source: issm/trunk-jpl/src/c/analyses/EnthalpyAnalysis.cpp@ 18930

Last change on this file since 18930 was 18930, checked in by seroussi, 10 years ago

CHG: minor ordering

File size: 60.0 KB
RevLine 
[16534]1#include "./EnthalpyAnalysis.h"
2#include "../toolkits/toolkits.h"
3#include "../classes/classes.h"
4#include "../shared/shared.h"
5#include "../modules/modules.h"
[18591]6#include "../solutionsequences/solutionsequences.h"
[16534]7
8/*Model processing*/
[18930]9void EnthalpyAnalysis::CreateConstraints(Constraints* constraints,IoModel* iomodel){/*{{{*/
[16604]10
[18930]11 /*Intermediary*/
12 int count;
13 int M,N;
14 bool spcpresent = false;
15 IssmDouble heatcapacity;
16 IssmDouble referencetemperature;
[16604]17
[18930]18 /*Output*/
19 IssmDouble *spcvector = NULL;
20 IssmDouble* times=NULL;
21 IssmDouble* values=NULL;
[16604]22
[18930]23 /*Fetch parameters: */
24 iomodel->Constant(&heatcapacity,MaterialsHeatcapacityEnum);
25 iomodel->Constant(&referencetemperature,ConstantsReferencetemperatureEnum);
[18732]26
[18930]27 /*return if 2d mesh*/
28 if(iomodel->domaintype==Domain2DhorizontalEnum) return;
29
30 /*Fetch data: */
31 iomodel->FetchData(&spcvector,&M,&N,ThermalSpctemperatureEnum);
32
33 //FIX ME: SHOULD USE IOMODELCREATECONSTRAINTS
34 /*Transient or static?:*/
35 if(M==iomodel->numberofvertices){
36 /*static: just create Constraints objects*/
37 count=0;
38
39 for(int i=0;i<iomodel->numberofvertices;i++){
40 /*keep only this partition's nodes:*/
41 if((iomodel->my_vertices[i])){
42
43 if (!xIsNan<IssmDouble>(spcvector[i])){
44
45 constraints->AddObject(new SpcStatic(iomodel->constraintcounter+count+1,iomodel->nodecounter+i+1,0,heatcapacity*(spcvector[i]-referencetemperature),EnthalpyAnalysisEnum));
46 count++;
47
48 }
49 }
50 }
51 }
52 else if (M==(iomodel->numberofvertices+1)){
53 /*transient: create transient SpcTransient objects. Same logic, except we need to retrieve
54 * various times and values to initialize an SpcTransient object: */
55 count=0;
56
57 /*figure out times: */
58 times=xNew<IssmDouble>(N);
59 for(int j=0;j<N;j++){
60 times[j]=spcvector[(M-1)*N+j];
61 }
62
63 /*Create constraints from x,y,z: */
64 for(int i=0;i<iomodel->numberofvertices;i++){
65
66 /*keep only this partition's nodes:*/
67 if((iomodel->my_vertices[i])){
68
69 /*figure out times and values: */
70 values=xNew<IssmDouble>(N);
71 spcpresent=false;
72 for(int j=0;j<N;j++){
73 values[j]=heatcapacity*(spcvector[i*N+j]-referencetemperature);
74 if(!xIsNan<IssmDouble>(values[j]))spcpresent=true; //NaN means no spc by default
75 }
76
77 if(spcpresent){
78 constraints->AddObject(new SpcTransient(iomodel->constraintcounter+count+1,iomodel->nodecounter+i+1,0,N,times,values,EnthalpyAnalysisEnum));
79 count++;
80 }
81 xDelete<IssmDouble>(values);
82 }
83 }
84 }
85 else{
86 _error_("Size of field " << EnumToStringx(ThermalSpctemperatureEnum) << " not supported");
87 }
88
89 /*Free ressources:*/
90 iomodel->DeleteData(spcvector,ThermalSpctemperatureEnum);
91 xDelete<IssmDouble>(times);
92 xDelete<IssmDouble>(values);
[16539]93}/*}}}*/
[18930]94void EnthalpyAnalysis::CreateLoads(Loads* loads, IoModel* iomodel){/*{{{*/
95
96 /*No loads */
97}/*}}}*/
98void EnthalpyAnalysis::CreateNodes(Nodes* nodes,IoModel* iomodel){/*{{{*/
99
100 if(iomodel->domaintype==Domain3DEnum) iomodel->FetchData(2,MeshVertexonbaseEnum,MeshVertexonsurfaceEnum);
101 ::CreateNodes(nodes,iomodel,EnthalpyAnalysisEnum,P1Enum);
102 iomodel->DeleteData(2,MeshVertexonbaseEnum,MeshVertexonsurfaceEnum);
103}/*}}}*/
104int EnthalpyAnalysis::DofsPerNode(int** doflist,int domaintype,int approximation){/*{{{*/
105 return 1;
106}/*}}}*/
[16539]107void EnthalpyAnalysis::UpdateElements(Elements* elements,IoModel* iomodel,int analysis_counter,int analysis_type){/*{{{*/
108
[17952]109 bool dakota_analysis,islevelset,isenthalpy;
110 int frictionlaw;
[16539]111
112 /*Now, is the model 3d? otherwise, do nothing: */
[17700]113 if(iomodel->domaintype==Domain2DhorizontalEnum)return;
[16539]114
115 /*Is enthalpy requested?*/
116 iomodel->Constant(&isenthalpy,ThermalIsenthalpyEnum);
117 if(!isenthalpy) return;
118
119 /*Fetch data needed: */
120 iomodel->FetchData(3,TemperatureEnum,WaterfractionEnum,PressureEnum);
121
122 /*Update elements: */
123 int counter=0;
124 for(int i=0;i<iomodel->numberofelements;i++){
125 if(iomodel->my_elements[i]){
126 Element* element=(Element*)elements->GetObjectByOffset(counter);
127 element->Update(i,iomodel,analysis_counter,analysis_type,P1Enum);
128 counter++;
129 }
130 }
131
132 iomodel->Constant(&dakota_analysis,QmuIsdakotaEnum);
[17434]133 iomodel->Constant(&islevelset,TransientIslevelsetEnum);
[17956]134 iomodel->Constant(&frictionlaw,FrictionLawEnum);
[16539]135
136 iomodel->FetchDataToInput(elements,ThicknessEnum);
137 iomodel->FetchDataToInput(elements,SurfaceEnum);
[17555]138 iomodel->FetchDataToInput(elements,BaseEnum);
[16539]139 iomodel->FetchDataToInput(elements,MaskIceLevelsetEnum);
140 iomodel->FetchDataToInput(elements,MaskGroundediceLevelsetEnum);
[17886]141 if(iomodel->domaintype!=Domain2DhorizontalEnum){
142 iomodel->FetchDataToInput(elements,MeshVertexonbaseEnum);
143 iomodel->FetchDataToInput(elements,MeshVertexonsurfaceEnum);
144 }
[16539]145 iomodel->FetchDataToInput(elements,MaterialsRheologyBEnum);
146 iomodel->FetchDataToInput(elements,MaterialsRheologyNEnum);
147 iomodel->FetchDataToInput(elements,PressureEnum);
148 iomodel->FetchDataToInput(elements,TemperatureEnum);
149 iomodel->FetchDataToInput(elements,WaterfractionEnum);
150 iomodel->FetchDataToInput(elements,EnthalpyEnum);
151 iomodel->FetchDataToInput(elements,BasalforcingsGeothermalfluxEnum);
152 iomodel->FetchDataToInput(elements,WatercolumnEnum);
[18068]153 iomodel->FetchDataToInput(elements,BasalforcingsGroundediceMeltingRateEnum);
[16539]154 iomodel->FetchDataToInput(elements,VxEnum);
155 iomodel->FetchDataToInput(elements,VyEnum);
156 iomodel->FetchDataToInput(elements,VzEnum);
157 InputUpdateFromConstantx(elements,0.,VxMeshEnum);
158 InputUpdateFromConstantx(elements,0.,VyMeshEnum);
159 InputUpdateFromConstantx(elements,0.,VzMeshEnum);
[17434]160 if(islevelset){
161 iomodel->FetchDataToInput(elements,IceMaskNodeActivationEnum);
[17610]162 iomodel->FetchDataToInput(elements,MeshVertexonbaseEnum); // required for updating active nodes
[17434]163 }
[17952]164
165 /*Friction law variables*/
166 switch(frictionlaw){
167 case 1:
168 iomodel->FetchDataToInput(elements,FrictionCoefficientEnum);
169 iomodel->FetchDataToInput(elements,FrictionPEnum);
170 iomodel->FetchDataToInput(elements,FrictionQEnum);
171 break;
172 case 2:
173 iomodel->FetchDataToInput(elements,FrictionCEnum);
174 iomodel->FetchDataToInput(elements,FrictionMEnum);
175 break;
[18778]176 case 3:
177 iomodel->FetchDataToInput(elements,FrictionCEnum);
178 iomodel->FetchDataToInput(elements,FrictionAsEnum);
179 iomodel->FetchDataToInput(elements,FrictionQEnum);
180 iomodel->FetchDataToInput(elements,FrictionEffectivePressureEnum);
181 break;
[18732]182 case 4:
183 iomodel->FetchDataToInput(elements,FrictionCoefficientEnum);
184 iomodel->FetchDataToInput(elements,FrictionPEnum);
185 iomodel->FetchDataToInput(elements,FrictionQEnum);
186 iomodel->FetchDataToInput(elements,PressureEnum);
187 iomodel->FetchDataToInput(elements,TemperatureEnum);
188 break;
[18772]189 case 5:
190 iomodel->FetchDataToInput(elements,FrictionCoefficientEnum);
191 iomodel->FetchDataToInput(elements,FrictionPEnum);
192 iomodel->FetchDataToInput(elements,FrictionQEnum);
193 iomodel->FetchDataToInput(elements,FrictionWaterLayerEnum);
194 break;
[18804]195 case 6:
196 iomodel->FetchDataToInput(elements,FrictionCEnum);
197 iomodel->FetchDataToInput(elements,FrictionMEnum);
198 iomodel->FetchDataToInput(elements,PressureEnum);
199 iomodel->FetchDataToInput(elements,TemperatureEnum);
200 break;
[17952]201 default:
202 _error_("not supported");
203 }
[16539]204 /*Free data: */
205 iomodel->DeleteData(3,TemperatureEnum,WaterfractionEnum,PressureEnum);
206}/*}}}*/
[18930]207void EnthalpyAnalysis::UpdateParameters(Parameters* parameters,IoModel* iomodel,int solution_enum,int analysis_enum){/*{{{*/
[16539]208
[18930]209 int numoutputs;
210 char** requestedoutputs = NULL;
211
212 parameters->AddObject(iomodel->CopyConstantObject(ThermalStabilizationEnum));
213 parameters->AddObject(iomodel->CopyConstantObject(ThermalMaxiterEnum));
214 parameters->AddObject(iomodel->CopyConstantObject(ThermalReltolEnum));
215 parameters->AddObject(iomodel->CopyConstantObject(ThermalIsenthalpyEnum));
216 parameters->AddObject(iomodel->CopyConstantObject(ThermalIsdynamicbasalspcEnum));
217 parameters->AddObject(iomodel->CopyConstantObject(FrictionLawEnum));
218
219 iomodel->FetchData(&requestedoutputs,&numoutputs,ThermalRequestedOutputsEnum);
220 parameters->AddObject(new IntParam(ThermalNumRequestedOutputsEnum,numoutputs));
221 if(numoutputs)parameters->AddObject(new StringArrayParam(ThermalRequestedOutputsEnum,requestedoutputs,numoutputs));
222 iomodel->DeleteData(&requestedoutputs,numoutputs,ThermalRequestedOutputsEnum);
223
224 /*Deal with friction parameters*/
225 int frictionlaw;
226 iomodel->Constant(&frictionlaw,FrictionLawEnum);
227 if(frictionlaw==4 || frictionlaw==6) parameters->AddObject(iomodel->CopyConstantObject(FrictionGammaEnum));
[16539]228}/*}}}*/
229
[18930]230/*Finite Element Analysis*/
231void EnthalpyAnalysis::ApplyBasalConstraints(IssmDouble* serial_spc,Element* element){/*{{{*/
[16539]232
[18930]233 /* Check if ice in element */
234 if(!element->IsIceInElement()) return;
[16539]235
[18930]236 /* Only update Constraints at the base of grounded ice*/
237 if(!(element->IsOnBase()) || element->IsFloating()) return;
[16539]238
[18930]239 /*Intermediary*/
240 bool isdynamicbasalspc;
241 int numindices;
242 int *indices = NULL;
243 Node* node = NULL;
244 IssmDouble pressure;
[16539]245
[18930]246 /*Check wether dynamic basal boundary conditions are activated */
247 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
248 if(!isdynamicbasalspc) return;
[16539]249
[18930]250 /*Get parameters and inputs: */
251 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
[16539]252
[18930]253 /*Fetch indices of basal & surface nodes for this finite element*/
254 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
255 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
[16539]256
[18930]257 GaussPenta* gauss=new GaussPenta();
258 for(int i=0;i<numindices;i++){
259 gauss->GaussNode(element->GetElementType(),indices[i]);
[16539]260
[18930]261 pressure_input->GetInputValue(&pressure,gauss);
[16539]262
[18930]263 /*apply or release spc*/
264 node=element->GetNode(indices[i]);
265 if(serial_spc[node->Sid()]==1.){
266 pressure_input->GetInputValue(&pressure, gauss);
267 node->ApplyConstraint(0,PureIceEnthalpy(element,pressure));
[16539]268 }
[18930]269 else
270 node->DofInFSet(0);
[16539]271 }
272
[18930]273 /*Free ressources:*/
274 xDelete<int>(indices);
275 delete gauss;
276}/*}}}*/
277void EnthalpyAnalysis::ComputeBasalMeltingrate(FemModel* femmodel){/*{{{*/
278 /*Compute basal melting rates: */
279 for(int i=0;i<femmodel->elements->Size();i++){
280 Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
281 ComputeBasalMeltingrate(element);
282 }
283}/*}}}*/
284void EnthalpyAnalysis::ComputeBasalMeltingrate(Element* element){/*{{{*/
285 /*Calculate the basal melt rates of the enthalpy model after Aschwanden 2012*/
286 /* melting rate is positive when melting, negative when refreezing*/
[16539]287
[18930]288 /* Check if ice in element */
289 if(!element->IsIceInElement()) return;
[16539]290
[18930]291 /* Only compute melt rates at the base of grounded ice*/
292 if(!element->IsOnBase() || element->IsFloating()) return;
[16539]293
[18930]294 /* Intermediaries */
295 bool converged;
296 const int dim=3;
297 int i,is,state;
298 int vertexdown,vertexup,numvertices,numsegments;
299 int enthalpy_enum;
300 IssmDouble vec_heatflux[dim],normal_base[dim],d1enthalpy[dim],d1pressure[dim];
301 IssmDouble basalfriction,alpha2,geothermalflux,heatflux;
302 IssmDouble dt,yts;
303 IssmDouble melting_overshoot,lambda;
304 IssmDouble vx,vy,vz;
305 IssmDouble *xyz_list = NULL;
306 IssmDouble *xyz_list_base = NULL;
307 int *pairindices = NULL;
[16539]308
[18930]309 /*Fetch parameters*/
310 element->GetVerticesCoordinates(&xyz_list);
311 element->GetVerticesCoordinatesBase(&xyz_list_base);
312 element->GetInputValue(&converged,ConvergedEnum);
313 element->FindParam(&dt,TimesteppingTimeStepEnum);
314 element->FindParam(&yts, ConstantsYtsEnum);
315
316 if(dt==0. && !converged) enthalpy_enum=EnthalpyPicardEnum;
317 else enthalpy_enum=EnthalpyEnum;
318
319 IssmDouble latentheat = element->GetMaterialParameter(MaterialsLatentheatEnum);
320 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
321 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoFreshwaterEnum);
322 IssmDouble beta = element->GetMaterialParameter(MaterialsBetaEnum);
323 IssmDouble kappa = EnthalpyDiffusionParameterVolume(element,enthalpy_enum); _assert_(kappa>=0.);
324 IssmDouble kappa_mix;
325
326 /*retrieve inputs*/
327 Input* enthalpy_input = element->GetInput(enthalpy_enum); _assert_(enthalpy_input);
328 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
329 Input* geothermalflux_input = element->GetInput(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input);
330 Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
331 Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
332 Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
333
334 /*Build friction element, needed later: */
335 Friction* friction=new Friction(element,dim);
336
337 /******** MELTING RATES ************************************//*{{{*/
338 element->NormalBase(&normal_base[0],xyz_list_base);
339 element->VerticalSegmentIndices(&pairindices,&numsegments);
340 IssmDouble* meltingrate_enthalpy = xNew<IssmDouble>(numsegments);
341 IssmDouble* heating = xNew<IssmDouble>(numsegments);
342
343 numvertices=element->GetNumberOfVertices();
344 IssmDouble* enthalpies = xNew<IssmDouble>(numvertices);
345 IssmDouble* pressures = xNew<IssmDouble>(numvertices);
346 IssmDouble* watercolumns = xNew<IssmDouble>(numvertices);
347 IssmDouble* basalmeltingrates = xNew<IssmDouble>(numvertices);
348 element->GetInputListOnVertices(enthalpies,enthalpy_enum);
349 element->GetInputListOnVertices(pressures,PressureEnum);
350 element->GetInputListOnVertices(watercolumns,WatercolumnEnum);
351 element->GetInputListOnVertices(basalmeltingrates,BasalforcingsGroundediceMeltingRateEnum);
352
353 Gauss* gauss=element->NewGauss();
354 for(is=0;is<numsegments;is++){
355 vertexdown = pairindices[is*2+0];
356 vertexup = pairindices[is*2+1];
357 gauss->GaussVertex(vertexdown);
358
359 state=GetThermalBasalCondition(element, enthalpies[vertexdown], enthalpies[vertexup], pressures[vertexdown], pressures[vertexup], watercolumns[vertexdown], basalmeltingrates[vertexdown]);
360 switch (state) {
361 case 0:
362 // cold, dry base: apply basal surface forcing
363 for(i=0;i<3;i++) vec_heatflux[i]=0.;
364 break;
365 case 1: case 2: case 3:
366 // case 1 : cold, wet base: keep at pressure melting point
367 // case 2: temperate, thin refreezing base: release spc
368 // case 3: temperate, thin melting base: set spc
369 enthalpy_input->GetInputDerivativeValue(&d1enthalpy[0],xyz_list,gauss);
370 for(i=0;i<3;i++) vec_heatflux[i]=-kappa*d1enthalpy[i];
371 break;
372 case 4:
373 // temperate, thick melting base: set grad H*n=0
374 kappa_mix=GetWetIceConductivity(element, enthalpies[vertexdown], pressures[vertexdown]);
375 pressure_input->GetInputDerivativeValue(&d1pressure[0],xyz_list,gauss);
376 for(i=0;i<3;i++) vec_heatflux[i]=kappa_mix*beta*d1pressure[i];
377 break;
378 default:
379 _printf0_(" unknown thermal basal state found!");
380 }
381 if(state==0) meltingrate_enthalpy[is]=0.;
382 else{
383 /*heat flux along normal*/
384 heatflux=0.;
385 for(i=0;i<3;i++) heatflux+=(vec_heatflux[i])*normal_base[i];
386
387 /*basal friction*/
388 friction->GetAlpha2(&alpha2,gauss);
389 vx_input->GetInputValue(&vx,gauss); vy_input->GetInputValue(&vy,gauss); vz_input->GetInputValue(&vz,gauss);
390 basalfriction=alpha2*(vx*vx + vy*vy + vz*vz);
391 geothermalflux_input->GetInputValue(&geothermalflux,gauss);
392 /* -Mb= Fb-(q-q_geo)/((1-w)*L*rho), and (1-w)*rho=rho_ice, cf Aschwanden 2012, eqs.1, 2, 66*/
393 heating[is]=(heatflux+basalfriction+geothermalflux);
394 meltingrate_enthalpy[is]=heating[is]/(latentheat*rho_ice); // m/s water equivalent
395 }
396 }/*}}}*/
397
398 /******** UPDATE MELTINGRATES AND WATERCOLUMN **************//*{{{*/
399 for(is=0;is<numsegments;is++){
400 vertexdown = pairindices[is*2+0];
401 vertexup = pairindices[is*2+1];
402 if(dt!=0.){
403 if(watercolumns[vertexdown]+meltingrate_enthalpy[is]*dt<0.){ // prevent too much freeze on
404 lambda = -watercolumns[vertexdown]/(dt*meltingrate_enthalpy[is]); _assert_(lambda>=0.); _assert_(lambda<1.);
405 watercolumns[vertexdown]=0.;
406 basalmeltingrates[vertexdown]=lambda*meltingrate_enthalpy[is]; // restrict freeze on only to size of watercolumn
407 enthalpies[vertexdown]+=(1.-lambda)*dt/yts*meltingrate_enthalpy[is]*latentheat*rho_ice; // use rest of energy to cool down base: dE=L*m, m=(1-lambda)*meltingrate*rho_ice
[16539]408 }
[18930]409 else{
410 basalmeltingrates[vertexdown]=meltingrate_enthalpy[is];
411 watercolumns[vertexdown]+=dt*meltingrate_enthalpy[is];
412 }
[16539]413 }
[18930]414 else{
415 basalmeltingrates[vertexdown]=meltingrate_enthalpy[is];
416 if(watercolumns[vertexdown]+meltingrate_enthalpy[is]<0.)
417 watercolumns[vertexdown]=0.;
418 else
419 watercolumns[vertexdown]+=meltingrate_enthalpy[is];
420 }
421 basalmeltingrates[vertexdown]*=rho_water/rho_ice; // convert meltingrate from water to ice equivalent
422 _assert_(watercolumns[vertexdown]>=0.);
423 }/*}}}*/
424
425 /*feed updated variables back into model*/
426 if(dt!=0.){
427 element->AddInput(enthalpy_enum,enthalpies,P1Enum); //TODO: distinguis for steadystate and transient run
428 element->AddInput(WatercolumnEnum,watercolumns,P1Enum);
[16539]429 }
[18930]430 element->AddInput(BasalforcingsGroundediceMeltingRateEnum,basalmeltingrates,P1Enum);
[16539]431
[18930]432 /*Clean up and return*/
433 delete gauss;
434 delete friction;
435 xDelete<int>(pairindices);
436 xDelete<IssmDouble>(enthalpies);
437 xDelete<IssmDouble>(pressures);
438 xDelete<IssmDouble>(watercolumns);
439 xDelete<IssmDouble>(basalmeltingrates);
440 xDelete<IssmDouble>(meltingrate_enthalpy);
441 xDelete<IssmDouble>(heating);
442 xDelete<IssmDouble>(xyz_list);
443 xDelete<IssmDouble>(xyz_list_base);
[16539]444}/*}}}*/
[18930]445void EnthalpyAnalysis::Core(FemModel* femmodel){/*{{{*/
[18591]446 if(VerboseSolution()) _printf0_(" computing enthalpy\n");
447 femmodel->SetCurrentConfiguration(EnthalpyAnalysisEnum);
448 solutionsequence_thermal_nonlinear(femmodel);
449
450 /*transfer enthalpy to enthalpy picard for the next step: */
451 InputDuplicatex(femmodel,EnthalpyEnum,EnthalpyPicardEnum);
452
[18612]453 IssmDouble dt;
454 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
455 if(dt==0.) ComputeBasalMeltingrate(femmodel);
456 else PostProcessing(femmodel);
[18591]457
[17005]458}/*}}}*/
[17000]459ElementVector* EnthalpyAnalysis::CreateDVector(Element* element){/*{{{*/
460 /*Default, return NULL*/
461 return NULL;
462}/*}}}*/
[16992]463ElementMatrix* EnthalpyAnalysis::CreateJacobianMatrix(Element* element){/*{{{*/
464_error_("Not implemented");
465}/*}}}*/
[16782]466ElementMatrix* EnthalpyAnalysis::CreateKMatrix(Element* element){/*{{{*/
[16888]467
[17434]468 /* Check if ice in element */
469 if(!element->IsIceInElement()) return NULL;
470
[16888]471 /*compute all stiffness matrices for this element*/
472 ElementMatrix* Ke1=CreateKMatrixVolume(element);
473 ElementMatrix* Ke2=CreateKMatrixShelf(element);
474 ElementMatrix* Ke =new ElementMatrix(Ke1,Ke2);
475
476 /*clean-up and return*/
477 delete Ke1;
478 delete Ke2;
479 return Ke;
[16782]480}/*}}}*/
[16888]481ElementMatrix* EnthalpyAnalysis::CreateKMatrixVolume(Element* element){/*{{{*/
482
[17434]483 /* Check if ice in element */
484 if(!element->IsIceInElement()) return NULL;
485
[16888]486 /*Intermediaries */
487 int stabilization;
488 IssmDouble Jdet,dt,u,v,w,um,vm,wm,vel;
489 IssmDouble h,hx,hy,hz,vx,vy,vz;
490 IssmDouble tau_parameter,diameter;
491 IssmDouble D_scalar;
492 IssmDouble* xyz_list = NULL;
493
494 /*Fetch number of nodes and dof for this finite element*/
495 int numnodes = element->GetNumberOfNodes();
496
497 /*Initialize Element vector and other vectors*/
498 ElementMatrix* Ke = element->NewElementMatrix();
499 IssmDouble* basis = xNew<IssmDouble>(numnodes);
500 IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
501 IssmDouble* B = xNew<IssmDouble>(3*numnodes);
502 IssmDouble* Bprime = xNew<IssmDouble>(3*numnodes);
503 IssmDouble D[3][3] = {0.};
504 IssmDouble K[3][3];
505
506 /*Retrieve all inputs and parameters*/
507 element->GetVerticesCoordinates(&xyz_list);
508 element->FindParam(&dt,TimesteppingTimeStepEnum);
509 element->FindParam(&stabilization,ThermalStabilizationEnum);
[17946]510 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
[16888]511 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
512 IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
513 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
514 IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
515 Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
516 Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
517 Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
518 Input* vxm_input = element->GetInput(VxMeshEnum); _assert_(vxm_input);
519 Input* vym_input = element->GetInput(VyMeshEnum); _assert_(vym_input);
520 Input* vzm_input = element->GetInput(VzMeshEnum); _assert_(vzm_input);
521 if(stabilization==2) diameter=element->MinEdgeLength(xyz_list);
522
523 /*Enthalpy diffusion parameter*/
[17027]524 IssmDouble kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
[16888]525
526 /* Start looping on the number of gaussian points: */
527 Gauss* gauss=element->NewGauss(2);
528 for(int ig=gauss->begin();ig<gauss->end();ig++){
529 gauss->GaussPoint(ig);
530
531 element->JacobianDeterminant(&Jdet,xyz_list,gauss);
532 D_scalar=gauss->weight*Jdet;
533 if(dt!=0.) D_scalar=D_scalar*dt;
534
535 /*Conduction: */
536 GetBConduct(B,element,xyz_list,gauss);
537 D[0][0]=D_scalar*kappa/rho_ice;
538 D[1][1]=D_scalar*kappa/rho_ice;
539 D[2][2]=D_scalar*kappa/rho_ice;
540 TripleMultiply(B,3,numnodes,1,
541 &D[0][0],3,3,0,
542 B,3,numnodes,0,
543 &Ke->values[0],1);
544
545 /*Advection: */
546 GetBAdvec(B,element,xyz_list,gauss);
547 GetBAdvecprime(Bprime,element,xyz_list,gauss);
548 vx_input->GetInputValue(&u,gauss); vxm_input->GetInputValue(&um,gauss); vx=u-um;
549 vy_input->GetInputValue(&v,gauss); vym_input->GetInputValue(&vm,gauss); vy=v-vm;
550 vz_input->GetInputValue(&w,gauss); vzm_input->GetInputValue(&wm,gauss); vz=w-wm;
551 D[0][0]=D_scalar*vx;
552 D[1][1]=D_scalar*vy;
553 D[2][2]=D_scalar*vz;
554 TripleMultiply(B,3,numnodes,1,
555 &D[0][0],3,3,0,
556 Bprime,3,numnodes,0,
557 &Ke->values[0],1);
558
559 /*Transient: */
560 if(dt!=0.){
561 D_scalar=gauss->weight*Jdet;
562 element->NodalFunctions(basis,gauss);
563 TripleMultiply(basis,numnodes,1,0,
564 &D_scalar,1,1,0,
565 basis,1,numnodes,0,
566 &Ke->values[0],1);
567 D_scalar=D_scalar*dt;
568 }
569
570 /*Artifficial diffusivity*/
571 if(stabilization==1){
572 element->ElementSizes(&hx,&hy,&hz);
573 vel=sqrt(vx*vx + vy*vy + vz*vz)+1.e-14;
574 h=sqrt( pow(hx*vx/vel,2) + pow(hy*vy/vel,2) + pow(hz*vz/vel,2));
[18484]575 K[0][0]=h/(2.*vel)*fabs(vx*vx); K[0][1]=h/(2.*vel)*fabs(vx*vy); K[0][2]=h/(2.*vel)*fabs(vx*vz);
576 K[1][0]=h/(2.*vel)*fabs(vy*vx); K[1][1]=h/(2.*vel)*fabs(vy*vy); K[1][2]=h/(2.*vel)*fabs(vy*vz);
577 K[2][0]=h/(2.*vel)*fabs(vz*vx); K[2][1]=h/(2.*vel)*fabs(vz*vy); K[2][2]=h/(2.*vel)*fabs(vz*vz);
[16888]578 for(int i=0;i<3;i++) for(int j=0;j<3;j++) K[i][j] = D_scalar*K[i][j];
579
580 GetBAdvecprime(Bprime,element,xyz_list,gauss);
581 TripleMultiply(Bprime,3,numnodes,1,
582 &K[0][0],3,3,0,
583 Bprime,3,numnodes,0,
584 &Ke->values[0],1);
585 }
586 else if(stabilization==2){
587 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
588 tau_parameter=element->StabilizationParameter(u-um,v-vm,w-wm,diameter,kappa/rho_ice);
589 for(int i=0;i<numnodes;i++){
590 for(int j=0;j<numnodes;j++){
591 Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*
[16895]592 ((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i])*((u-um)*dbasis[0*numnodes+j]+(v-vm)*dbasis[1*numnodes+j]+(w-wm)*dbasis[2*numnodes+j]);
[16888]593 }
594 }
595 if(dt!=0.){
[16896]596 D_scalar=gauss->weight*Jdet;
[16888]597 for(int i=0;i<numnodes;i++){
598 for(int j=0;j<numnodes;j++){
[16895]599 Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*basis[j]*((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i]);
[16888]600 }
601 }
602 }
603 }
604 }
605
606 /*Clean up and return*/
607 xDelete<IssmDouble>(xyz_list);
608 xDelete<IssmDouble>(basis);
609 xDelete<IssmDouble>(dbasis);
610 xDelete<IssmDouble>(B);
611 xDelete<IssmDouble>(Bprime);
612 delete gauss;
613 return Ke;
614}/*}}}*/
615ElementMatrix* EnthalpyAnalysis::CreateKMatrixShelf(Element* element){/*{{{*/
616
[17434]617 /* Check if ice in element */
618 if(!element->IsIceInElement()) return NULL;
619
[16888]620 /*Initialize Element matrix and return if necessary*/
[17585]621 if(!element->IsOnBase() || !element->IsFloating()) return NULL;
[16888]622
[16986]623 /*Intermediaries*/
[16888]624 IssmDouble dt,Jdet,D;
625 IssmDouble *xyz_list_base = NULL;
626
627 /*Fetch number of nodes for this finite element*/
628 int numnodes = element->GetNumberOfNodes();
629
630 /*Initialize vectors*/
631 ElementMatrix* Ke = element->NewElementMatrix();
632 IssmDouble* basis = xNew<IssmDouble>(numnodes);
633
634 /*Retrieve all inputs and parameters*/
635 element->GetVerticesCoordinatesBase(&xyz_list_base);
636 element->FindParam(&dt,TimesteppingTimeStepEnum);
637 IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
[17946]638 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
[16888]639 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
640 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
641 IssmDouble mixed_layer_capacity= element->GetMaterialParameter(MaterialsMixedLayerCapacityEnum);
642 IssmDouble thermal_exchange_vel= element->GetMaterialParameter(MaterialsThermalExchangeVelocityEnum);
643
644 /* Start looping on the number of gaussian points: */
645 Gauss* gauss=element->NewGaussBase(2);
646 for(int ig=gauss->begin();ig<gauss->end();ig++){
647 gauss->GaussPoint(ig);
648
649 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
650 element->NodalFunctions(basis,gauss);
651
652 D=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel/(heatcapacity*rho_ice);
653 if(reCast<bool,IssmDouble>(dt)) D=dt*D;
654 TripleMultiply(basis,numnodes,1,0,
655 &D,1,1,0,
656 basis,1,numnodes,0,
657 &Ke->values[0],1);
658
659 }
660
661 /*Clean up and return*/
662 delete gauss;
663 xDelete<IssmDouble>(basis);
664 xDelete<IssmDouble>(xyz_list_base);
665 return Ke;
666}/*}}}*/
[16782]667ElementVector* EnthalpyAnalysis::CreatePVector(Element* element){/*{{{*/
[16812]668
[17434]669 /* Check if ice in element */
670 if(!element->IsIceInElement()) return NULL;
671
[16812]672 /*compute all load vectors for this element*/
673 ElementVector* pe1=CreatePVectorVolume(element);
674 ElementVector* pe2=CreatePVectorSheet(element);
675 ElementVector* pe3=CreatePVectorShelf(element);
676 ElementVector* pe =new ElementVector(pe1,pe2,pe3);
677
678 /*clean-up and return*/
679 delete pe1;
680 delete pe2;
681 delete pe3;
682 return pe;
[16782]683}/*}}}*/
[16812]684ElementVector* EnthalpyAnalysis::CreatePVectorVolume(Element* element){/*{{{*/
685
[17434]686 /* Check if ice in element */
687 if(!element->IsIceInElement()) return NULL;
688
[16812]689 /*Intermediaries*/
[17014]690 int i, stabilization;
[16812]691 IssmDouble Jdet,phi,dt;
[17014]692 IssmDouble enthalpy, Hpmp;
693 IssmDouble enthalpypicard, d1enthalpypicard[3];
694 IssmDouble pressure, d1pressure[3], d2pressure;
695 IssmDouble waterfractionpicard;
696 IssmDouble kappa,tau_parameter,diameter,kappa_w;
[16812]697 IssmDouble u,v,w;
[17014]698 IssmDouble scalar_def, scalar_sens ,scalar_transient;
[16812]699 IssmDouble* xyz_list = NULL;
[17014]700 IssmDouble d1H_d1P, d1P2;
[16812]701
702 /*Fetch number of nodes and dof for this finite element*/
703 int numnodes = element->GetNumberOfNodes();
704 int numvertices = element->GetNumberOfVertices();
705
706 /*Initialize Element vector*/
707 ElementVector* pe = element->NewElementVector();
708 IssmDouble* basis = xNew<IssmDouble>(numnodes);
709 IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
710
711 /*Retrieve all inputs and parameters*/
712 element->GetVerticesCoordinates(&xyz_list);
713 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
[17014]714 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
[16812]715 IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
[17014]716 IssmDouble temperateiceconductivity = element->GetMaterialParameter(MaterialsTemperateiceconductivityEnum);
717 IssmDouble beta = element->GetMaterialParameter(MaterialsBetaEnum);
718 IssmDouble latentheat = element->GetMaterialParameter(MaterialsLatentheatEnum);
[16812]719 element->FindParam(&dt,TimesteppingTimeStepEnum);
720 element->FindParam(&stabilization,ThermalStabilizationEnum);
721 Input* vx_input=element->GetInput(VxEnum); _assert_(vx_input);
722 Input* vy_input=element->GetInput(VyEnum); _assert_(vy_input);
723 Input* vz_input=element->GetInput(VzEnum); _assert_(vz_input);
[17014]724 Input* enthalpypicard_input=element->GetInput(EnthalpyPicardEnum); _assert_(enthalpypicard_input);
725 Input* pressure_input=element->GetInput(PressureEnum); _assert_(pressure_input);
726 Input* enthalpy_input=NULL;
[16812]727 if(reCast<bool,IssmDouble>(dt)){enthalpy_input = element->GetInput(EnthalpyEnum); _assert_(enthalpy_input);}
728 if(stabilization==2){
729 diameter=element->MinEdgeLength(xyz_list);
[17027]730 kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
[16812]731 }
732
733 /* Start looping on the number of gaussian points: */
[16975]734 Gauss* gauss=element->NewGauss(3);
[16812]735 for(int ig=gauss->begin();ig<gauss->end();ig++){
736 gauss->GaussPoint(ig);
737
738 element->JacobianDeterminant(&Jdet,xyz_list,gauss);
739 element->NodalFunctions(basis,gauss);
[17014]740
741 /*viscous dissipation*/
[16812]742 element->ViscousHeating(&phi,xyz_list,gauss,vx_input,vy_input,vz_input);
743
744 scalar_def=phi/rho_ice*Jdet*gauss->weight;
[16895]745 if(dt!=0.) scalar_def=scalar_def*dt;
[16812]746
[17014]747 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_def*basis[i];
[16812]748
[17014]749 /*sensible heat flux in temperate ice*/
750 enthalpypicard_input->GetInputValue(&enthalpypicard,gauss);
751 pressure_input->GetInputValue(&pressure,gauss);
752 Hpmp=this->PureIceEnthalpy(element, pressure);
753
754 if(enthalpypicard>=Hpmp){
755 enthalpypicard_input->GetInputDerivativeValue(&d1enthalpypicard[0],xyz_list,gauss);
756 pressure_input->GetInputDerivativeValue(&d1pressure[0],xyz_list,gauss);
757 d2pressure=0.; // for linear elements, 2nd derivative is zero
758
759 d1H_d1P=0.;
760 for(i=0;i<3;i++) d1H_d1P+=d1enthalpypicard[i]*d1pressure[i];
761 d1P2=0.;
762 for(i=0;i<3;i++) d1P2+=pow(d1pressure[i],2.);
763
764 scalar_sens=-beta*((temperateiceconductivity - thermalconductivity)/latentheat*(d1H_d1P + beta*heatcapacity*d1P2))/rho_ice;
765 if(dt!=0.) scalar_sens=scalar_sens*dt;
766 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_sens*basis[i];
767 }
768
[16812]769 /* Build transient now */
770 if(reCast<bool,IssmDouble>(dt)){
771 enthalpy_input->GetInputValue(&enthalpy, gauss);
772 scalar_transient=enthalpy*Jdet*gauss->weight;
[17014]773 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_transient*basis[i];
[16812]774 }
775
776 if(stabilization==2){
777 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
778
779 vx_input->GetInputValue(&u,gauss);
780 vy_input->GetInputValue(&v,gauss);
781 vz_input->GetInputValue(&w,gauss);
[16895]782 tau_parameter=element->StabilizationParameter(u,v,w,diameter,kappa/rho_ice);
[16812]783
[17014]784 for(i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_def*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]);
[16895]785
786 if(dt!=0.){
[17014]787 for(i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_transient*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]);
[16812]788 }
789 }
790 }
791
792 /*Clean up and return*/
793 xDelete<IssmDouble>(basis);
794 xDelete<IssmDouble>(dbasis);
795 xDelete<IssmDouble>(xyz_list);
796 delete gauss;
797 return pe;
798
799}/*}}}*/
800ElementVector* EnthalpyAnalysis::CreatePVectorSheet(Element* element){/*{{{*/
[16888]801
[17434]802 /* Check if ice in element */
803 if(!element->IsIceInElement()) return NULL;
804
[17014]805 /* implementation of the basal condition decision chart of Aschwanden 2012, Fig.5 */
[17585]806 if(!element->IsOnBase() || element->IsFloating()) return NULL;
[16888]807
[18622]808 bool isdynamicbasalspc;
[18612]809 int i, state;
810 IssmDouble dt,Jdet,scalar;
811 IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
812 IssmDouble vx,vy,vz;
813 IssmDouble alpha2,basalfriction,geothermalflux,heatflux;
[16888]814 IssmDouble *xyz_list_base = NULL;
815
816 /*Fetch number of nodes for this finite element*/
817 int numnodes = element->GetNumberOfNodes();
818
819 /*Initialize vectors*/
820 ElementVector* pe = element->NewElementVector();
821 IssmDouble* basis = xNew<IssmDouble>(numnodes);
822
823 /*Retrieve all inputs and parameters*/
824 element->GetVerticesCoordinatesBase(&xyz_list_base);
825 element->FindParam(&dt,TimesteppingTimeStepEnum);
[18622]826 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
[16888]827 Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
828 Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
829 Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
[18612]830 Input* enthalpy_input = element->GetInput(EnthalpyPicardEnum); _assert_(enthalpy_input);
831 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
832 Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
833 Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
[16888]834 Input* geothermalflux_input = element->GetInput(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input);
[18612]835 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
[16888]836
837 /*Build friction element, needed later: */
838 Friction* friction=new Friction(element,3);
839
840 /* Start looping on the number of gaussian points: */
[18665]841 Gauss* gauss=element->NewGaussBase(2);
842 Gauss* gaussup=element->NewGaussTop(2);
[16888]843 for(int ig=gauss->begin();ig<gauss->end();ig++){
844 gauss->GaussPoint(ig);
[18665]845 gaussup->GaussPoint(ig);
[16888]846
847 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
848 element->NodalFunctions(basis,gauss);
849
[18622]850 if(isdynamicbasalspc){
851 enthalpy_input->GetInputValue(&enthalpy,gauss);
852 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
853 pressure_input->GetInputValue(&pressure,gauss);
854 pressure_input->GetInputValue(&pressureup,gaussup);
855 watercolumn_input->GetInputValue(&watercolumn,gauss);
856 meltingrate_input->GetInputValue(&meltingrate,gauss);
857 state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
858 }
859 else
860 state=0;
[16888]861
[18612]862 switch (state) {
863 case 0:
864 // cold, dry base: apply basal surface forcing
865 geothermalflux_input->GetInputValue(&geothermalflux,gauss);
866 friction->GetAlpha2(&alpha2,gauss);
867 vx_input->GetInputValue(&vx,gauss);
868 vy_input->GetInputValue(&vy,gauss);
869 vz_input->GetInputValue(&vz,gauss);
870 basalfriction=alpha2*(vx*vx+vy*vy+vz*vz);
871 heatflux=(basalfriction+geothermalflux)/(rho_ice);
872 scalar=gauss->weight*Jdet*heatflux;
873 if(dt!=0.) scalar=dt*scalar;
874 for(i=0;i<numnodes;i++)
875 pe->values[i]+=scalar*basis[i];
876 break;
877 case 1:
878 // cold, wet base: keep at pressure melting point
[18656]879 break;
[18612]880 case 2:
881 // temperate, thin refreezing base: release spc
[18656]882 break;
[18612]883 case 3:
884 // temperate, thin melting base: set spc
[18656]885 break;
[18612]886 case 4:
887 // temperate, thick melting base: set grad H*n=0
888 for(i=0;i<numnodes;i++)
889 pe->values[i]+=0.;
890 break;
891 default:
892 _printf0_(" unknown thermal basal state found!");
[16888]893 }
894 }
895
896 /*Clean up and return*/
897 delete gauss;
898 delete gaussup;
899 delete friction;
900 xDelete<IssmDouble>(basis);
901 xDelete<IssmDouble>(xyz_list_base);
902 return pe;
903
[16812]904}/*}}}*/
905ElementVector* EnthalpyAnalysis::CreatePVectorShelf(Element* element){/*{{{*/
906
[17434]907 /* Check if ice in element */
908 if(!element->IsIceInElement()) return NULL;
909
[16888]910 /*Get basal element*/
[17585]911 if(!element->IsOnBase() || !element->IsFloating()) return NULL;
[16888]912
[18612]913 IssmDouble Hpmp,dt,Jdet,scalar_ocean,pressure;
[16812]914 IssmDouble *xyz_list_base = NULL;
915
916 /*Fetch number of nodes for this finite element*/
917 int numnodes = element->GetNumberOfNodes();
918
919 /*Initialize vectors*/
920 ElementVector* pe = element->NewElementVector();
921 IssmDouble* basis = xNew<IssmDouble>(numnodes);
922
923 /*Retrieve all inputs and parameters*/
924 element->GetVerticesCoordinatesBase(&xyz_list_base);
925 element->FindParam(&dt,TimesteppingTimeStepEnum);
926 Input* pressure_input=element->GetInput(PressureEnum); _assert_(pressure_input);
927 IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
[17946]928 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
[16812]929 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
930 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
931 IssmDouble mixed_layer_capacity= element->GetMaterialParameter(MaterialsMixedLayerCapacityEnum);
932 IssmDouble thermal_exchange_vel= element->GetMaterialParameter(MaterialsThermalExchangeVelocityEnum);
933
934 /* Start looping on the number of gaussian points: */
935 Gauss* gauss=element->NewGaussBase(2);
936 for(int ig=gauss->begin();ig<gauss->end();ig++){
937 gauss->GaussPoint(ig);
938
939 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
940 element->NodalFunctions(basis,gauss);
941
942 pressure_input->GetInputValue(&pressure,gauss);
[18612]943 Hpmp=element->PureIceEnthalpy(pressure);
[16812]944
[18612]945 scalar_ocean=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel*Hpmp/(heatcapacity*rho_ice);
[16812]946 if(reCast<bool,IssmDouble>(dt)) scalar_ocean=dt*scalar_ocean;
947
948 for(int i=0;i<numnodes;i++) pe->values[i]+=scalar_ocean*basis[i];
949 }
950
951 /*Clean up and return*/
952 delete gauss;
953 xDelete<IssmDouble>(basis);
954 xDelete<IssmDouble>(xyz_list_base);
955 return pe;
956}/*}}}*/
[18930]957void EnthalpyAnalysis::DrainWaterfraction(FemModel* femmodel){/*{{{*/
958 /*Drain excess water fraction in ice column: */
[18612]959 for(int i=0;i<femmodel->elements->Size();i++){
960 Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
[18930]961 DrainWaterfractionIcecolumn(element);
[17166]962 }
[17002]963}/*}}}*/
[18930]964void EnthalpyAnalysis::DrainWaterfraction(Element* element, IssmDouble* pdrainrate_element){/*{{{*/
[17002]965
[17434]966 /* Check if ice in element */
967 if(!element->IsIceInElement()) return;
968
[18930]969 /*Intermediaries*/
970 int iv,is,vertexdown,vertexup,numsegments;
971 IssmDouble dt, height_element;
972 IssmDouble rho_water, rho_ice;
973 int numvertices = element->GetNumberOfVertices();
[17434]974
[18930]975 IssmDouble* xyz_list = NULL;
976 IssmDouble* enthalpies = xNew<IssmDouble>(numvertices);
977 IssmDouble* pressures = xNew<IssmDouble>(numvertices);
978 IssmDouble* temperatures = xNew<IssmDouble>(numvertices);
979 IssmDouble* waterfractions = xNew<IssmDouble>(numvertices);
980 IssmDouble* deltawaterfractions = xNew<IssmDouble>(numvertices);
[17014]981 int *pairindices = NULL;
[18930]982
983 rho_ice=element->GetMaterialParameter(MaterialsRhoIceEnum);
984 rho_water=element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
[17014]985
986 element->GetVerticesCoordinates(&xyz_list);
[18930]987 element->GetInputListOnVertices(enthalpies,EnthalpyEnum);
988 element->GetInputListOnVertices(pressures,PressureEnum);
989
[18667]990 element->FindParam(&dt,TimesteppingTimeStepEnum);
[18930]991 for(iv=0;iv<numvertices;iv++){
992 element->EnthalpyToThermal(&temperatures[iv],&waterfractions[iv], enthalpies[iv],pressures[iv]);
993 deltawaterfractions[iv]=DrainageFunctionWaterfraction(waterfractions[iv], dt);
994 }
995
996 /*drain waterfraction, feed updated variables back into model*/
997 for(iv=0;iv<numvertices;iv++){
998 if(reCast<bool,IssmDouble>(dt))
999 waterfractions[iv]-=deltawaterfractions[iv]*dt;
1000 else
1001 waterfractions[iv]-=deltawaterfractions[iv];
1002 element->ThermalToEnthalpy(&enthalpies[iv], temperatures[iv], waterfractions[iv], pressures[iv]);
1003 }
1004 element->AddInput(EnthalpyEnum,enthalpies,P1Enum);
1005 element->AddInput(WaterfractionEnum,waterfractions,P1Enum);
[18667]1006
[18930]1007 /*return meltwater column equivalent to drained water*/
[17014]1008 element->VerticalSegmentIndices(&pairindices,&numsegments);
[18612]1009 for(is=0;is<numsegments;is++){
[17014]1010 vertexdown = pairindices[is*2+0];
1011 vertexup = pairindices[is*2+1];
[18930]1012 height_element=fabs(xyz_list[vertexup*3+2]-xyz_list[vertexdown*3+2]);
1013 pdrainrate_element[is]=(deltawaterfractions[vertexdown]+deltawaterfractions[vertexup])/2.*height_element; // return water equivalent of drainage
1014 _assert_(pdrainrate_element[is]>=0.);
[18667]1015 }
[17014]1016
1017 /*Clean up and return*/
[17981]1018 xDelete<int>(pairindices);
[18930]1019 xDelete<IssmDouble>(xyz_list);
[18612]1020 xDelete<IssmDouble>(enthalpies);
1021 xDelete<IssmDouble>(pressures);
[18930]1022 xDelete<IssmDouble>(temperatures);
1023 xDelete<IssmDouble>(waterfractions);
1024 xDelete<IssmDouble>(deltawaterfractions);
[17166]1025}/*}}}*/
[18930]1026void EnthalpyAnalysis::DrainWaterfractionIcecolumn(Element* element){/*{{{*/
[17166]1027
[17434]1028 /* Check if ice in element */
1029 if(!element->IsIceInElement()) return;
1030
[17166]1031 /* Only drain waterfraction of ice column from element at base*/
[17585]1032 if(!element->IsOnBase()) return; //FIXME: allow freeze on for floating elements
[17166]1033
1034 /* Intermediaries*/
1035 int is, numvertices, numsegments;
1036 int *pairindices = NULL;
1037
1038 numvertices=element->GetNumberOfVertices();
1039 element->VerticalSegmentIndices(&pairindices,&numsegments);
1040
1041 IssmDouble* watercolumn = xNew<IssmDouble>(numvertices);
1042 IssmDouble* drainrate_column = xNew<IssmDouble>(numsegments);
1043 IssmDouble* drainrate_element = xNew<IssmDouble>(numsegments);
1044
1045 element->GetInputListOnVertices(watercolumn,WatercolumnEnum);
1046
1047 for(is=0;is<numsegments;is++) drainrate_column[is]=0.;
1048 Element* elementi = element;
1049 for(;;){
1050 for(is=0;is<numsegments;is++) drainrate_element[is]=0.;
1051 DrainWaterfraction(elementi,drainrate_element); // TODO: make sure every vertex is only drained once
1052 for(is=0;is<numsegments;is++) drainrate_column[is]+=drainrate_element[is];
1053
1054 if(elementi->IsOnSurface()) break;
1055 elementi=elementi->GetUpperElement();
1056 }
1057 /* add drained water to water column*/
1058 for(is=0;is<numsegments;is++) watercolumn[is]+=drainrate_column[is];
1059 /* Feed updated water column back into model */
1060 element->AddInput(WatercolumnEnum,watercolumn,P1Enum);
1061
[17608]1062 xDelete<int>(pairindices);
[17014]1063 xDelete<IssmDouble>(drainrate_column);
1064 xDelete<IssmDouble>(drainrate_element);
[17166]1065 xDelete<IssmDouble>(watercolumn);
[17002]1066}/*}}}*/
[18930]1067IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameter(Element* element,IssmDouble enthalpy,IssmDouble pressure){/*{{{*/
[17014]1068
[18930]1069 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
1070 IssmDouble temperateiceconductivity = element->GetMaterialParameter(MaterialsTemperateiceconductivityEnum);
1071 IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
[17434]1072
[18930]1073 if(enthalpy < PureIceEnthalpy(element,pressure)){
1074 return thermalconductivity/heatcapacity;
1075 }
1076 else{
1077 return temperateiceconductivity/heatcapacity;
1078 }
1079}/*}}}*/
1080IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameterVolume(Element* element,int enthalpy_enum){/*{{{*/
[17014]1081
[18930]1082 int iv;
1083 IssmDouble lambda; /* fraction of cold ice */
1084 IssmDouble kappa,kappa_c,kappa_t; /* enthalpy conductivities */
1085 IssmDouble Hc,Ht;
[17014]1086
[18930]1087 /*Get pressures and enthalpies on vertices*/
1088 int numvertices = element->GetNumberOfVertices();
1089 IssmDouble* pressures = xNew<IssmDouble>(numvertices);
1090 IssmDouble* enthalpies = xNew<IssmDouble>(numvertices);
1091 IssmDouble* PIE = xNew<IssmDouble>(numvertices);
1092 IssmDouble* dHpmp = xNew<IssmDouble>(numvertices);
[17014]1093 element->GetInputListOnVertices(pressures,PressureEnum);
[18930]1094 element->GetInputListOnVertices(enthalpies,enthalpy_enum);
1095 for(iv=0;iv<numvertices;iv++){
1096 PIE[iv] = PureIceEnthalpy(element,pressures[iv]);
1097 dHpmp[iv] = enthalpies[iv]-PIE[iv];
1098 }
[17014]1099
[18930]1100 bool allequalsign = true;
1101 if(dHpmp[0]<0.){
1102 for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]<0.));
[17014]1103 }
[18930]1104 else{
1105 for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]>=0.));
[17014]1106 }
1107
[18930]1108 if(allequalsign){
1109 kappa = EnthalpyDiffusionParameter(element,enthalpies[0],pressures[0]);
[17014]1110 }
[18930]1111 else{
1112 /* return harmonic mean of thermal conductivities, weighted by fraction of cold/temperate ice,
1113 cf Patankar 1980, pp44 */
1114 kappa_c = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)-1.,0.);
1115 kappa_t = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)+1.,0.);
1116 Hc=0.; Ht=0.;
1117 for(iv=0; iv<numvertices;iv++){
1118 if(enthalpies[iv]<PIE[iv])
1119 Hc+=(PIE[iv]-enthalpies[iv]);
1120 else
1121 Ht+=(enthalpies[iv]-PIE[iv]);
1122 }
1123 _assert_((Hc+Ht)>0.);
1124 lambda = Hc/(Hc+Ht);
1125 kappa = kappa_c*kappa_t/(lambda*kappa_t+(1.-lambda)*kappa_c); // ==(lambda/kappa_c + (1.-lambda)/kappa_t)^-1
1126 }
[17014]1127
1128 /*Clean up and return*/
[18930]1129 xDelete<IssmDouble>(PIE);
1130 xDelete<IssmDouble>(dHpmp);
1131 xDelete<IssmDouble>(pressures);
[17014]1132 xDelete<IssmDouble>(enthalpies);
[18930]1133 return kappa;
[17002]1134}/*}}}*/
[18930]1135void EnthalpyAnalysis::GetBAdvec(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
1136 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
1137 * For node i, Bi' can be expressed in the actual coordinate system
1138 * by:
1139 * Bi_advec =[ h ]
1140 * [ h ]
1141 * [ h ]
1142 * where h is the interpolation function for node i.
1143 *
1144 * We assume B has been allocated already, of size: 3x(NDOF1*NUMNODESP1)
1145 */
[18659]1146
[18930]1147 /*Fetch number of nodes for this finite element*/
1148 int numnodes = element->GetNumberOfNodes();
[18659]1149
[18930]1150 /*Get nodal functions*/
1151 IssmDouble* basis=xNew<IssmDouble>(numnodes);
1152 element->NodalFunctions(basis,gauss);
[18659]1153
[18930]1154 /*Build B: */
1155 for(int i=0;i<numnodes;i++){
1156 B[numnodes*0+i] = basis[i];
1157 B[numnodes*1+i] = basis[i];
1158 B[numnodes*2+i] = basis[i];
[18659]1159 }
1160
[18930]1161 /*Clean-up*/
1162 xDelete<IssmDouble>(basis);
[18612]1163}/*}}}*/
[18930]1164void EnthalpyAnalysis::GetBAdvecprime(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
1165 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
1166 * For node i, Bi' can be expressed in the actual coordinate system
1167 * by:
1168 * Biprime_advec=[ dh/dx ]
1169 * [ dh/dy ]
1170 * [ dh/dz ]
1171 * where h is the interpolation function for node i.
1172 *
1173 * We assume B has been allocated already, of size: 3x(NDOF1*numnodes)
1174 */
[17002]1175
[18930]1176 /*Fetch number of nodes for this finite element*/
1177 int numnodes = element->GetNumberOfNodes();
[17434]1178
[18930]1179 /*Get nodal functions derivatives*/
1180 IssmDouble* dbasis=xNew<IssmDouble>(3*numnodes);
1181 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
[17434]1182
[18930]1183 /*Build B: */
1184 for(int i=0;i<numnodes;i++){
1185 B[numnodes*0+i] = dbasis[0*numnodes+i];
1186 B[numnodes*1+i] = dbasis[1*numnodes+i];
1187 B[numnodes*2+i] = dbasis[2*numnodes+i];
[18659]1188 }
1189
[18930]1190 /*Clean-up*/
1191 xDelete<IssmDouble>(dbasis);
[18659]1192}/*}}}*/
[18930]1193void EnthalpyAnalysis::GetBasalConstraints(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
[18659]1194
1195 /* Check if ice in element */
1196 if(!element->IsIceInElement()) return;
1197
1198 /* Only update Constraints at the base of grounded ice*/
1199 if(!(element->IsOnBase()) || element->IsFloating()) return;
1200
1201 /*Intermediary*/
1202 bool isdynamicbasalspc;
[18612]1203 IssmDouble dt;
1204
1205 /*Check wether dynamic basal boundary conditions are activated */
1206 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
1207 if(!isdynamicbasalspc) return;
1208
1209 element->FindParam(&dt,TimesteppingTimeStepEnum);
1210 if(dt==0.){
[18659]1211 GetBasalConstraintsSteadystate(vec_spc,element);
[18612]1212 }
1213 else{
[18659]1214 GetBasalConstraintsTransient(vec_spc,element);
[18612]1215 }
1216}/*}}}*/
[18930]1217void EnthalpyAnalysis::GetBasalConstraintsSteadystate(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
[18612]1218
1219 /* Check if ice in element */
1220 if(!element->IsIceInElement()) return;
1221
1222 /* Only update Constraints at the base of grounded ice*/
1223 if(!(element->IsOnBase()) || element->IsFloating()) return;
1224
1225 /*Intermediary*/
1226 int numindices, numindicesup, state;
[17027]1227 int *indices = NULL, *indicesup = NULL;
[18612]1228 IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
[17014]1229
[18612]1230 /*Get parameters and inputs: */
[18930]1231 Input* enthalpy_input = element->GetInput(EnthalpyPicardEnum); _assert_(enthalpy_input);
[18612]1232 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
1233 Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
1234 Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
1235
[17027]1236 /*Fetch indices of basal & surface nodes for this finite element*/
1237 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
1238 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
[18612]1239 penta->SurfaceNodeIndices(&numindicesup,&indicesup,element->GetElementType()); _assert_(numindices==numindicesup);
[17014]1240
[18612]1241 GaussPenta* gauss=new GaussPenta();
1242 GaussPenta* gaussup=new GaussPenta();
1243 for(int i=0;i<numindices;i++){
1244 gauss->GaussNode(element->GetElementType(),indices[i]);
1245 gaussup->GaussNode(element->GetElementType(),indicesup[i]);
[18930]1246
[18612]1247 enthalpy_input->GetInputValue(&enthalpy,gauss);
1248 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
1249 pressure_input->GetInputValue(&pressure,gauss);
1250 pressure_input->GetInputValue(&pressureup,gaussup);
1251 watercolumn_input->GetInputValue(&watercolumn,gauss);
1252 meltingrate_input->GetInputValue(&meltingrate,gauss);
1253
1254 state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
1255 switch (state) {
1256 case 0:
1257 // cold, dry base: apply basal surface forcing
[18659]1258 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
[18612]1259 break;
1260 case 1:
1261 // cold, wet base: keep at pressure melting point
[18659]1262 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
[18612]1263 break;
1264 case 2:
1265 // temperate, thin refreezing base: release spc
[18659]1266 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
[18612]1267 break;
1268 case 3:
1269 // temperate, thin melting base: set spc
[18659]1270 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
[18612]1271 break;
1272 case 4:
[18930]1273 // temperate, thick melting base: s
1274 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
[18612]1275 break;
1276 default:
1277 _printf0_(" unknown thermal basal state found!");
1278 }
1279 }
1280
1281 /*Free ressources:*/
1282 xDelete<int>(indices);
1283 xDelete<int>(indicesup);
1284 delete gauss;
1285 delete gaussup;
1286}/*}}}*/
[18930]1287void EnthalpyAnalysis::GetBasalConstraintsTransient(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
[18612]1288
1289 /* Check if ice in element */
1290 if(!element->IsIceInElement()) return;
1291
1292 /* Only update Constraints at the base of grounded ice*/
1293 if(!(element->IsOnBase()) || element->IsFloating()) return;
1294
1295 /*Intermediary*/
1296 int numindices, numindicesup, state;
1297 int *indices = NULL, *indicesup = NULL;
1298 IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
1299
[17027]1300 /*Get parameters and inputs: */
[18930]1301 Input* enthalpy_input = element->GetInput(EnthalpyEnum); _assert_(enthalpy_input); //TODO: check EnthalpyPicard?
[18612]1302 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
1303 Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
1304 Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
[17014]1305
[18612]1306 /*Fetch indices of basal & surface nodes for this finite element*/
1307 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
1308 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
1309 penta->SurfaceNodeIndices(&numindicesup,&indicesup,element->GetElementType()); _assert_(numindices==numindicesup);
1310
[17027]1311 GaussPenta* gauss=new GaussPenta();
1312 GaussPenta* gaussup=new GaussPenta();
[18930]1313
[17027]1314 for(int i=0;i<numindices;i++){
1315 gauss->GaussNode(element->GetElementType(),indices[i]);
1316 gaussup->GaussNode(element->GetElementType(),indicesup[i]);
[18930]1317
[18612]1318 enthalpy_input->GetInputValue(&enthalpy,gauss);
1319 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
1320 pressure_input->GetInputValue(&pressure,gauss);
1321 pressure_input->GetInputValue(&pressureup,gaussup);
[17027]1322 watercolumn_input->GetInputValue(&watercolumn,gauss);
[18612]1323 meltingrate_input->GetInputValue(&meltingrate,gauss);
1324
1325 state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
[18930]1326
[18612]1327 switch (state) {
1328 case 0:
1329 // cold, dry base: apply basal surface forcing
[18659]1330 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
[18612]1331 break;
1332 case 1:
1333 // cold, wet base: keep at pressure melting point
[18659]1334 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
[18612]1335 break;
1336 case 2:
1337 // temperate, thin refreezing base: release spc
[18659]1338 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
[18612]1339 break;
1340 case 3:
1341 // temperate, thin melting base: set spc
[18659]1342 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
[18612]1343 break;
1344 case 4:
[18930]1345 // temperate, thick melting base: set grad H*n=0
1346 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
[18612]1347 break;
1348 default:
1349 _printf0_(" unknown thermal basal state found!");
[17027]1350 }
[18930]1351
[17027]1352 }
[17014]1353
[17027]1354 /*Free ressources:*/
1355 xDelete<int>(indices);
1356 xDelete<int>(indicesup);
1357 delete gauss;
1358 delete gaussup;
[17002]1359}/*}}}*/
[18930]1360void EnthalpyAnalysis::GetBConduct(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
1361 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
1362 * For node i, Bi' can be expressed in the actual coordinate system
1363 * by:
1364 * Bi_conduct=[ dh/dx ]
1365 * [ dh/dy ]
1366 * [ dh/dz ]
1367 * where h is the interpolation function for node i.
1368 *
1369 * We assume B has been allocated already, of size: 3x(NDOF1*numnodes)
1370 */
[17002]1371
[18930]1372 /*Fetch number of nodes for this finite element*/
1373 int numnodes = element->GetNumberOfNodes();
1374
1375 /*Get nodal functions derivatives*/
1376 IssmDouble* dbasis=xNew<IssmDouble>(3*numnodes);
1377 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
1378
1379 /*Build B: */
1380 for(int i=0;i<numnodes;i++){
1381 B[numnodes*0+i] = dbasis[0*numnodes+i];
1382 B[numnodes*1+i] = dbasis[1*numnodes+i];
1383 B[numnodes*2+i] = dbasis[2*numnodes+i];
1384 }
1385
1386 /*Clean-up*/
1387 xDelete<IssmDouble>(dbasis);
1388}/*}}}*/
1389void EnthalpyAnalysis::GetSolutionFromInputs(Vector<IssmDouble>* solution,Element* element){/*{{{*/
1390 element->GetSolutionFromInputsOneDof(solution,EnthalpyEnum);
1391}/*}}}*/
1392int EnthalpyAnalysis::GetThermalBasalCondition(Element* element, IssmDouble enthalpy, IssmDouble enthalpyup, IssmDouble pressure, IssmDouble pressureup, IssmDouble watercolumn, IssmDouble meltingrate){/*{{{*/
1393
[18612]1394 /* Check if ice in element */
1395 if(!element->IsIceInElement()) return -1;
1396
1397 /* Only update Constraints at the base of grounded ice*/
1398 if(!(element->IsOnBase())) return -1;
1399
1400 /*Intermediary*/
1401 int state=-1;
1402 IssmDouble dt;
1403
1404 /*Get parameters and inputs: */
1405 element->FindParam(&dt,TimesteppingTimeStepEnum);
1406
[18620]1407 if(enthalpy<PureIceEnthalpy(element,pressure)){
1408 if(watercolumn<=0.) state=0; // cold, dry base
1409 else state=1; // cold, wet base (refreezing)
[18612]1410 }
[18620]1411 else{
1412 if(enthalpyup<PureIceEnthalpy(element,pressureup)){
1413 if((dt==0.) && (meltingrate<0.)) state=2; // refreezing temperate base (non-physical, only for steadystate solver)
1414 else state=3; // temperate base, but no temperate layer
[18612]1415 }
[18620]1416 else state=4; // temperate layer with positive thickness
[18612]1417 }
1418
1419 _assert_(state>=0);
1420 return state;
1421}/*}}}*/
[18930]1422IssmDouble EnthalpyAnalysis::GetWetIceConductivity(Element* element, IssmDouble enthalpy, IssmDouble pressure){/*{{{*/
[18612]1423
1424 IssmDouble temperature, waterfraction;
1425 IssmDouble kappa_w = 0.6; // thermal conductivity of water (in W/m/K)
1426 IssmDouble kappa_i = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
1427 element->EnthalpyToThermal(&temperature, &waterfraction, enthalpy, pressure);
1428
1429 return (1.-waterfraction)*kappa_i + waterfraction*kappa_w;
1430}/*}}}*/
[18930]1431void EnthalpyAnalysis::GradientJ(Vector<IssmDouble>* gradient,Element* element,int control_type,int control_index){/*{{{*/
1432 _error_("Not implemented yet");
1433}/*}}}*/
1434void EnthalpyAnalysis::InputUpdateFromSolution(IssmDouble* solution,Element* element){/*{{{*/
[18612]1435
[18930]1436 bool converged;
1437 int i,rheology_law;
1438 IssmDouble B_average,s_average,T_average=0.,P_average=0.;
1439 int *doflist = NULL;
1440 IssmDouble *xyz_list = NULL;
[16888]1441
[18930]1442 /*Fetch number of nodes and dof for this finite element*/
1443 int numnodes = element->GetNumberOfNodes();
[16888]1444
[18930]1445 /*Fetch dof list and allocate solution vector*/
1446 element->GetDofList(&doflist,NoneApproximationEnum,GsetEnum);
1447 IssmDouble* values = xNew<IssmDouble>(numnodes);
1448 IssmDouble* pressure = xNew<IssmDouble>(numnodes);
1449 IssmDouble* surface = xNew<IssmDouble>(numnodes);
1450 IssmDouble* B = xNew<IssmDouble>(numnodes);
1451 IssmDouble* temperature = xNew<IssmDouble>(numnodes);
1452 IssmDouble* waterfraction = xNew<IssmDouble>(numnodes);
[16888]1453
[18930]1454 /*Use the dof list to index into the solution vector: */
1455 for(i=0;i<numnodes;i++){
1456 values[i]=solution[doflist[i]];
[16888]1457
[18930]1458 /*Check solution*/
1459 if(xIsNan<IssmDouble>(values[i])) _error_("NaN found in solution vector");
[16888]1460 }
1461
[18930]1462 /*Get all inputs and parameters*/
1463 element->GetInputValue(&converged,ConvergedEnum);
1464 element->GetInputListOnNodes(&pressure[0],PressureEnum);
1465 if(converged){
1466 for(i=0;i<numnodes;i++){
1467 element->EnthalpyToThermal(&temperature[i],&waterfraction[i],values[i],pressure[i]);
1468 if(waterfraction[i]<0.) _error_("Negative water fraction found in solution vector");
1469 //if(waterfraction[i]>1.) _error_("Water fraction >1 found in solution vector");
1470 }
1471 element->AddInput(EnthalpyEnum,values,element->GetElementType());
1472 element->AddInput(WaterfractionEnum,waterfraction,element->GetElementType());
1473 element->AddInput(TemperatureEnum,temperature,element->GetElementType());
1474
1475 /*Update Rheology only if converged (we must make sure that the temperature is below melting point
1476 * otherwise the rheology could be negative*/
1477 element->FindParam(&rheology_law,MaterialsRheologyLawEnum);
1478 element->GetInputListOnNodes(&surface[0],SurfaceEnum);
1479 switch(rheology_law){
1480 case NoneEnum:
1481 /*Do nothing: B is not temperature dependent*/
1482 break;
1483 case CuffeyEnum:
1484 for(i=0;i<numnodes;i++) B[i]=Cuffey(temperature[i]);
1485 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1486 break;
1487 case PatersonEnum:
1488 for(i=0;i<numnodes;i++) B[i]=Paterson(temperature[i]);
1489 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1490 break;
1491 case ArrheniusEnum:
1492 element->GetVerticesCoordinates(&xyz_list);
1493 for(i=0;i<numnodes;i++) B[i]=Arrhenius(temperature[i],surface[i]-xyz_list[i*3+2],element->GetMaterialParameter(MaterialsRheologyNEnum));
1494 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1495 break;
1496 case LliboutryDuvalEnum:
1497 for(i=0;i<numnodes;i++) B[i]=LliboutryDuval(values[i],pressure[i],element->GetMaterialParameter(MaterialsRheologyNEnum),element->GetMaterialParameter(MaterialsBetaEnum),element->GetMaterialParameter(ConstantsReferencetemperatureEnum),element->GetMaterialParameter(MaterialsHeatcapacityEnum),element->GetMaterialParameter(MaterialsLatentheatEnum));
1498 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1499 break;
1500 default: _error_("Rheology law " << EnumToStringx(rheology_law) << " not supported yet");
1501 }
[16888]1502 }
1503 else{
[18930]1504 element->AddInput(EnthalpyPicardEnum,values,element->GetElementType());
[16888]1505 }
1506
[18930]1507 /*Free ressources:*/
1508 xDelete<IssmDouble>(values);
1509 xDelete<IssmDouble>(pressure);
1510 xDelete<IssmDouble>(surface);
1511 xDelete<IssmDouble>(B);
1512 xDelete<IssmDouble>(temperature);
1513 xDelete<IssmDouble>(waterfraction);
1514 xDelete<IssmDouble>(xyz_list);
1515 xDelete<int>(doflist);
1516}/*}}}*/
1517void EnthalpyAnalysis::PostProcessing(FemModel* femmodel){/*{{{*/
[16888]1518
[18930]1519 /*Intermediaries*/
1520 bool computebasalmeltingrates=true;
1521 bool drainicecolumn=true;
1522 bool isdynamicbasalspc;
1523 IssmDouble dt;
1524
1525 femmodel->parameters->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
1526 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
1527
1528 //TODO: use dt to decide what to do
1529 if(drainicecolumn) DrainWaterfraction(femmodel);
1530 if(computebasalmeltingrates) ComputeBasalMeltingrate(femmodel);
1531 if(isdynamicbasalspc) UpdateBasalConstraints(femmodel);
1532
[17027]1533}/*}}}*/
[18930]1534IssmDouble EnthalpyAnalysis::PureIceEnthalpy(Element* element,IssmDouble pressure){/*{{{*/
[16888]1535
1536 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
1537 IssmDouble referencetemperature = element->GetMaterialParameter(ConstantsReferencetemperatureEnum);
1538
1539 return heatcapacity*(TMeltingPoint(element,pressure)-referencetemperature);
1540}/*}}}*/
[18930]1541IssmDouble EnthalpyAnalysis::TMeltingPoint(Element* element,IssmDouble pressure){/*{{{*/
[16888]1542
1543 IssmDouble meltingpoint = element->GetMaterialParameter(MaterialsMeltingpointEnum);
1544 IssmDouble beta = element->GetMaterialParameter(MaterialsBetaEnum);
1545
1546 return meltingpoint-beta*pressure;
1547}/*}}}*/
[18930]1548void EnthalpyAnalysis::UpdateBasalConstraints(FemModel* femmodel){/*{{{*/
1549
1550 /*Update basal dirichlet BCs for enthalpy: */
1551 Vector<IssmDouble>* spc = NULL;
1552 IssmDouble* serial_spc = NULL;
1553
1554 spc=new Vector<IssmDouble>(femmodel->nodes->NumberOfNodes(EnthalpyAnalysisEnum));
1555 /*First create a vector to figure out what elements should be constrained*/
1556 for(int i=0;i<femmodel->elements->Size();i++){
1557 Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1558 GetBasalConstraints(spc,element);
1559 }
1560
1561 /*Assemble and serialize*/
1562 spc->Assemble();
1563 serial_spc=spc->ToMPISerial();
1564 delete spc;
1565
1566 /*Then update basal constraints nodes accordingly*/
1567 for(int i=0;i<femmodel->elements->Size();i++){
1568 Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1569 ApplyBasalConstraints(serial_spc,element);
1570 }
1571
1572 femmodel->UpdateConstraintsx();
1573
1574 /*Delete*/
1575 xDelete<IssmDouble>(serial_spc);
1576}/*}}}*/
1577void EnthalpyAnalysis::UpdateConstraints(FemModel* femmodel){/*{{{*/
1578
1579 bool islevelset;
1580 femmodel->parameters->FindParam(&islevelset,TransientIslevelsetEnum);
1581 if(islevelset){
1582 SetActiveNodesLSMx(femmodel);
1583 }
1584 return;
1585}/*}}}*/
Note: See TracBrowser for help on using the repository browser.