|
---|
| 1378 | B[numnodes*0+i] = dbasis[0*numnodes+i];
|
---|
| 1379 | B[numnodes*1+i] = dbasis[1*numnodes+i];
|
---|
| 1380 | B[numnodes*2+i] = dbasis[2*numnodes+i];
|
---|
| 1381 | }
|
---|
| 1382 |
|
---|
| 1383 | /*Clean-up*/
|
---|
| 1384 | xDelete<IssmDouble>(dbasis);
|
---|
| 1385 | }/*}}}*/
|
---|
| 1386 | void EnthalpyAnalysis::GetSolutionFromInputs(Vector<IssmDouble>* solution,Element* element){/*{{{*/
|
---|
| 1387 | element->GetSolutionFromInputsOneDof(solution,EnthalpyEnum);
|
---|
| 1388 | }/*}}}*/
|
---|
| 1389 | int EnthalpyAnalysis::GetThermalBasalCondition(Element* element, IssmDouble enthalpy, IssmDouble enthalpyup, IssmDouble pressure, IssmDouble pressureup, IssmDouble watercolumn, IssmDouble meltingrate){/*{{{*/
|
---|
| 1390 |
|
---|
[18612] | 1391 | /* Check if ice in element */
|
---|
| 1392 | if(!element->IsIceInElement()) return -1;
|
---|
| 1393 |
|
---|
| 1394 | /* Only update Constraints at the base of grounded ice*/
|
---|
| 1395 | if(!(element->IsOnBase())) return -1;
|
---|
| 1396 |
|
---|
| 1397 | /*Intermediary*/
|
---|
| 1398 | int state=-1;
|
---|
| 1399 | IssmDouble dt;
|
---|
| 1400 |
|
---|
| 1401 | /*Get parameters and inputs: */
|
---|
| 1402 | element->FindParam(&dt,TimesteppingTimeStepEnum);
|
---|
| 1403 |
|
---|
[18620] | 1404 | if(enthalpy<PureIceEnthalpy(element,pressure)){
|
---|
| 1405 | if(watercolumn<=0.) state=0; // cold, dry base
|
---|
| 1406 | else state=1; // cold, wet base (refreezing)
|
---|
[18612] | 1407 | }
|
---|
[18620] | 1408 | else{
|
---|
| 1409 | if(enthalpyup<PureIceEnthalpy(element,pressureup)){
|
---|
| 1410 | if((dt==0.) && (meltingrate<0.)) state=2; // refreezing temperate base (non-physical, only for steadystate solver)
|
---|
| 1411 | else state=3; // temperate base, but no temperate layer
|
---|
[18612] | 1412 | }
|
---|
[18620] | 1413 | else state=4; // temperate layer with positive thickness
|
---|
[18612] | 1414 | }
|
---|
| 1415 |
|
---|
| 1416 | _assert_(state>=0);
|
---|
| 1417 | return state;
|
---|
| 1418 | }/*}}}*/
|
---|
[18930] | 1419 | IssmDouble EnthalpyAnalysis::GetWetIceConductivity(Element* element, IssmDouble enthalpy, IssmDouble pressure){/*{{{*/
|
---|
[18612] | 1420 |
|
---|
| 1421 | IssmDouble temperature, waterfraction;
|
---|
| 1422 | IssmDouble kappa_w = 0.6; // thermal conductivity of water (in W/m/K)
|
---|
| 1423 | IssmDouble kappa_i = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
|
---|
| 1424 | element->EnthalpyToThermal(&temperature, &waterfraction, enthalpy, pressure);
|
---|
| 1425 |
|
---|
| 1426 | return (1.-waterfraction)*kappa_i + waterfraction*kappa_w;
|
---|
| 1427 | }/*}}}*/
|
---|
[18930] | 1428 | void EnthalpyAnalysis::GradientJ(Vector<IssmDouble>* gradient,Element* element,int control_type,int control_index){/*{{{*/
|
---|
| 1429 | _error_("Not implemented yet");
|
---|
| 1430 | }/*}}}*/
|
---|
| 1431 | void EnthalpyAnalysis::InputUpdateFromSolution(IssmDouble* solution,Element* element){/*{{{*/
|
---|
[18612] | 1432 |
|
---|
[18930] | 1433 | bool converged;
|
---|
| 1434 | int i,rheology_law;
|
---|
| 1435 | IssmDouble B_average,s_average,T_average=0.,P_average=0.;
|
---|
[21382] | 1436 | IssmDouble n=3.0;
|
---|
[18930] | 1437 | int *doflist = NULL;
|
---|
| 1438 | IssmDouble *xyz_list = NULL;
|
---|
[16888] | 1439 |
|
---|
[18930] | 1440 | /*Fetch number of nodes and dof for this finite element*/
|
---|
| 1441 | int numnodes = element->GetNumberOfNodes();
|
---|
[16888] | 1442 |
|
---|
[18930] | 1443 | /*Fetch dof list and allocate solution vector*/
|
---|
| 1444 | element->GetDofList(&doflist,NoneApproximationEnum,GsetEnum);
|
---|
| 1445 | IssmDouble* values = xNew<IssmDouble>(numnodes);
|
---|
| 1446 | IssmDouble* pressure = xNew<IssmDouble>(numnodes);
|
---|
| 1447 | IssmDouble* surface = xNew<IssmDouble>(numnodes);
|
---|
| 1448 | IssmDouble* B = xNew<IssmDouble>(numnodes);
|
---|
| 1449 | IssmDouble* temperature = xNew<IssmDouble>(numnodes);
|
---|
| 1450 | IssmDouble* waterfraction = xNew<IssmDouble>(numnodes);
|
---|
[16888] | 1451 |
|
---|
[18930] | 1452 | /*Use the dof list to index into the solution vector: */
|
---|
| 1453 | for(i=0;i<numnodes;i++){
|
---|
| 1454 | values[i]=solution[doflist[i]];
|
---|
[16888] | 1455 |
|
---|
[18930] | 1456 | /*Check solution*/
|
---|
| 1457 | if(xIsNan<IssmDouble>(values[i])) _error_("NaN found in solution vector");
|
---|
[20669] | 1458 | if(xIsInf<IssmDouble>(values[i])) _error_("Inf found in solution vector");
|
---|
[16888] | 1459 | }
|
---|
| 1460 |
|
---|
[18930] | 1461 | /*Get all inputs and parameters*/
|
---|
[21382] | 1462 | if(element->material->ObjectEnum()!=MatestarEnum) n=element->GetMaterialParameter(MaterialsRheologyNEnum);
|
---|
[18930] | 1463 | element->GetInputValue(&converged,ConvergedEnum);
|
---|
| 1464 | element->GetInputListOnNodes(&pressure[0],PressureEnum);
|
---|
| 1465 | if(converged){
|
---|
| 1466 | for(i=0;i<numnodes;i++){
|
---|
| 1467 | element->EnthalpyToThermal(&temperature[i],&waterfraction[i],values[i],pressure[i]);
|
---|
| 1468 | if(waterfraction[i]<0.) _error_("Negative water fraction found in solution vector");
|
---|
| 1469 | //if(waterfraction[i]>1.) _error_("Water fraction >1 found in solution vector");
|
---|
| 1470 | }
|
---|
| 1471 | element->AddInput(EnthalpyEnum,values,element->GetElementType());
|
---|
| 1472 | element->AddInput(WaterfractionEnum,waterfraction,element->GetElementType());
|
---|
| 1473 | element->AddInput(TemperatureEnum,temperature,element->GetElementType());
|
---|
| 1474 |
|
---|
| 1475 | /*Update Rheology only if converged (we must make sure that the temperature is below melting point
|
---|
| 1476 | * otherwise the rheology could be negative*/
|
---|
| 1477 | element->FindParam(&rheology_law,MaterialsRheologyLawEnum);
|
---|
| 1478 | element->GetInputListOnNodes(&surface[0],SurfaceEnum);
|
---|
| 1479 | switch(rheology_law){
|
---|
| 1480 | case NoneEnum:
|
---|
| 1481 | /*Do nothing: B is not temperature dependent*/
|
---|
| 1482 | break;
|
---|
[21377] | 1483 | case BuddJackaEnum:
|
---|
| 1484 | for(i=0;i<numnodes;i++) B[i]=BuddJacka(temperature[i]);
|
---|
| 1485 | element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
|
---|
| 1486 | break;
|
---|
[18930] | 1487 | case CuffeyEnum:
|
---|
| 1488 | for(i=0;i<numnodes;i++) B[i]=Cuffey(temperature[i]);
|
---|
| 1489 | element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
|
---|
| 1490 | break;
|
---|
[20625] | 1491 | case CuffeyTemperateEnum:
|
---|
[21382] | 1492 | for(i=0;i<numnodes;i++) B[i]=CuffeyTemperate(temperature[i], waterfraction[i],n);
|
---|
[20625] | 1493 | element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
|
---|
| 1494 | break;
|
---|
[18930] | 1495 | case PatersonEnum:
|
---|
| 1496 | for(i=0;i<numnodes;i++) B[i]=Paterson(temperature[i]);
|
---|
| 1497 | element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
|
---|
| 1498 | break;
|
---|
| 1499 | case ArrheniusEnum:
|
---|
| 1500 | element->GetVerticesCoordinates(&xyz_list);
|
---|
[21382] | 1501 | for(i=0;i<numnodes;i++) B[i]=Arrhenius(temperature[i],surface[i]-xyz_list[i*3+2],n);
|
---|
[18930] | 1502 | element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
|
---|
| 1503 | break;
|
---|
| 1504 | case LliboutryDuvalEnum:
|
---|
[21382] | 1505 | for(i=0;i<numnodes;i++) B[i]=LliboutryDuval(values[i],pressure[i],n,element->GetMaterialParameter(MaterialsBetaEnum),element->GetMaterialParameter(ConstantsReferencetemperatureEnum),element->GetMaterialParameter(MaterialsHeatcapacityEnum),element->GetMaterialParameter(MaterialsLatentheatEnum));
|
---|
[18930] | 1506 | element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
|
---|
| 1507 | break;
|
---|
| 1508 | default: _error_("Rheology law " << EnumToStringx(rheology_law) << " not supported yet");
|
---|
| 1509 | }
|
---|
[16888] | 1510 | }
|
---|
| 1511 | else{
|
---|
[18930] | 1512 | element->AddInput(EnthalpyPicardEnum,values,element->GetElementType());
|
---|
[16888] | 1513 | }
|
---|
| 1514 |
|
---|
[18930] | 1515 | /*Free ressources:*/
|
---|
| 1516 | xDelete<IssmDouble>(values);
|
---|
| 1517 | xDelete<IssmDouble>(pressure);
|
---|
| 1518 | xDelete<IssmDouble>(surface);
|
---|
| 1519 | xDelete<IssmDouble>(B);
|
---|
| 1520 | xDelete<IssmDouble>(temperature);
|
---|
| 1521 | xDelete<IssmDouble>(waterfraction);
|
---|
| 1522 | xDelete<IssmDouble>(xyz_list);
|
---|
| 1523 | xDelete<int>(doflist);
|
---|
| 1524 | }/*}}}*/
|
---|
| 1525 | void EnthalpyAnalysis::PostProcessing(FemModel* femmodel){/*{{{*/
|
---|
[16888] | 1526 |
|
---|
[18930] | 1527 | /*Intermediaries*/
|
---|
| 1528 | bool computebasalmeltingrates=true;
|
---|
| 1529 | bool drainicecolumn=true;
|
---|
| 1530 | IssmDouble dt;
|
---|
| 1531 |
|
---|
| 1532 | femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
|
---|
| 1533 |
|
---|
[21161] | 1534 | if(drainicecolumn && (dt>0.)) DrainWaterfraction(femmodel);
|
---|
[18930] | 1535 | if(computebasalmeltingrates) ComputeBasalMeltingrate(femmodel);
|
---|
| 1536 |
|
---|
[17027] | 1537 | }/*}}}*/
|
---|
[18930] | 1538 | IssmDouble EnthalpyAnalysis::PureIceEnthalpy(Element* element,IssmDouble pressure){/*{{{*/
|
---|
[16888] | 1539 |
|
---|
| 1540 | IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
|
---|
| 1541 | IssmDouble referencetemperature = element->GetMaterialParameter(ConstantsReferencetemperatureEnum);
|
---|
| 1542 |
|
---|
| 1543 | return heatcapacity*(TMeltingPoint(element,pressure)-referencetemperature);
|
---|
| 1544 | }/*}}}*/
|
---|
[18930] | 1545 | IssmDouble EnthalpyAnalysis::TMeltingPoint(Element* element,IssmDouble pressure){/*{{{*/
|
---|
[16888] | 1546 |
|
---|
| 1547 | IssmDouble meltingpoint = element->GetMaterialParameter(MaterialsMeltingpointEnum);
|
---|
| 1548 | IssmDouble beta = element->GetMaterialParameter(MaterialsBetaEnum);
|
---|
| 1549 |
|
---|
| 1550 | return meltingpoint-beta*pressure;
|
---|
| 1551 | }/*}}}*/
|
---|
[18930] | 1552 | void EnthalpyAnalysis::UpdateBasalConstraints(FemModel* femmodel){/*{{{*/
|
---|
| 1553 |
|
---|
| 1554 | /*Update basal dirichlet BCs for enthalpy: */
|
---|
| 1555 | Vector<IssmDouble>* spc = NULL;
|
---|
| 1556 | IssmDouble* serial_spc = NULL;
|
---|
| 1557 |
|
---|
| 1558 | spc=new Vector<IssmDouble>(femmodel->nodes->NumberOfNodes(EnthalpyAnalysisEnum));
|
---|
| 1559 | /*First create a vector to figure out what elements should be constrained*/
|
---|
| 1560 | for(int i=0;i<femmodel->elements->Size();i++){
|
---|
| 1561 | Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
|
---|
| 1562 | GetBasalConstraints(spc,element);
|
---|
| 1563 | }
|
---|
| 1564 |
|
---|
| 1565 | /*Assemble and serialize*/
|
---|
| 1566 | spc->Assemble();
|
---|
| 1567 | serial_spc=spc->ToMPISerial();
|
---|
| 1568 | delete spc;
|
---|
| 1569 |
|
---|
| 1570 | /*Then update basal constraints nodes accordingly*/
|
---|
| 1571 | for(int i=0;i<femmodel->elements->Size();i++){
|
---|
| 1572 | Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
|
---|
| 1573 | ApplyBasalConstraints(serial_spc,element);
|
---|
| 1574 | }
|
---|
| 1575 |
|
---|
| 1576 | femmodel->UpdateConstraintsx();
|
---|
| 1577 |
|
---|
| 1578 | /*Delete*/
|
---|
| 1579 | xDelete<IssmDouble>(serial_spc);
|
---|
| 1580 | }/*}}}*/
|
---|
| 1581 | void EnthalpyAnalysis::UpdateConstraints(FemModel* femmodel){/*{{{*/
|
---|
[20453] | 1582 | SetActiveNodesLSMx(femmodel);
|
---|
[18930] | 1583 | }/*}}}*/
|
---|