source: issm/trunk-jpl/src/c/analyses/EnthalpyAnalysis.cpp@ 21481

Last change on this file since 21481 was 21481, checked in by jbondzio, 8 years ago

BUG: applying enthalpy basal BCs on ice only can cause inconsistencies in fsets across partitions.

File size: 63.0 KB
RevLine 
[16534]1#include "./EnthalpyAnalysis.h"
2#include "../toolkits/toolkits.h"
3#include "../classes/classes.h"
4#include "../shared/shared.h"
5#include "../modules/modules.h"
[18591]6#include "../solutionsequences/solutionsequences.h"
[16534]7
8/*Model processing*/
[18930]9void EnthalpyAnalysis::CreateConstraints(Constraints* constraints,IoModel* iomodel){/*{{{*/
[16604]10
[18930]11 /*Intermediary*/
12 int count;
13 int M,N;
14 bool spcpresent = false;
15 IssmDouble heatcapacity;
16 IssmDouble referencetemperature;
[16604]17
[18930]18 /*Output*/
19 IssmDouble *spcvector = NULL;
20 IssmDouble* times=NULL;
21 IssmDouble* values=NULL;
[16604]22
[18930]23 /*Fetch parameters: */
[20690]24 iomodel->FindConstant(&heatcapacity,"md.materials.heatcapacity");
25 iomodel->FindConstant(&referencetemperature,"md.constants.referencetemperature");
[18732]26
[18930]27 /*return if 2d mesh*/
28 if(iomodel->domaintype==Domain2DhorizontalEnum) return;
29
30 /*Fetch data: */
[20690]31 iomodel->FetchData(&spcvector,&M,&N,"md.thermal.spctemperature");
[18930]32
33 //FIX ME: SHOULD USE IOMODELCREATECONSTRAINTS
34 /*Transient or static?:*/
35 if(M==iomodel->numberofvertices){
36 /*static: just create Constraints objects*/
37 count=0;
38
39 for(int i=0;i<iomodel->numberofvertices;i++){
40 /*keep only this partition's nodes:*/
41 if((iomodel->my_vertices[i])){
42
43 if (!xIsNan<IssmDouble>(spcvector[i])){
44
45 constraints->AddObject(new SpcStatic(iomodel->constraintcounter+count+1,iomodel->nodecounter+i+1,0,heatcapacity*(spcvector[i]-referencetemperature),EnthalpyAnalysisEnum));
46 count++;
47
48 }
49 }
50 }
51 }
52 else if (M==(iomodel->numberofvertices+1)){
53 /*transient: create transient SpcTransient objects. Same logic, except we need to retrieve
54 * various times and values to initialize an SpcTransient object: */
55 count=0;
56
57 /*figure out times: */
58 times=xNew<IssmDouble>(N);
59 for(int j=0;j<N;j++){
60 times[j]=spcvector[(M-1)*N+j];
61 }
62
63 /*Create constraints from x,y,z: */
64 for(int i=0;i<iomodel->numberofvertices;i++){
65
66 /*keep only this partition's nodes:*/
67 if((iomodel->my_vertices[i])){
68
69 /*figure out times and values: */
70 values=xNew<IssmDouble>(N);
71 spcpresent=false;
72 for(int j=0;j<N;j++){
73 values[j]=heatcapacity*(spcvector[i*N+j]-referencetemperature);
74 if(!xIsNan<IssmDouble>(values[j]))spcpresent=true; //NaN means no spc by default
75 }
76
77 if(spcpresent){
78 constraints->AddObject(new SpcTransient(iomodel->constraintcounter+count+1,iomodel->nodecounter+i+1,0,N,times,values,EnthalpyAnalysisEnum));
79 count++;
80 }
81 xDelete<IssmDouble>(values);
82 }
83 }
84 }
85 else{
86 _error_("Size of field " << EnumToStringx(ThermalSpctemperatureEnum) << " not supported");
87 }
88
89 /*Free ressources:*/
[20690]90 iomodel->DeleteData(spcvector,"md.thermal.spctemperature");
[18930]91 xDelete<IssmDouble>(times);
92 xDelete<IssmDouble>(values);
[16539]93}/*}}}*/
[18930]94void EnthalpyAnalysis::CreateLoads(Loads* loads, IoModel* iomodel){/*{{{*/
95
96 /*No loads */
97}/*}}}*/
98void EnthalpyAnalysis::CreateNodes(Nodes* nodes,IoModel* iomodel){/*{{{*/
99
[20690]100 if(iomodel->domaintype==Domain3DEnum) iomodel->FetchData(2,"md.mesh.vertexonbase","md.mesh.vertexonsurface");
[18930]101 ::CreateNodes(nodes,iomodel,EnthalpyAnalysisEnum,P1Enum);
[20690]102 iomodel->DeleteData(2,"md.mesh.vertexonbase","md.mesh.vertexonsurface");
[18930]103}/*}}}*/
104int EnthalpyAnalysis::DofsPerNode(int** doflist,int domaintype,int approximation){/*{{{*/
105 return 1;
106}/*}}}*/
[16539]107void EnthalpyAnalysis::UpdateElements(Elements* elements,IoModel* iomodel,int analysis_counter,int analysis_type){/*{{{*/
108
[20459]109 bool dakota_analysis,ismovingfront,isenthalpy;
[21382]110 int frictionlaw,basalforcing_model,materialstype;
[19161]111 int FrictionCoupling;
112
[16539]113 /*Now, is the model 3d? otherwise, do nothing: */
[17700]114 if(iomodel->domaintype==Domain2DhorizontalEnum)return;
[16539]115
116 /*Is enthalpy requested?*/
[20690]117 iomodel->FindConstant(&isenthalpy,"md.thermal.isenthalpy");
[16539]118 if(!isenthalpy) return;
119
120 /*Fetch data needed: */
[20690]121 iomodel->FetchData(3,"md.initialization.temperature","md.initialization.waterfraction","md.initialization.pressure");
[16539]122
123 /*Update elements: */
124 int counter=0;
125 for(int i=0;i<iomodel->numberofelements;i++){
126 if(iomodel->my_elements[i]){
127 Element* element=(Element*)elements->GetObjectByOffset(counter);
128 element->Update(i,iomodel,analysis_counter,analysis_type,P1Enum);
129 counter++;
130 }
131 }
132
[20690]133 iomodel->FindConstant(&dakota_analysis,"md.qmu.isdakota");
134 iomodel->FindConstant(&ismovingfront,"md.transient.ismovingfront");
135 iomodel->FindConstant(&frictionlaw,"md.friction.law");
[21382]136 iomodel->FindConstant(&materialstype,"md.materials.type");
[16539]137
[20690]138 iomodel->FetchDataToInput(elements,"md.geometry.thickness",ThicknessEnum);
139 iomodel->FetchDataToInput(elements,"md.geometry.surface",SurfaceEnum);
140 iomodel->FetchDataToInput(elements,"md.slr.sealevel",SealevelEnum,0);
141 iomodel->FetchDataToInput(elements,"md.geometry.base",BaseEnum);
142 iomodel->FetchDataToInput(elements,"md.mask.ice_levelset",MaskIceLevelsetEnum);
143 iomodel->FetchDataToInput(elements,"md.mask.groundedice_levelset",MaskGroundediceLevelsetEnum);
[17886]144 if(iomodel->domaintype!=Domain2DhorizontalEnum){
[20690]145 iomodel->FetchDataToInput(elements,"md.mesh.vertexonbase",MeshVertexonbaseEnum);
146 iomodel->FetchDataToInput(elements,"md.mesh.vertexonsurface",MeshVertexonsurfaceEnum);
[17886]147 }
[20690]148 iomodel->FetchDataToInput(elements,"md.initialization.pressure",PressureEnum);
149 iomodel->FetchDataToInput(elements,"md.initialization.temperature",TemperatureEnum);
150 iomodel->FetchDataToInput(elements,"md.initialization.waterfraction",WaterfractionEnum);
151 iomodel->FetchDataToInput(elements,"md.initialization.enthalpy",EnthalpyEnum);
152 iomodel->FetchDataToInput(elements,"md.initialization.watercolumn",WatercolumnEnum);
153 iomodel->FetchDataToInput(elements,"md.basalforcings.groundedice_melting_rate",BasalforcingsGroundediceMeltingRateEnum);
154 iomodel->FetchDataToInput(elements,"md.initialization.vx",VxEnum);
155 iomodel->FetchDataToInput(elements,"md.initialization.vy",VyEnum);
156 iomodel->FetchDataToInput(elements,"md.initialization.vz",VzEnum);
[16539]157 InputUpdateFromConstantx(elements,0.,VxMeshEnum);
158 InputUpdateFromConstantx(elements,0.,VyMeshEnum);
159 InputUpdateFromConstantx(elements,0.,VzMeshEnum);
[20459]160 if(ismovingfront){
[20690]161 iomodel->FetchDataToInput(elements,"md.mesh.vertexonbase",MeshVertexonbaseEnum); // required for updating active nodes
[17434]162 }
[20020]163
164 /*Basal forcings variables*/
[20690]165 iomodel->FindConstant(&basalforcing_model,"md.basalforcings.model");
[20020]166 switch(basalforcing_model){
167 case MantlePlumeGeothermalFluxEnum:
168 break;
169 default:
[20690]170 iomodel->FetchDataToInput(elements,"md.basalforcings.geothermalflux",BasalforcingsGeothermalfluxEnum);
[20020]171 break;
172 }
[21382]173
174 /*Rheology type*/
175 iomodel->FetchDataToInput(elements,"md.materials.rheology_B",MaterialsRheologyBEnum);
176 switch(materialstype){
[21389]177 case MatenhancediceEnum:
178 iomodel->FetchDataToInput(elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
179 iomodel->FetchDataToInput(elements,"md.materials.rheology_E",MaterialsRheologyEEnum);
180 break;
[21382]181 case MatdamageiceEnum:
182 iomodel->FetchDataToInput(elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
183 break;
184 case MatestarEnum:
185 iomodel->FetchDataToInput(elements,"md.materials.rheology_Ec",MaterialsRheologyEcEnum);
186 iomodel->FetchDataToInput(elements,"md.materials.rheology_Es",MaterialsRheologyEsEnum);
187 break;
188 case MaticeEnum:
189 iomodel->FetchDataToInput(elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
190 break;
191 default:
192 _error_("not supported");
193 }
[17952]194
195 /*Friction law variables*/
196 switch(frictionlaw){
197 case 1:
[20690]198 iomodel->FetchDataToInput(elements,"md.friction.coefficient",FrictionCoefficientEnum);
199 iomodel->FetchDataToInput(elements,"md.friction.p",FrictionPEnum);
200 iomodel->FetchDataToInput(elements,"md.friction.q",FrictionQEnum);
[17952]201 break;
202 case 2:
[20690]203 iomodel->FetchDataToInput(elements,"md.friction.C",FrictionCEnum);
204 iomodel->FetchDataToInput(elements,"md.friction.m",FrictionMEnum);
[17952]205 break;
[18778]206 case 3:
[20690]207 iomodel->FindConstant(&FrictionCoupling,"md.friction.coupling");
208 iomodel->FetchDataToInput(elements,"md.friction.C",FrictionCEnum);
209 iomodel->FetchDataToInput(elements,"md.friction.As",FrictionAsEnum);
210 iomodel->FetchDataToInput(elements,"md.friction.q",FrictionQEnum);
[19161]211 if (FrictionCoupling==0){
[20690]212 iomodel->FetchDataToInput(elements,"md.friction.effective_pressure",FrictionEffectivePressureEnum);
[19161]213 }
[18778]214 break;
[18732]215 case 4:
[20690]216 iomodel->FetchDataToInput(elements,"md.friction.coefficient",FrictionCoefficientEnum);
217 iomodel->FetchDataToInput(elements,"md.friction.p",FrictionPEnum);
218 iomodel->FetchDataToInput(elements,"md.friction.q",FrictionQEnum);
219 iomodel->FetchDataToInput(elements,"md.initialization.pressure",PressureEnum);
220 iomodel->FetchDataToInput(elements,"md.initialization.temperature",TemperatureEnum);
[18732]221 break;
[18772]222 case 5:
[20690]223 iomodel->FetchDataToInput(elements,"md.friction.coefficient",FrictionCoefficientEnum);
224 iomodel->FetchDataToInput(elements,"md.friction.p",FrictionPEnum);
225 iomodel->FetchDataToInput(elements,"md.friction.q",FrictionQEnum);
226 iomodel->FetchDataToInput(elements,"md.friction.water_layer",FrictionWaterLayerEnum);
[18772]227 break;
[18804]228 case 6:
[20690]229 iomodel->FetchDataToInput(elements,"md.friction.C",FrictionCEnum);
230 iomodel->FetchDataToInput(elements,"md.friction.m",FrictionMEnum);
231 iomodel->FetchDataToInput(elements,"md.initialization.pressure",PressureEnum);
232 iomodel->FetchDataToInput(elements,"md.initialization.temperature",TemperatureEnum);
[18804]233 break;
[17952]234 default:
235 _error_("not supported");
236 }
[20690]237
[16539]238 /*Free data: */
[20690]239 iomodel->DeleteData(3,"md.initialization.temperature","md.initialization.waterfraction","md.initialization.pressure");
240
[16539]241}/*}}}*/
[18930]242void EnthalpyAnalysis::UpdateParameters(Parameters* parameters,IoModel* iomodel,int solution_enum,int analysis_enum){/*{{{*/
[16539]243
[18930]244 int numoutputs;
245 char** requestedoutputs = NULL;
246
[20690]247 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.stabilization",ThermalStabilizationEnum));
248 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.maxiter",ThermalMaxiterEnum));
249 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.reltol",ThermalReltolEnum));
250 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.isenthalpy",ThermalIsenthalpyEnum));
251 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.isdynamicbasalspc",ThermalIsdynamicbasalspcEnum));
252 parameters->AddObject(iomodel->CopyConstantObject("md.friction.law",FrictionLawEnum));
[18930]253
[20690]254 iomodel->FindConstant(&requestedoutputs,&numoutputs,"md.thermal.requested_outputs");
[18930]255 parameters->AddObject(new IntParam(ThermalNumRequestedOutputsEnum,numoutputs));
256 if(numoutputs)parameters->AddObject(new StringArrayParam(ThermalRequestedOutputsEnum,requestedoutputs,numoutputs));
[20690]257 iomodel->DeleteData(&requestedoutputs,numoutputs,"md.thermal.requested_outputs");
[18930]258
259 /*Deal with friction parameters*/
260 int frictionlaw;
[20690]261 iomodel->FindConstant(&frictionlaw,"md.friction.law");
262 if(frictionlaw==4 || frictionlaw==6) parameters->AddObject(iomodel->CopyConstantObject("md.friction.gamma",FrictionGammaEnum));
263 if(frictionlaw==3) parameters->AddObject(iomodel->CopyConstantObject("md.friction.coupling",FrictionCouplingEnum));
[16539]264}/*}}}*/
265
[18930]266/*Finite Element Analysis*/
267void EnthalpyAnalysis::ApplyBasalConstraints(IssmDouble* serial_spc,Element* element){/*{{{*/
[16539]268
[21481]269 /* Do not check if ice in element, this may lead to inconsistencies between cpu partitions */
[20213]270 /* Only update constraints at the base. */
271 if(!(element->IsOnBase())) return;
[16539]272
[18930]273 /*Intermediary*/
274 bool isdynamicbasalspc;
275 int numindices;
276 int *indices = NULL;
277 Node* node = NULL;
278 IssmDouble pressure;
[16539]279
[18930]280 /*Check wether dynamic basal boundary conditions are activated */
281 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
282 if(!isdynamicbasalspc) return;
[16539]283
[18930]284 /*Get parameters and inputs: */
285 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
[16539]286
[18930]287 /*Fetch indices of basal & surface nodes for this finite element*/
288 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
289 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
[16539]290
[18930]291 GaussPenta* gauss=new GaussPenta();
292 for(int i=0;i<numindices;i++){
293 gauss->GaussNode(element->GetElementType(),indices[i]);
[16539]294
[18930]295 pressure_input->GetInputValue(&pressure,gauss);
[16539]296
[18930]297 /*apply or release spc*/
298 node=element->GetNode(indices[i]);
[21481]299 if(!node->IsActive()) continue;
[18930]300 if(serial_spc[node->Sid()]==1.){
301 pressure_input->GetInputValue(&pressure, gauss);
302 node->ApplyConstraint(0,PureIceEnthalpy(element,pressure));
[16539]303 }
[21481]304 else {
[18930]305 node->DofInFSet(0);
[21481]306 }
[16539]307 }
308
[18930]309 /*Free ressources:*/
310 xDelete<int>(indices);
311 delete gauss;
312}/*}}}*/
313void EnthalpyAnalysis::ComputeBasalMeltingrate(FemModel* femmodel){/*{{{*/
314 /*Compute basal melting rates: */
315 for(int i=0;i<femmodel->elements->Size();i++){
316 Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
317 ComputeBasalMeltingrate(element);
318 }
319}/*}}}*/
320void EnthalpyAnalysis::ComputeBasalMeltingrate(Element* element){/*{{{*/
321 /*Calculate the basal melt rates of the enthalpy model after Aschwanden 2012*/
322 /* melting rate is positive when melting, negative when refreezing*/
[16539]323
[18930]324 /* Check if ice in element */
325 if(!element->IsIceInElement()) return;
[16539]326
[18930]327 /* Only compute melt rates at the base of grounded ice*/
328 if(!element->IsOnBase() || element->IsFloating()) return;
[16539]329
[18930]330 /* Intermediaries */
331 bool converged;
332 const int dim=3;
333 int i,is,state;
334 int vertexdown,vertexup,numvertices,numsegments;
335 int enthalpy_enum;
336 IssmDouble vec_heatflux[dim],normal_base[dim],d1enthalpy[dim],d1pressure[dim];
337 IssmDouble basalfriction,alpha2,geothermalflux,heatflux;
338 IssmDouble dt,yts;
339 IssmDouble melting_overshoot,lambda;
340 IssmDouble vx,vy,vz;
341 IssmDouble *xyz_list = NULL;
342 IssmDouble *xyz_list_base = NULL;
343 int *pairindices = NULL;
[16539]344
[18930]345 /*Fetch parameters*/
346 element->GetVerticesCoordinates(&xyz_list);
347 element->GetVerticesCoordinatesBase(&xyz_list_base);
348 element->GetInputValue(&converged,ConvergedEnum);
349 element->FindParam(&dt,TimesteppingTimeStepEnum);
350 element->FindParam(&yts, ConstantsYtsEnum);
351
352 if(dt==0. && !converged) enthalpy_enum=EnthalpyPicardEnum;
353 else enthalpy_enum=EnthalpyEnum;
354
355 IssmDouble latentheat = element->GetMaterialParameter(MaterialsLatentheatEnum);
356 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
357 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoFreshwaterEnum);
358 IssmDouble beta = element->GetMaterialParameter(MaterialsBetaEnum);
359 IssmDouble kappa = EnthalpyDiffusionParameterVolume(element,enthalpy_enum); _assert_(kappa>=0.);
360 IssmDouble kappa_mix;
361
362 /*retrieve inputs*/
363 Input* enthalpy_input = element->GetInput(enthalpy_enum); _assert_(enthalpy_input);
364 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
365 Input* geothermalflux_input = element->GetInput(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input);
366 Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
367 Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
368 Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
369
370 /*Build friction element, needed later: */
371 Friction* friction=new Friction(element,dim);
372
373 /******** MELTING RATES ************************************//*{{{*/
374 element->NormalBase(&normal_base[0],xyz_list_base);
375 element->VerticalSegmentIndices(&pairindices,&numsegments);
376 IssmDouble* meltingrate_enthalpy = xNew<IssmDouble>(numsegments);
377 IssmDouble* heating = xNew<IssmDouble>(numsegments);
378
379 numvertices=element->GetNumberOfVertices();
380 IssmDouble* enthalpies = xNew<IssmDouble>(numvertices);
381 IssmDouble* pressures = xNew<IssmDouble>(numvertices);
382 IssmDouble* watercolumns = xNew<IssmDouble>(numvertices);
383 IssmDouble* basalmeltingrates = xNew<IssmDouble>(numvertices);
384 element->GetInputListOnVertices(enthalpies,enthalpy_enum);
385 element->GetInputListOnVertices(pressures,PressureEnum);
386 element->GetInputListOnVertices(watercolumns,WatercolumnEnum);
387 element->GetInputListOnVertices(basalmeltingrates,BasalforcingsGroundediceMeltingRateEnum);
388
389 Gauss* gauss=element->NewGauss();
390 for(is=0;is<numsegments;is++){
391 vertexdown = pairindices[is*2+0];
392 vertexup = pairindices[is*2+1];
393 gauss->GaussVertex(vertexdown);
394
395 state=GetThermalBasalCondition(element, enthalpies[vertexdown], enthalpies[vertexup], pressures[vertexdown], pressures[vertexup], watercolumns[vertexdown], basalmeltingrates[vertexdown]);
396 switch (state) {
397 case 0:
398 // cold, dry base: apply basal surface forcing
399 for(i=0;i<3;i++) vec_heatflux[i]=0.;
400 break;
401 case 1: case 2: case 3:
402 // case 1 : cold, wet base: keep at pressure melting point
403 // case 2: temperate, thin refreezing base: release spc
404 // case 3: temperate, thin melting base: set spc
405 enthalpy_input->GetInputDerivativeValue(&d1enthalpy[0],xyz_list,gauss);
406 for(i=0;i<3;i++) vec_heatflux[i]=-kappa*d1enthalpy[i];
407 break;
408 case 4:
409 // temperate, thick melting base: set grad H*n=0
410 kappa_mix=GetWetIceConductivity(element, enthalpies[vertexdown], pressures[vertexdown]);
411 pressure_input->GetInputDerivativeValue(&d1pressure[0],xyz_list,gauss);
412 for(i=0;i<3;i++) vec_heatflux[i]=kappa_mix*beta*d1pressure[i];
413 break;
414 default:
415 _printf0_(" unknown thermal basal state found!");
416 }
417 if(state==0) meltingrate_enthalpy[is]=0.;
418 else{
419 /*heat flux along normal*/
420 heatflux=0.;
421 for(i=0;i<3;i++) heatflux+=(vec_heatflux[i])*normal_base[i];
422
423 /*basal friction*/
424 friction->GetAlpha2(&alpha2,gauss);
425 vx_input->GetInputValue(&vx,gauss); vy_input->GetInputValue(&vy,gauss); vz_input->GetInputValue(&vz,gauss);
426 basalfriction=alpha2*(vx*vx + vy*vy + vz*vz);
427 geothermalflux_input->GetInputValue(&geothermalflux,gauss);
428 /* -Mb= Fb-(q-q_geo)/((1-w)*L*rho), and (1-w)*rho=rho_ice, cf Aschwanden 2012, eqs.1, 2, 66*/
429 heating[is]=(heatflux+basalfriction+geothermalflux);
430 meltingrate_enthalpy[is]=heating[is]/(latentheat*rho_ice); // m/s water equivalent
431 }
432 }/*}}}*/
433
434 /******** UPDATE MELTINGRATES AND WATERCOLUMN **************//*{{{*/
435 for(is=0;is<numsegments;is++){
436 vertexdown = pairindices[is*2+0];
437 vertexup = pairindices[is*2+1];
438 if(dt!=0.){
439 if(watercolumns[vertexdown]+meltingrate_enthalpy[is]*dt<0.){ // prevent too much freeze on
440 lambda = -watercolumns[vertexdown]/(dt*meltingrate_enthalpy[is]); _assert_(lambda>=0.); _assert_(lambda<1.);
441 watercolumns[vertexdown]=0.;
442 basalmeltingrates[vertexdown]=lambda*meltingrate_enthalpy[is]; // restrict freeze on only to size of watercolumn
443 enthalpies[vertexdown]+=(1.-lambda)*dt/yts*meltingrate_enthalpy[is]*latentheat*rho_ice; // use rest of energy to cool down base: dE=L*m, m=(1-lambda)*meltingrate*rho_ice
[16539]444 }
[18930]445 else{
446 basalmeltingrates[vertexdown]=meltingrate_enthalpy[is];
447 watercolumns[vertexdown]+=dt*meltingrate_enthalpy[is];
448 }
[16539]449 }
[18930]450 else{
451 basalmeltingrates[vertexdown]=meltingrate_enthalpy[is];
452 if(watercolumns[vertexdown]+meltingrate_enthalpy[is]<0.)
453 watercolumns[vertexdown]=0.;
454 else
455 watercolumns[vertexdown]+=meltingrate_enthalpy[is];
456 }
457 basalmeltingrates[vertexdown]*=rho_water/rho_ice; // convert meltingrate from water to ice equivalent
458 _assert_(watercolumns[vertexdown]>=0.);
459 }/*}}}*/
460
461 /*feed updated variables back into model*/
462 if(dt!=0.){
463 element->AddInput(enthalpy_enum,enthalpies,P1Enum); //TODO: distinguis for steadystate and transient run
464 element->AddInput(WatercolumnEnum,watercolumns,P1Enum);
[16539]465 }
[18930]466 element->AddInput(BasalforcingsGroundediceMeltingRateEnum,basalmeltingrates,P1Enum);
[16539]467
[18930]468 /*Clean up and return*/
469 delete gauss;
470 delete friction;
471 xDelete<int>(pairindices);
472 xDelete<IssmDouble>(enthalpies);
473 xDelete<IssmDouble>(pressures);
474 xDelete<IssmDouble>(watercolumns);
475 xDelete<IssmDouble>(basalmeltingrates);
476 xDelete<IssmDouble>(meltingrate_enthalpy);
477 xDelete<IssmDouble>(heating);
478 xDelete<IssmDouble>(xyz_list);
479 xDelete<IssmDouble>(xyz_list_base);
[16539]480}/*}}}*/
[18930]481void EnthalpyAnalysis::Core(FemModel* femmodel){/*{{{*/
[21160]482
483 IssmDouble dt;
484 bool isdynamicbasalspc;
485
486 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
487 femmodel->parameters->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
488
[18591]489 if(VerboseSolution()) _printf0_(" computing enthalpy\n");
490 femmodel->SetCurrentConfiguration(EnthalpyAnalysisEnum);
[21160]491 if((dt>0.) && isdynamicbasalspc) UpdateBasalConstraints(femmodel);
[18591]492 solutionsequence_thermal_nonlinear(femmodel);
493
494 /*transfer enthalpy to enthalpy picard for the next step: */
495 InputDuplicatex(femmodel,EnthalpyEnum,EnthalpyPicardEnum);
496
[21161]497 PostProcessing(femmodel);
[18591]498
[17005]499}/*}}}*/
[17000]500ElementVector* EnthalpyAnalysis::CreateDVector(Element* element){/*{{{*/
501 /*Default, return NULL*/
502 return NULL;
503}/*}}}*/
[16992]504ElementMatrix* EnthalpyAnalysis::CreateJacobianMatrix(Element* element){/*{{{*/
505_error_("Not implemented");
506}/*}}}*/
[16782]507ElementMatrix* EnthalpyAnalysis::CreateKMatrix(Element* element){/*{{{*/
[16888]508
[17434]509 /* Check if ice in element */
510 if(!element->IsIceInElement()) return NULL;
511
[16888]512 /*compute all stiffness matrices for this element*/
513 ElementMatrix* Ke1=CreateKMatrixVolume(element);
514 ElementMatrix* Ke2=CreateKMatrixShelf(element);
515 ElementMatrix* Ke =new ElementMatrix(Ke1,Ke2);
516
517 /*clean-up and return*/
518 delete Ke1;
519 delete Ke2;
520 return Ke;
[16782]521}/*}}}*/
[16888]522ElementMatrix* EnthalpyAnalysis::CreateKMatrixVolume(Element* element){/*{{{*/
523
[17434]524 /* Check if ice in element */
525 if(!element->IsIceInElement()) return NULL;
526
[16888]527 /*Intermediaries */
528 int stabilization;
529 IssmDouble Jdet,dt,u,v,w,um,vm,wm,vel;
530 IssmDouble h,hx,hy,hz,vx,vy,vz;
531 IssmDouble tau_parameter,diameter;
532 IssmDouble D_scalar;
533 IssmDouble* xyz_list = NULL;
534
535 /*Fetch number of nodes and dof for this finite element*/
536 int numnodes = element->GetNumberOfNodes();
537
538 /*Initialize Element vector and other vectors*/
539 ElementMatrix* Ke = element->NewElementMatrix();
540 IssmDouble* basis = xNew<IssmDouble>(numnodes);
541 IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
542 IssmDouble* B = xNew<IssmDouble>(3*numnodes);
543 IssmDouble* Bprime = xNew<IssmDouble>(3*numnodes);
544 IssmDouble D[3][3] = {0.};
545 IssmDouble K[3][3];
546
547 /*Retrieve all inputs and parameters*/
548 element->GetVerticesCoordinates(&xyz_list);
549 element->FindParam(&dt,TimesteppingTimeStepEnum);
550 element->FindParam(&stabilization,ThermalStabilizationEnum);
[17946]551 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
[16888]552 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
553 IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
554 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
555 IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
556 Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
557 Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
558 Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
559 Input* vxm_input = element->GetInput(VxMeshEnum); _assert_(vxm_input);
560 Input* vym_input = element->GetInput(VyMeshEnum); _assert_(vym_input);
561 Input* vzm_input = element->GetInput(VzMeshEnum); _assert_(vzm_input);
562 if(stabilization==2) diameter=element->MinEdgeLength(xyz_list);
563
564 /*Enthalpy diffusion parameter*/
[17027]565 IssmDouble kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
[16888]566
567 /* Start looping on the number of gaussian points: */
[19637]568 Gauss* gauss=element->NewGauss(4);
[16888]569 for(int ig=gauss->begin();ig<gauss->end();ig++){
570 gauss->GaussPoint(ig);
571
572 element->JacobianDeterminant(&Jdet,xyz_list,gauss);
573 D_scalar=gauss->weight*Jdet;
574 if(dt!=0.) D_scalar=D_scalar*dt;
575
576 /*Conduction: */
577 GetBConduct(B,element,xyz_list,gauss);
578 D[0][0]=D_scalar*kappa/rho_ice;
579 D[1][1]=D_scalar*kappa/rho_ice;
580 D[2][2]=D_scalar*kappa/rho_ice;
581 TripleMultiply(B,3,numnodes,1,
582 &D[0][0],3,3,0,
583 B,3,numnodes,0,
584 &Ke->values[0],1);
585
586 /*Advection: */
587 GetBAdvec(B,element,xyz_list,gauss);
588 GetBAdvecprime(Bprime,element,xyz_list,gauss);
589 vx_input->GetInputValue(&u,gauss); vxm_input->GetInputValue(&um,gauss); vx=u-um;
590 vy_input->GetInputValue(&v,gauss); vym_input->GetInputValue(&vm,gauss); vy=v-vm;
591 vz_input->GetInputValue(&w,gauss); vzm_input->GetInputValue(&wm,gauss); vz=w-wm;
592 D[0][0]=D_scalar*vx;
593 D[1][1]=D_scalar*vy;
594 D[2][2]=D_scalar*vz;
595 TripleMultiply(B,3,numnodes,1,
596 &D[0][0],3,3,0,
597 Bprime,3,numnodes,0,
598 &Ke->values[0],1);
599
600 /*Transient: */
601 if(dt!=0.){
602 D_scalar=gauss->weight*Jdet;
603 element->NodalFunctions(basis,gauss);
604 TripleMultiply(basis,numnodes,1,0,
605 &D_scalar,1,1,0,
606 basis,1,numnodes,0,
607 &Ke->values[0],1);
608 D_scalar=D_scalar*dt;
609 }
610
[21382]611 /*Artificial diffusivity*/
[16888]612 if(stabilization==1){
613 element->ElementSizes(&hx,&hy,&hz);
614 vel=sqrt(vx*vx + vy*vy + vz*vz)+1.e-14;
615 h=sqrt( pow(hx*vx/vel,2) + pow(hy*vy/vel,2) + pow(hz*vz/vel,2));
[18484]616 K[0][0]=h/(2.*vel)*fabs(vx*vx); K[0][1]=h/(2.*vel)*fabs(vx*vy); K[0][2]=h/(2.*vel)*fabs(vx*vz);
617 K[1][0]=h/(2.*vel)*fabs(vy*vx); K[1][1]=h/(2.*vel)*fabs(vy*vy); K[1][2]=h/(2.*vel)*fabs(vy*vz);
618 K[2][0]=h/(2.*vel)*fabs(vz*vx); K[2][1]=h/(2.*vel)*fabs(vz*vy); K[2][2]=h/(2.*vel)*fabs(vz*vz);
[16888]619 for(int i=0;i<3;i++) for(int j=0;j<3;j++) K[i][j] = D_scalar*K[i][j];
620
621 GetBAdvecprime(Bprime,element,xyz_list,gauss);
622 TripleMultiply(Bprime,3,numnodes,1,
623 &K[0][0],3,3,0,
624 Bprime,3,numnodes,0,
625 &Ke->values[0],1);
626 }
627 else if(stabilization==2){
628 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
629 tau_parameter=element->StabilizationParameter(u-um,v-vm,w-wm,diameter,kappa/rho_ice);
630 for(int i=0;i<numnodes;i++){
631 for(int j=0;j<numnodes;j++){
632 Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*
[16895]633 ((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i])*((u-um)*dbasis[0*numnodes+j]+(v-vm)*dbasis[1*numnodes+j]+(w-wm)*dbasis[2*numnodes+j]);
[16888]634 }
635 }
636 if(dt!=0.){
[16896]637 D_scalar=gauss->weight*Jdet;
[16888]638 for(int i=0;i<numnodes;i++){
639 for(int j=0;j<numnodes;j++){
[16895]640 Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*basis[j]*((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i]);
[16888]641 }
642 }
643 }
644 }
645 }
646
647 /*Clean up and return*/
648 xDelete<IssmDouble>(xyz_list);
649 xDelete<IssmDouble>(basis);
650 xDelete<IssmDouble>(dbasis);
651 xDelete<IssmDouble>(B);
652 xDelete<IssmDouble>(Bprime);
653 delete gauss;
654 return Ke;
655}/*}}}*/
656ElementMatrix* EnthalpyAnalysis::CreateKMatrixShelf(Element* element){/*{{{*/
657
[17434]658 /* Check if ice in element */
659 if(!element->IsIceInElement()) return NULL;
660
[16888]661 /*Initialize Element matrix and return if necessary*/
[17585]662 if(!element->IsOnBase() || !element->IsFloating()) return NULL;
[16888]663
[16986]664 /*Intermediaries*/
[16888]665 IssmDouble dt,Jdet,D;
666 IssmDouble *xyz_list_base = NULL;
667
668 /*Fetch number of nodes for this finite element*/
669 int numnodes = element->GetNumberOfNodes();
670
671 /*Initialize vectors*/
672 ElementMatrix* Ke = element->NewElementMatrix();
673 IssmDouble* basis = xNew<IssmDouble>(numnodes);
674
675 /*Retrieve all inputs and parameters*/
676 element->GetVerticesCoordinatesBase(&xyz_list_base);
677 element->FindParam(&dt,TimesteppingTimeStepEnum);
678 IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
[17946]679 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
[16888]680 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
681 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
682 IssmDouble mixed_layer_capacity= element->GetMaterialParameter(MaterialsMixedLayerCapacityEnum);
683 IssmDouble thermal_exchange_vel= element->GetMaterialParameter(MaterialsThermalExchangeVelocityEnum);
684
685 /* Start looping on the number of gaussian points: */
[19637]686 Gauss* gauss=element->NewGaussBase(4);
[16888]687 for(int ig=gauss->begin();ig<gauss->end();ig++){
688 gauss->GaussPoint(ig);
689
690 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
691 element->NodalFunctions(basis,gauss);
692
693 D=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel/(heatcapacity*rho_ice);
694 if(reCast<bool,IssmDouble>(dt)) D=dt*D;
695 TripleMultiply(basis,numnodes,1,0,
696 &D,1,1,0,
697 basis,1,numnodes,0,
698 &Ke->values[0],1);
699
700 }
701
702 /*Clean up and return*/
703 delete gauss;
704 xDelete<IssmDouble>(basis);
705 xDelete<IssmDouble>(xyz_list_base);
706 return Ke;
707}/*}}}*/
[16782]708ElementVector* EnthalpyAnalysis::CreatePVector(Element* element){/*{{{*/
[16812]709
[17434]710 /* Check if ice in element */
711 if(!element->IsIceInElement()) return NULL;
712
[16812]713 /*compute all load vectors for this element*/
714 ElementVector* pe1=CreatePVectorVolume(element);
715 ElementVector* pe2=CreatePVectorSheet(element);
716 ElementVector* pe3=CreatePVectorShelf(element);
717 ElementVector* pe =new ElementVector(pe1,pe2,pe3);
718
719 /*clean-up and return*/
720 delete pe1;
721 delete pe2;
722 delete pe3;
723 return pe;
[16782]724}/*}}}*/
[16812]725ElementVector* EnthalpyAnalysis::CreatePVectorVolume(Element* element){/*{{{*/
726
[17434]727 /* Check if ice in element */
728 if(!element->IsIceInElement()) return NULL;
729
[16812]730 /*Intermediaries*/
[17014]731 int i, stabilization;
[16812]732 IssmDouble Jdet,phi,dt;
[17014]733 IssmDouble enthalpy, Hpmp;
734 IssmDouble enthalpypicard, d1enthalpypicard[3];
735 IssmDouble pressure, d1pressure[3], d2pressure;
736 IssmDouble waterfractionpicard;
737 IssmDouble kappa,tau_parameter,diameter,kappa_w;
[16812]738 IssmDouble u,v,w;
[17014]739 IssmDouble scalar_def, scalar_sens ,scalar_transient;
[16812]740 IssmDouble* xyz_list = NULL;
[17014]741 IssmDouble d1H_d1P, d1P2;
[16812]742
743 /*Fetch number of nodes and dof for this finite element*/
744 int numnodes = element->GetNumberOfNodes();
745 int numvertices = element->GetNumberOfVertices();
746
747 /*Initialize Element vector*/
748 ElementVector* pe = element->NewElementVector();
749 IssmDouble* basis = xNew<IssmDouble>(numnodes);
750 IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
751
752 /*Retrieve all inputs and parameters*/
753 element->GetVerticesCoordinates(&xyz_list);
754 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
[17014]755 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
[16812]756 IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
[17014]757 IssmDouble temperateiceconductivity = element->GetMaterialParameter(MaterialsTemperateiceconductivityEnum);
758 IssmDouble beta = element->GetMaterialParameter(MaterialsBetaEnum);
759 IssmDouble latentheat = element->GetMaterialParameter(MaterialsLatentheatEnum);
[16812]760 element->FindParam(&dt,TimesteppingTimeStepEnum);
761 element->FindParam(&stabilization,ThermalStabilizationEnum);
762 Input* vx_input=element->GetInput(VxEnum); _assert_(vx_input);
763 Input* vy_input=element->GetInput(VyEnum); _assert_(vy_input);
764 Input* vz_input=element->GetInput(VzEnum); _assert_(vz_input);
[17014]765 Input* enthalpypicard_input=element->GetInput(EnthalpyPicardEnum); _assert_(enthalpypicard_input);
766 Input* pressure_input=element->GetInput(PressureEnum); _assert_(pressure_input);
767 Input* enthalpy_input=NULL;
[16812]768 if(reCast<bool,IssmDouble>(dt)){enthalpy_input = element->GetInput(EnthalpyEnum); _assert_(enthalpy_input);}
769 if(stabilization==2){
770 diameter=element->MinEdgeLength(xyz_list);
[17027]771 kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
[16812]772 }
773
774 /* Start looping on the number of gaussian points: */
[19637]775 Gauss* gauss=element->NewGauss(4);
[16812]776 for(int ig=gauss->begin();ig<gauss->end();ig++){
777 gauss->GaussPoint(ig);
778
779 element->JacobianDeterminant(&Jdet,xyz_list,gauss);
780 element->NodalFunctions(basis,gauss);
[17014]781
782 /*viscous dissipation*/
[16812]783 element->ViscousHeating(&phi,xyz_list,gauss,vx_input,vy_input,vz_input);
784
785 scalar_def=phi/rho_ice*Jdet*gauss->weight;
[16895]786 if(dt!=0.) scalar_def=scalar_def*dt;
[16812]787
[17014]788 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_def*basis[i];
[16812]789
[17014]790 /*sensible heat flux in temperate ice*/
791 enthalpypicard_input->GetInputValue(&enthalpypicard,gauss);
792 pressure_input->GetInputValue(&pressure,gauss);
793 Hpmp=this->PureIceEnthalpy(element, pressure);
794
795 if(enthalpypicard>=Hpmp){
796 enthalpypicard_input->GetInputDerivativeValue(&d1enthalpypicard[0],xyz_list,gauss);
797 pressure_input->GetInputDerivativeValue(&d1pressure[0],xyz_list,gauss);
798 d2pressure=0.; // for linear elements, 2nd derivative is zero
799
800 d1H_d1P=0.;
801 for(i=0;i<3;i++) d1H_d1P+=d1enthalpypicard[i]*d1pressure[i];
802 d1P2=0.;
803 for(i=0;i<3;i++) d1P2+=pow(d1pressure[i],2.);
804
805 scalar_sens=-beta*((temperateiceconductivity - thermalconductivity)/latentheat*(d1H_d1P + beta*heatcapacity*d1P2))/rho_ice;
806 if(dt!=0.) scalar_sens=scalar_sens*dt;
807 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_sens*basis[i];
808 }
809
[16812]810 /* Build transient now */
811 if(reCast<bool,IssmDouble>(dt)){
812 enthalpy_input->GetInputValue(&enthalpy, gauss);
813 scalar_transient=enthalpy*Jdet*gauss->weight;
[17014]814 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_transient*basis[i];
[16812]815 }
816
817 if(stabilization==2){
818 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
819
820 vx_input->GetInputValue(&u,gauss);
821 vy_input->GetInputValue(&v,gauss);
822 vz_input->GetInputValue(&w,gauss);
[16895]823 tau_parameter=element->StabilizationParameter(u,v,w,diameter,kappa/rho_ice);
[16812]824
[17014]825 for(i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_def*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]);
[16895]826
827 if(dt!=0.){
[17014]828 for(i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_transient*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]);
[16812]829 }
830 }
831 }
832
833 /*Clean up and return*/
834 xDelete<IssmDouble>(basis);
835 xDelete<IssmDouble>(dbasis);
836 xDelete<IssmDouble>(xyz_list);
837 delete gauss;
838 return pe;
839
840}/*}}}*/
841ElementVector* EnthalpyAnalysis::CreatePVectorSheet(Element* element){/*{{{*/
[16888]842
[17434]843 /* Check if ice in element */
844 if(!element->IsIceInElement()) return NULL;
845
[17014]846 /* implementation of the basal condition decision chart of Aschwanden 2012, Fig.5 */
[17585]847 if(!element->IsOnBase() || element->IsFloating()) return NULL;
[16888]848
[20272]849 bool converged, isdynamicbasalspc;
[18612]850 int i, state;
[20272]851 int enthalpy_enum;
[18612]852 IssmDouble dt,Jdet,scalar;
853 IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
854 IssmDouble vx,vy,vz;
855 IssmDouble alpha2,basalfriction,geothermalflux,heatflux;
[16888]856 IssmDouble *xyz_list_base = NULL;
857
858 /*Fetch number of nodes for this finite element*/
859 int numnodes = element->GetNumberOfNodes();
860
861 /*Initialize vectors*/
862 ElementVector* pe = element->NewElementVector();
863 IssmDouble* basis = xNew<IssmDouble>(numnodes);
864
865 /*Retrieve all inputs and parameters*/
866 element->GetVerticesCoordinatesBase(&xyz_list_base);
867 element->FindParam(&dt,TimesteppingTimeStepEnum);
[18622]868 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
[20272]869 element->GetInputValue(&converged,ConvergedEnum);
870 if(dt==0. && !converged) enthalpy_enum=EnthalpyPicardEnum; // use enthalpy from last iteration
871 else enthalpy_enum=EnthalpyEnum; // use enthalpy from last time step
[16888]872 Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
873 Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
874 Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
[20272]875 Input* enthalpy_input = element->GetInput(enthalpy_enum); _assert_(enthalpy_input);
[18612]876 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
877 Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
878 Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
[16888]879 Input* geothermalflux_input = element->GetInput(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input);
[18612]880 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
[16888]881
882 /*Build friction element, needed later: */
883 Friction* friction=new Friction(element,3);
884
885 /* Start looping on the number of gaussian points: */
[19637]886 Gauss* gauss=element->NewGaussBase(4);
887 Gauss* gaussup=element->NewGaussTop(4);
[16888]888 for(int ig=gauss->begin();ig<gauss->end();ig++){
889 gauss->GaussPoint(ig);
[18665]890 gaussup->GaussPoint(ig);
[16888]891
892 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
893 element->NodalFunctions(basis,gauss);
894
[18622]895 if(isdynamicbasalspc){
896 enthalpy_input->GetInputValue(&enthalpy,gauss);
897 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
898 pressure_input->GetInputValue(&pressure,gauss);
899 pressure_input->GetInputValue(&pressureup,gaussup);
900 watercolumn_input->GetInputValue(&watercolumn,gauss);
901 meltingrate_input->GetInputValue(&meltingrate,gauss);
902 state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
903 }
904 else
905 state=0;
[16888]906
[18612]907 switch (state) {
[20272]908 case 0: case 1: case 2: case 3:
909 // cold, dry base; cold, wet base; refreezing temperate base; thin temperate base:
910 // Apply basal surface forcing.
911 // Interpolated values of enthalpy on gauss nodes may indicate cold base,
912 // although one node might have become temperate. So keep heat flux switched on.
[18612]913 geothermalflux_input->GetInputValue(&geothermalflux,gauss);
914 friction->GetAlpha2(&alpha2,gauss);
915 vx_input->GetInputValue(&vx,gauss);
916 vy_input->GetInputValue(&vy,gauss);
917 vz_input->GetInputValue(&vz,gauss);
918 basalfriction=alpha2*(vx*vx+vy*vy+vz*vz);
919 heatflux=(basalfriction+geothermalflux)/(rho_ice);
920 scalar=gauss->weight*Jdet*heatflux;
921 if(dt!=0.) scalar=dt*scalar;
922 for(i=0;i<numnodes;i++)
923 pe->values[i]+=scalar*basis[i];
924 break;
925 case 4:
926 // temperate, thick melting base: set grad H*n=0
927 for(i=0;i<numnodes;i++)
928 pe->values[i]+=0.;
929 break;
930 default:
931 _printf0_(" unknown thermal basal state found!");
[16888]932 }
933 }
934
935 /*Clean up and return*/
936 delete gauss;
937 delete gaussup;
938 delete friction;
939 xDelete<IssmDouble>(basis);
940 xDelete<IssmDouble>(xyz_list_base);
941 return pe;
942
[16812]943}/*}}}*/
944ElementVector* EnthalpyAnalysis::CreatePVectorShelf(Element* element){/*{{{*/
945
[17434]946 /* Check if ice in element */
947 if(!element->IsIceInElement()) return NULL;
948
[16888]949 /*Get basal element*/
[17585]950 if(!element->IsOnBase() || !element->IsFloating()) return NULL;
[16888]951
[18612]952 IssmDouble Hpmp,dt,Jdet,scalar_ocean,pressure;
[16812]953 IssmDouble *xyz_list_base = NULL;
954
955 /*Fetch number of nodes for this finite element*/
956 int numnodes = element->GetNumberOfNodes();
957
958 /*Initialize vectors*/
959 ElementVector* pe = element->NewElementVector();
960 IssmDouble* basis = xNew<IssmDouble>(numnodes);
961
962 /*Retrieve all inputs and parameters*/
963 element->GetVerticesCoordinatesBase(&xyz_list_base);
964 element->FindParam(&dt,TimesteppingTimeStepEnum);
965 Input* pressure_input=element->GetInput(PressureEnum); _assert_(pressure_input);
966 IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
[17946]967 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
[16812]968 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
969 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
970 IssmDouble mixed_layer_capacity= element->GetMaterialParameter(MaterialsMixedLayerCapacityEnum);
971 IssmDouble thermal_exchange_vel= element->GetMaterialParameter(MaterialsThermalExchangeVelocityEnum);
972
973 /* Start looping on the number of gaussian points: */
[19637]974 Gauss* gauss=element->NewGaussBase(4);
[16812]975 for(int ig=gauss->begin();ig<gauss->end();ig++){
976 gauss->GaussPoint(ig);
977
978 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
979 element->NodalFunctions(basis,gauss);
980
981 pressure_input->GetInputValue(&pressure,gauss);
[18612]982 Hpmp=element->PureIceEnthalpy(pressure);
[16812]983
[18612]984 scalar_ocean=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel*Hpmp/(heatcapacity*rho_ice);
[16812]985 if(reCast<bool,IssmDouble>(dt)) scalar_ocean=dt*scalar_ocean;
986
987 for(int i=0;i<numnodes;i++) pe->values[i]+=scalar_ocean*basis[i];
988 }
989
990 /*Clean up and return*/
991 delete gauss;
992 xDelete<IssmDouble>(basis);
993 xDelete<IssmDouble>(xyz_list_base);
994 return pe;
995}/*}}}*/
[18930]996void EnthalpyAnalysis::DrainWaterfraction(FemModel* femmodel){/*{{{*/
997 /*Drain excess water fraction in ice column: */
[18612]998 for(int i=0;i<femmodel->elements->Size();i++){
999 Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
[18930]1000 DrainWaterfractionIcecolumn(element);
[17166]1001 }
[17002]1002}/*}}}*/
[18930]1003void EnthalpyAnalysis::DrainWaterfraction(Element* element, IssmDouble* pdrainrate_element){/*{{{*/
[17002]1004
[17434]1005 /* Check if ice in element */
1006 if(!element->IsIceInElement()) return;
1007
[18930]1008 /*Intermediaries*/
1009 int iv,is,vertexdown,vertexup,numsegments;
1010 IssmDouble dt, height_element;
1011 IssmDouble rho_water, rho_ice;
1012 int numvertices = element->GetNumberOfVertices();
[17434]1013
[18930]1014 IssmDouble* xyz_list = NULL;
1015 IssmDouble* enthalpies = xNew<IssmDouble>(numvertices);
1016 IssmDouble* pressures = xNew<IssmDouble>(numvertices);
1017 IssmDouble* temperatures = xNew<IssmDouble>(numvertices);
1018 IssmDouble* waterfractions = xNew<IssmDouble>(numvertices);
1019 IssmDouble* deltawaterfractions = xNew<IssmDouble>(numvertices);
[17014]1020 int *pairindices = NULL;
[18930]1021
1022 rho_ice=element->GetMaterialParameter(MaterialsRhoIceEnum);
1023 rho_water=element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
[17014]1024
1025 element->GetVerticesCoordinates(&xyz_list);
[18930]1026 element->GetInputListOnVertices(enthalpies,EnthalpyEnum);
1027 element->GetInputListOnVertices(pressures,PressureEnum);
1028
[18667]1029 element->FindParam(&dt,TimesteppingTimeStepEnum);
[18930]1030 for(iv=0;iv<numvertices;iv++){
1031 element->EnthalpyToThermal(&temperatures[iv],&waterfractions[iv], enthalpies[iv],pressures[iv]);
1032 deltawaterfractions[iv]=DrainageFunctionWaterfraction(waterfractions[iv], dt);
1033 }
1034
1035 /*drain waterfraction, feed updated variables back into model*/
1036 for(iv=0;iv<numvertices;iv++){
1037 if(reCast<bool,IssmDouble>(dt))
1038 waterfractions[iv]-=deltawaterfractions[iv]*dt;
1039 else
1040 waterfractions[iv]-=deltawaterfractions[iv];
1041 element->ThermalToEnthalpy(&enthalpies[iv], temperatures[iv], waterfractions[iv], pressures[iv]);
1042 }
1043 element->AddInput(EnthalpyEnum,enthalpies,P1Enum);
1044 element->AddInput(WaterfractionEnum,waterfractions,P1Enum);
[18667]1045
[18930]1046 /*return meltwater column equivalent to drained water*/
[17014]1047 element->VerticalSegmentIndices(&pairindices,&numsegments);
[18612]1048 for(is=0;is<numsegments;is++){
[17014]1049 vertexdown = pairindices[is*2+0];
1050 vertexup = pairindices[is*2+1];
[18930]1051 height_element=fabs(xyz_list[vertexup*3+2]-xyz_list[vertexdown*3+2]);
1052 pdrainrate_element[is]=(deltawaterfractions[vertexdown]+deltawaterfractions[vertexup])/2.*height_element; // return water equivalent of drainage
1053 _assert_(pdrainrate_element[is]>=0.);
[18667]1054 }
[17014]1055
1056 /*Clean up and return*/
[17981]1057 xDelete<int>(pairindices);
[18930]1058 xDelete<IssmDouble>(xyz_list);
[18612]1059 xDelete<IssmDouble>(enthalpies);
1060 xDelete<IssmDouble>(pressures);
[18930]1061 xDelete<IssmDouble>(temperatures);
1062 xDelete<IssmDouble>(waterfractions);
1063 xDelete<IssmDouble>(deltawaterfractions);
[17166]1064}/*}}}*/
[18930]1065void EnthalpyAnalysis::DrainWaterfractionIcecolumn(Element* element){/*{{{*/
[17166]1066
[17434]1067 /* Check if ice in element */
1068 if(!element->IsIceInElement()) return;
1069
[17166]1070 /* Only drain waterfraction of ice column from element at base*/
[17585]1071 if(!element->IsOnBase()) return; //FIXME: allow freeze on for floating elements
[17166]1072
1073 /* Intermediaries*/
1074 int is, numvertices, numsegments;
1075 int *pairindices = NULL;
1076
1077 numvertices=element->GetNumberOfVertices();
1078 element->VerticalSegmentIndices(&pairindices,&numsegments);
1079
1080 IssmDouble* watercolumn = xNew<IssmDouble>(numvertices);
1081 IssmDouble* drainrate_column = xNew<IssmDouble>(numsegments);
1082 IssmDouble* drainrate_element = xNew<IssmDouble>(numsegments);
1083
1084 element->GetInputListOnVertices(watercolumn,WatercolumnEnum);
1085
1086 for(is=0;is<numsegments;is++) drainrate_column[is]=0.;
1087 Element* elementi = element;
1088 for(;;){
1089 for(is=0;is<numsegments;is++) drainrate_element[is]=0.;
1090 DrainWaterfraction(elementi,drainrate_element); // TODO: make sure every vertex is only drained once
1091 for(is=0;is<numsegments;is++) drainrate_column[is]+=drainrate_element[is];
1092
1093 if(elementi->IsOnSurface()) break;
1094 elementi=elementi->GetUpperElement();
1095 }
1096 /* add drained water to water column*/
1097 for(is=0;is<numsegments;is++) watercolumn[is]+=drainrate_column[is];
1098 /* Feed updated water column back into model */
1099 element->AddInput(WatercolumnEnum,watercolumn,P1Enum);
1100
[17608]1101 xDelete<int>(pairindices);
[17014]1102 xDelete<IssmDouble>(drainrate_column);
1103 xDelete<IssmDouble>(drainrate_element);
[17166]1104 xDelete<IssmDouble>(watercolumn);
[17002]1105}/*}}}*/
[18930]1106IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameter(Element* element,IssmDouble enthalpy,IssmDouble pressure){/*{{{*/
[17014]1107
[18930]1108 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
1109 IssmDouble temperateiceconductivity = element->GetMaterialParameter(MaterialsTemperateiceconductivityEnum);
1110 IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
[17434]1111
[18930]1112 if(enthalpy < PureIceEnthalpy(element,pressure)){
1113 return thermalconductivity/heatcapacity;
1114 }
1115 else{
1116 return temperateiceconductivity/heatcapacity;
1117 }
1118}/*}}}*/
1119IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameterVolume(Element* element,int enthalpy_enum){/*{{{*/
[17014]1120
[18930]1121 int iv;
1122 IssmDouble lambda; /* fraction of cold ice */
1123 IssmDouble kappa,kappa_c,kappa_t; /* enthalpy conductivities */
1124 IssmDouble Hc,Ht;
[17014]1125
[18930]1126 /*Get pressures and enthalpies on vertices*/
1127 int numvertices = element->GetNumberOfVertices();
1128 IssmDouble* pressures = xNew<IssmDouble>(numvertices);
1129 IssmDouble* enthalpies = xNew<IssmDouble>(numvertices);
1130 IssmDouble* PIE = xNew<IssmDouble>(numvertices);
1131 IssmDouble* dHpmp = xNew<IssmDouble>(numvertices);
[17014]1132 element->GetInputListOnVertices(pressures,PressureEnum);
[18930]1133 element->GetInputListOnVertices(enthalpies,enthalpy_enum);
1134 for(iv=0;iv<numvertices;iv++){
1135 PIE[iv] = PureIceEnthalpy(element,pressures[iv]);
1136 dHpmp[iv] = enthalpies[iv]-PIE[iv];
1137 }
[17014]1138
[18930]1139 bool allequalsign = true;
1140 if(dHpmp[0]<0.){
1141 for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]<0.));
[17014]1142 }
[18930]1143 else{
1144 for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]>=0.));
[17014]1145 }
1146
[18930]1147 if(allequalsign){
1148 kappa = EnthalpyDiffusionParameter(element,enthalpies[0],pressures[0]);
[17014]1149 }
[18930]1150 else{
1151 /* return harmonic mean of thermal conductivities, weighted by fraction of cold/temperate ice,
1152 cf Patankar 1980, pp44 */
1153 kappa_c = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)-1.,0.);
1154 kappa_t = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)+1.,0.);
1155 Hc=0.; Ht=0.;
1156 for(iv=0; iv<numvertices;iv++){
1157 if(enthalpies[iv]<PIE[iv])
1158 Hc+=(PIE[iv]-enthalpies[iv]);
1159 else
1160 Ht+=(enthalpies[iv]-PIE[iv]);
1161 }
1162 _assert_((Hc+Ht)>0.);
1163 lambda = Hc/(Hc+Ht);
1164 kappa = kappa_c*kappa_t/(lambda*kappa_t+(1.-lambda)*kappa_c); // ==(lambda/kappa_c + (1.-lambda)/kappa_t)^-1
1165 }
[17014]1166
1167 /*Clean up and return*/
[18930]1168 xDelete<IssmDouble>(PIE);
1169 xDelete<IssmDouble>(dHpmp);
1170 xDelete<IssmDouble>(pressures);
[17014]1171 xDelete<IssmDouble>(enthalpies);
[18930]1172 return kappa;
[17002]1173}/*}}}*/
[18930]1174void EnthalpyAnalysis::GetBAdvec(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
1175 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
1176 * For node i, Bi' can be expressed in the actual coordinate system
1177 * by:
1178 * Bi_advec =[ h ]
1179 * [ h ]
1180 * [ h ]
1181 * where h is the interpolation function for node i.
1182 *
1183 * We assume B has been allocated already, of size: 3x(NDOF1*NUMNODESP1)
1184 */
[18659]1185
[18930]1186 /*Fetch number of nodes for this finite element*/
1187 int numnodes = element->GetNumberOfNodes();
[18659]1188
[18930]1189 /*Get nodal functions*/
1190 IssmDouble* basis=xNew<IssmDouble>(numnodes);
1191 element->NodalFunctions(basis,gauss);
[18659]1192
[18930]1193 /*Build B: */
1194 for(int i=0;i<numnodes;i++){
1195 B[numnodes*0+i] = basis[i];
1196 B[numnodes*1+i] = basis[i];
1197 B[numnodes*2+i] = basis[i];
[18659]1198 }
1199
[18930]1200 /*Clean-up*/
1201 xDelete<IssmDouble>(basis);
[18612]1202}/*}}}*/
[18930]1203void EnthalpyAnalysis::GetBAdvecprime(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
1204 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
1205 * For node i, Bi' can be expressed in the actual coordinate system
1206 * by:
1207 * Biprime_advec=[ dh/dx ]
1208 * [ dh/dy ]
1209 * [ dh/dz ]
1210 * where h is the interpolation function for node i.
1211 *
1212 * We assume B has been allocated already, of size: 3x(NDOF1*numnodes)
1213 */
[17002]1214
[18930]1215 /*Fetch number of nodes for this finite element*/
1216 int numnodes = element->GetNumberOfNodes();
[17434]1217
[18930]1218 /*Get nodal functions derivatives*/
1219 IssmDouble* dbasis=xNew<IssmDouble>(3*numnodes);
1220 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
[17434]1221
[18930]1222 /*Build B: */
1223 for(int i=0;i<numnodes;i++){
1224 B[numnodes*0+i] = dbasis[0*numnodes+i];
1225 B[numnodes*1+i] = dbasis[1*numnodes+i];
1226 B[numnodes*2+i] = dbasis[2*numnodes+i];
[18659]1227 }
1228
[18930]1229 /*Clean-up*/
1230 xDelete<IssmDouble>(dbasis);
[18659]1231}/*}}}*/
[18930]1232void EnthalpyAnalysis::GetBasalConstraints(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
[18659]1233
1234 /*Intermediary*/
1235 bool isdynamicbasalspc;
[18612]1236 IssmDouble dt;
1237
1238 /*Check wether dynamic basal boundary conditions are activated */
1239 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
1240 if(!isdynamicbasalspc) return;
1241
1242 element->FindParam(&dt,TimesteppingTimeStepEnum);
1243 if(dt==0.){
[18659]1244 GetBasalConstraintsSteadystate(vec_spc,element);
[18612]1245 }
1246 else{
[18659]1247 GetBasalConstraintsTransient(vec_spc,element);
[18612]1248 }
1249}/*}}}*/
[18930]1250void EnthalpyAnalysis::GetBasalConstraintsSteadystate(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
[18612]1251
1252 /* Check if ice in element */
1253 if(!element->IsIceInElement()) return;
1254
[20213]1255 /* Only update constraints at the base.
1256 * Floating ice is not affected by basal BC decision chart. */
[18612]1257 if(!(element->IsOnBase()) || element->IsFloating()) return;
1258
1259 /*Intermediary*/
1260 int numindices, numindicesup, state;
[17027]1261 int *indices = NULL, *indicesup = NULL;
[18612]1262 IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
[17014]1263
[18612]1264 /*Get parameters and inputs: */
[18930]1265 Input* enthalpy_input = element->GetInput(EnthalpyPicardEnum); _assert_(enthalpy_input);
[18612]1266 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
1267 Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
1268 Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
1269
[17027]1270 /*Fetch indices of basal & surface nodes for this finite element*/
1271 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
1272 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
[18612]1273 penta->SurfaceNodeIndices(&numindicesup,&indicesup,element->GetElementType()); _assert_(numindices==numindicesup);
[17014]1274
[18612]1275 GaussPenta* gauss=new GaussPenta();
1276 GaussPenta* gaussup=new GaussPenta();
1277 for(int i=0;i<numindices;i++){
1278 gauss->GaussNode(element->GetElementType(),indices[i]);
1279 gaussup->GaussNode(element->GetElementType(),indicesup[i]);
[18930]1280
[18612]1281 enthalpy_input->GetInputValue(&enthalpy,gauss);
1282 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
1283 pressure_input->GetInputValue(&pressure,gauss);
1284 pressure_input->GetInputValue(&pressureup,gaussup);
1285 watercolumn_input->GetInputValue(&watercolumn,gauss);
1286 meltingrate_input->GetInputValue(&meltingrate,gauss);
1287
1288 state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
1289 switch (state) {
1290 case 0:
1291 // cold, dry base: apply basal surface forcing
[18659]1292 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
[18612]1293 break;
1294 case 1:
1295 // cold, wet base: keep at pressure melting point
[18659]1296 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
[18612]1297 break;
1298 case 2:
[20098]1299 // temperate, thin refreezing base:
1300 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
[18612]1301 break;
1302 case 3:
1303 // temperate, thin melting base: set spc
[18659]1304 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
[18612]1305 break;
1306 case 4:
[20098]1307 // temperate, thick melting base:
[18930]1308 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
[18612]1309 break;
1310 default:
1311 _printf0_(" unknown thermal basal state found!");
1312 }
1313 }
1314
1315 /*Free ressources:*/
1316 xDelete<int>(indices);
1317 xDelete<int>(indicesup);
1318 delete gauss;
1319 delete gaussup;
1320}/*}}}*/
[18930]1321void EnthalpyAnalysis::GetBasalConstraintsTransient(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
[18612]1322
1323 /* Check if ice in element */
1324 if(!element->IsIceInElement()) return;
1325
[20213]1326 /* Only update constraints at the base.
1327 * Floating ice is not affected by basal BC decision chart.*/
[18612]1328 if(!(element->IsOnBase()) || element->IsFloating()) return;
1329
1330 /*Intermediary*/
1331 int numindices, numindicesup, state;
1332 int *indices = NULL, *indicesup = NULL;
1333 IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
1334
[17027]1335 /*Get parameters and inputs: */
[18930]1336 Input* enthalpy_input = element->GetInput(EnthalpyEnum); _assert_(enthalpy_input); //TODO: check EnthalpyPicard?
[18612]1337 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
1338 Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
1339 Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
[17014]1340
[18612]1341 /*Fetch indices of basal & surface nodes for this finite element*/
1342 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
1343 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
1344 penta->SurfaceNodeIndices(&numindicesup,&indicesup,element->GetElementType()); _assert_(numindices==numindicesup);
1345
[17027]1346 GaussPenta* gauss=new GaussPenta();
1347 GaussPenta* gaussup=new GaussPenta();
[18930]1348
[17027]1349 for(int i=0;i<numindices;i++){
1350 gauss->GaussNode(element->GetElementType(),indices[i]);
1351 gaussup->GaussNode(element->GetElementType(),indicesup[i]);
[18930]1352
[18612]1353 enthalpy_input->GetInputValue(&enthalpy,gauss);
1354 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
1355 pressure_input->GetInputValue(&pressure,gauss);
1356 pressure_input->GetInputValue(&pressureup,gaussup);
[17027]1357 watercolumn_input->GetInputValue(&watercolumn,gauss);
[18612]1358 meltingrate_input->GetInputValue(&meltingrate,gauss);
1359
1360 state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
[18930]1361
[18612]1362 switch (state) {
1363 case 0:
1364 // cold, dry base: apply basal surface forcing
[18659]1365 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
[18612]1366 break;
1367 case 1:
1368 // cold, wet base: keep at pressure melting point
[18659]1369 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
[18612]1370 break;
1371 case 2:
1372 // temperate, thin refreezing base: release spc
[18659]1373 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
[18612]1374 break;
1375 case 3:
1376 // temperate, thin melting base: set spc
[18659]1377 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
[18612]1378 break;
1379 case 4:
[18930]1380 // temperate, thick melting base: set grad H*n=0
1381 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
[18612]1382 break;
1383 default:
1384 _printf0_(" unknown thermal basal state found!");
[17027]1385 }
[18930]1386
[17027]1387 }
[17014]1388
[17027]1389 /*Free ressources:*/
1390 xDelete<int>(indices);
1391 xDelete<int>(indicesup);
1392 delete gauss;
1393 delete gaussup;
[17002]1394}/*}}}*/
[18930]1395void EnthalpyAnalysis::GetBConduct(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
1396 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
1397 * For node i, Bi' can be expressed in the actual coordinate system
1398 * by:
1399 * Bi_conduct=[ dh/dx ]
1400 * [ dh/dy ]
1401 * [ dh/dz ]
1402 * where h is the interpolation function for node i.
1403 *
1404 * We assume B has been allocated already, of size: 3x(NDOF1*numnodes)
1405 */
[17002]1406
[18930]1407 /*Fetch number of nodes for this finite element*/
1408 int numnodes = element->GetNumberOfNodes();
1409
1410 /*Get nodal functions derivatives*/
1411 IssmDouble* dbasis=xNew<IssmDouble>(3*numnodes);
1412 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
1413
1414 /*Build B: */
1415 for(int i=0;i<numnodes;i++){
1416 B[numnodes*0+i] = dbasis[0*numnodes+i];
1417 B[numnodes*1+i] = dbasis[1*numnodes+i];
1418 B[numnodes*2+i] = dbasis[2*numnodes+i];
1419 }
1420
1421 /*Clean-up*/
1422 xDelete<IssmDouble>(dbasis);
1423}/*}}}*/
1424void EnthalpyAnalysis::GetSolutionFromInputs(Vector<IssmDouble>* solution,Element* element){/*{{{*/
1425 element->GetSolutionFromInputsOneDof(solution,EnthalpyEnum);
1426}/*}}}*/
1427int EnthalpyAnalysis::GetThermalBasalCondition(Element* element, IssmDouble enthalpy, IssmDouble enthalpyup, IssmDouble pressure, IssmDouble pressureup, IssmDouble watercolumn, IssmDouble meltingrate){/*{{{*/
1428
[18612]1429 /* Check if ice in element */
1430 if(!element->IsIceInElement()) return -1;
1431
1432 /* Only update Constraints at the base of grounded ice*/
1433 if(!(element->IsOnBase())) return -1;
1434
1435 /*Intermediary*/
1436 int state=-1;
1437 IssmDouble dt;
1438
1439 /*Get parameters and inputs: */
1440 element->FindParam(&dt,TimesteppingTimeStepEnum);
1441
[18620]1442 if(enthalpy<PureIceEnthalpy(element,pressure)){
1443 if(watercolumn<=0.) state=0; // cold, dry base
1444 else state=1; // cold, wet base (refreezing)
[18612]1445 }
[18620]1446 else{
1447 if(enthalpyup<PureIceEnthalpy(element,pressureup)){
1448 if((dt==0.) && (meltingrate<0.)) state=2; // refreezing temperate base (non-physical, only for steadystate solver)
1449 else state=3; // temperate base, but no temperate layer
[18612]1450 }
[18620]1451 else state=4; // temperate layer with positive thickness
[18612]1452 }
1453
1454 _assert_(state>=0);
1455 return state;
1456}/*}}}*/
[18930]1457IssmDouble EnthalpyAnalysis::GetWetIceConductivity(Element* element, IssmDouble enthalpy, IssmDouble pressure){/*{{{*/
[18612]1458
1459 IssmDouble temperature, waterfraction;
1460 IssmDouble kappa_w = 0.6; // thermal conductivity of water (in W/m/K)
1461 IssmDouble kappa_i = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
1462 element->EnthalpyToThermal(&temperature, &waterfraction, enthalpy, pressure);
1463
1464 return (1.-waterfraction)*kappa_i + waterfraction*kappa_w;
1465}/*}}}*/
[18930]1466void EnthalpyAnalysis::GradientJ(Vector<IssmDouble>* gradient,Element* element,int control_type,int control_index){/*{{{*/
1467 _error_("Not implemented yet");
1468}/*}}}*/
1469void EnthalpyAnalysis::InputUpdateFromSolution(IssmDouble* solution,Element* element){/*{{{*/
[18612]1470
[18930]1471 bool converged;
1472 int i,rheology_law;
1473 IssmDouble B_average,s_average,T_average=0.,P_average=0.;
[21382]1474 IssmDouble n=3.0;
[18930]1475 int *doflist = NULL;
1476 IssmDouble *xyz_list = NULL;
[16888]1477
[18930]1478 /*Fetch number of nodes and dof for this finite element*/
1479 int numnodes = element->GetNumberOfNodes();
[16888]1480
[18930]1481 /*Fetch dof list and allocate solution vector*/
1482 element->GetDofList(&doflist,NoneApproximationEnum,GsetEnum);
1483 IssmDouble* values = xNew<IssmDouble>(numnodes);
1484 IssmDouble* pressure = xNew<IssmDouble>(numnodes);
1485 IssmDouble* surface = xNew<IssmDouble>(numnodes);
1486 IssmDouble* B = xNew<IssmDouble>(numnodes);
1487 IssmDouble* temperature = xNew<IssmDouble>(numnodes);
1488 IssmDouble* waterfraction = xNew<IssmDouble>(numnodes);
[16888]1489
[18930]1490 /*Use the dof list to index into the solution vector: */
1491 for(i=0;i<numnodes;i++){
1492 values[i]=solution[doflist[i]];
[16888]1493
[18930]1494 /*Check solution*/
1495 if(xIsNan<IssmDouble>(values[i])) _error_("NaN found in solution vector");
[20669]1496 if(xIsInf<IssmDouble>(values[i])) _error_("Inf found in solution vector");
[16888]1497 }
1498
[18930]1499 /*Get all inputs and parameters*/
[21382]1500 if(element->material->ObjectEnum()!=MatestarEnum) n=element->GetMaterialParameter(MaterialsRheologyNEnum);
[18930]1501 element->GetInputValue(&converged,ConvergedEnum);
1502 element->GetInputListOnNodes(&pressure[0],PressureEnum);
1503 if(converged){
1504 for(i=0;i<numnodes;i++){
1505 element->EnthalpyToThermal(&temperature[i],&waterfraction[i],values[i],pressure[i]);
1506 if(waterfraction[i]<0.) _error_("Negative water fraction found in solution vector");
1507 //if(waterfraction[i]>1.) _error_("Water fraction >1 found in solution vector");
1508 }
1509 element->AddInput(EnthalpyEnum,values,element->GetElementType());
1510 element->AddInput(WaterfractionEnum,waterfraction,element->GetElementType());
1511 element->AddInput(TemperatureEnum,temperature,element->GetElementType());
1512
1513 /*Update Rheology only if converged (we must make sure that the temperature is below melting point
1514 * otherwise the rheology could be negative*/
1515 element->FindParam(&rheology_law,MaterialsRheologyLawEnum);
1516 element->GetInputListOnNodes(&surface[0],SurfaceEnum);
1517 switch(rheology_law){
1518 case NoneEnum:
1519 /*Do nothing: B is not temperature dependent*/
1520 break;
[21377]1521 case BuddJackaEnum:
1522 for(i=0;i<numnodes;i++) B[i]=BuddJacka(temperature[i]);
1523 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1524 break;
[18930]1525 case CuffeyEnum:
1526 for(i=0;i<numnodes;i++) B[i]=Cuffey(temperature[i]);
1527 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1528 break;
[20625]1529 case CuffeyTemperateEnum:
[21382]1530 for(i=0;i<numnodes;i++) B[i]=CuffeyTemperate(temperature[i], waterfraction[i],n);
[20625]1531 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1532 break;
[18930]1533 case PatersonEnum:
1534 for(i=0;i<numnodes;i++) B[i]=Paterson(temperature[i]);
1535 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1536 break;
1537 case ArrheniusEnum:
1538 element->GetVerticesCoordinates(&xyz_list);
[21382]1539 for(i=0;i<numnodes;i++) B[i]=Arrhenius(temperature[i],surface[i]-xyz_list[i*3+2],n);
[18930]1540 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1541 break;
1542 case LliboutryDuvalEnum:
[21382]1543 for(i=0;i<numnodes;i++) B[i]=LliboutryDuval(values[i],pressure[i],n,element->GetMaterialParameter(MaterialsBetaEnum),element->GetMaterialParameter(ConstantsReferencetemperatureEnum),element->GetMaterialParameter(MaterialsHeatcapacityEnum),element->GetMaterialParameter(MaterialsLatentheatEnum));
[18930]1544 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1545 break;
1546 default: _error_("Rheology law " << EnumToStringx(rheology_law) << " not supported yet");
1547 }
[16888]1548 }
1549 else{
[18930]1550 element->AddInput(EnthalpyPicardEnum,values,element->GetElementType());
[16888]1551 }
1552
[18930]1553 /*Free ressources:*/
1554 xDelete<IssmDouble>(values);
1555 xDelete<IssmDouble>(pressure);
1556 xDelete<IssmDouble>(surface);
1557 xDelete<IssmDouble>(B);
1558 xDelete<IssmDouble>(temperature);
1559 xDelete<IssmDouble>(waterfraction);
1560 xDelete<IssmDouble>(xyz_list);
1561 xDelete<int>(doflist);
1562}/*}}}*/
1563void EnthalpyAnalysis::PostProcessing(FemModel* femmodel){/*{{{*/
[16888]1564
[18930]1565 /*Intermediaries*/
1566 bool computebasalmeltingrates=true;
1567 bool drainicecolumn=true;
1568 IssmDouble dt;
1569
1570 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
1571
[21161]1572 if(drainicecolumn && (dt>0.)) DrainWaterfraction(femmodel);
[18930]1573 if(computebasalmeltingrates) ComputeBasalMeltingrate(femmodel);
1574
[17027]1575}/*}}}*/
[18930]1576IssmDouble EnthalpyAnalysis::PureIceEnthalpy(Element* element,IssmDouble pressure){/*{{{*/
[16888]1577
1578 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
1579 IssmDouble referencetemperature = element->GetMaterialParameter(ConstantsReferencetemperatureEnum);
1580
1581 return heatcapacity*(TMeltingPoint(element,pressure)-referencetemperature);
1582}/*}}}*/
[18930]1583IssmDouble EnthalpyAnalysis::TMeltingPoint(Element* element,IssmDouble pressure){/*{{{*/
[16888]1584
1585 IssmDouble meltingpoint = element->GetMaterialParameter(MaterialsMeltingpointEnum);
1586 IssmDouble beta = element->GetMaterialParameter(MaterialsBetaEnum);
1587
1588 return meltingpoint-beta*pressure;
1589}/*}}}*/
[18930]1590void EnthalpyAnalysis::UpdateBasalConstraints(FemModel* femmodel){/*{{{*/
1591
1592 /*Update basal dirichlet BCs for enthalpy: */
1593 Vector<IssmDouble>* spc = NULL;
1594 IssmDouble* serial_spc = NULL;
1595
1596 spc=new Vector<IssmDouble>(femmodel->nodes->NumberOfNodes(EnthalpyAnalysisEnum));
1597 /*First create a vector to figure out what elements should be constrained*/
1598 for(int i=0;i<femmodel->elements->Size();i++){
1599 Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1600 GetBasalConstraints(spc,element);
1601 }
1602
1603 /*Assemble and serialize*/
1604 spc->Assemble();
1605 serial_spc=spc->ToMPISerial();
1606 delete spc;
1607
1608 /*Then update basal constraints nodes accordingly*/
1609 for(int i=0;i<femmodel->elements->Size();i++){
1610 Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1611 ApplyBasalConstraints(serial_spc,element);
1612 }
1613
1614 femmodel->UpdateConstraintsx();
1615
1616 /*Delete*/
1617 xDelete<IssmDouble>(serial_spc);
1618}/*}}}*/
1619void EnthalpyAnalysis::UpdateConstraints(FemModel* femmodel){/*{{{*/
[20453]1620 SetActiveNodesLSMx(femmodel);
[18930]1621}/*}}}*/
Note: See TracBrowser for help on using the repository browser.